1
|
Noorbakhsh Varnosfaderani SM, Sadat Haeri M, Arian AS, Yousefi Rad A, Yazdanpour M, Mojahedian F, Yaghoubzad-Maleki M, Zalpoor H, Baziyar P, Nabi-Afjadi M. Fighting against amyotrophic lateral sclerosis (ALS) with flavonoids: a computational approach to inhibit superoxide dismutase (SOD1) mutant aggregation. J Biomol Struct Dyn 2025; 43:419-436. [PMID: 37975411 DOI: 10.1080/07391102.2023.2281641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Protein aggregation is a biological process that occurs when proteins misfold. Misfolding and aggregation of human superoxide dismutase (hSOD1) cause a neurodegenerative disease called amyotrophic lateral sclerosis (ALS). Among the mutations occurring, targeting the E21K mutation could be a good choice to understand the pathological mechanism of SOD1 in ALS, whereof it significantly reduces life hopefulness in patients. Naturally occurring polyphenolic flavonoids have been suggested as a way to alleviate the amyloidogenic behavior of proteins. In this study, computational tools were used to identify promising flavonoid compounds that effectively inhibit the pathogenic behavior of the E21K mutant. Initial screening identified Pelargonidin, Curcumin, and Silybin as promising leads. Molecular dynamics (MD) simulations showed that the binding of flavonoids to the mutated SOD1 caused changes in the protein stability, hydrophobicity, flexibility, and restoration of lost hydrogen bonds. Secondary structure analysis indicated that the protein destabilization and the increased propensity of β-sheet caused by the mutation were restored to the wild-type state upon binding of flavonoids. Free energy landscape (FEL) analysis was also used to differentiate aggregation, and results showed that Silybin followed by Pelargonidin had the most therapeutic efficacy against the E21K mutant SOD1. Therefore, these flavonoids hold great potential as highly effective inhibitors in mitigating ALS's fatal and insuperable effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Sam Arian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Yazdanpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mojahedian
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| |
Collapse
|
2
|
Sureshan M, Prabhu D, Kadhirvel S. Computational identification and experimental validation of anti-filarial lead molecules targeting metal binding/substrate channel residues of Cu/Zn SOD1 from Wuchereria bancrofti. J Biomol Struct Dyn 2023; 41:8715-8728. [PMID: 36305196 DOI: 10.1080/07391102.2022.2136245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
Lymphatic filariasis (LF) is a neglected mosquito-borne parasitic disease, widely caused by Wuchereria bancrofti (Wb) in tropical and sub-tropical countries. During a blood meal, the filarial nematodes are transmitted to humans by the infected mosquito. To counter attack the invaded nematodes, the human immune system produces reactive oxygen species. However, the anti-oxidant enzymes of nematodes counteract the host oxidative cytotoxicity. Cu/Zn Superoxide dismutase (SOD1), a member of antioxidant enzymes and are widely used by the nematodes to sustain the host oxidative stress across its lifecycle, hence targeting SOD1 to develop suitable drug molecules would help to overcome the problems related to efficacy and activity of drugs upon different stages of nematodes. In order to find the potent inhibitors, a three-dimensional structure of Cu/Zn WbSOD1 was modelled and the structural stability was analysed through simulation studies. The structure-guided virtual screening approach has been used to identify lead molecules from the ChemBridge based on the docking score, ADMET properties and protein-ligand complex stability analysis. The identified compounds were observed to interact with the copper, metal binding residues (His48, His63, His80 and His120) and catalytically important residue Arg146, which play a crucial role in the disproportionation of incoming superoxide radicals of Cu/Zn WbSOD1. Further, in vitro validation of the selected leads in the filarial worm Setaria digitata exhibited higher inhibition and better IC50 compared to the standard drug ivermectin. Thus, the identified leads could potentially inhibit enzyme activity, which could subsequently act as drug candidates to control LF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muthusamy Sureshan
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhamodharan Prabhu
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
- Department of Computational Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
3
|
Rahman A, Saikia B, Gogoi CR, Baruah A. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:31-48. [PMID: 36044970 DOI: 10.1016/j.pbiomolbio.2022.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aberrant protein folding known as protein misfolding is counted as one of the striking factors of neurodegenerative diseases. The extensive range of pathologies caused by protein misfolding, aggregation and subsequent accumulation are mainly classified into either gain of function diseases or loss of function diseases. In order to seek for novel strategies for treatment and diagnosis of neurodegenerative diseases, insights into the mechanism of misfolding and aggregation is essential. A comprehensive knowledge on the factors influencing misfolding and aggregation is required as well. An extensive experimental study on protein aggregation is somewhat challenging due to the insoluble and noncrystalline nature of amyloid fibrils. Thus there has been a growing use of computational approaches including Monte Carlo simulation, docking simulation, molecular dynamics simulation in the study of protein misfolding and aggregation. The review presents a discussion on molecular dynamics simulation alone as to how it has emerged as a promising tool in the understanding of protein misfolding and aggregation in general, detailing upon three different aspects considering four misfold prone proteins in particular. It is noticeable that all four proteins considered in this review i.e prion, superoxide dismutase1, huntingtin and amyloid β are linked to chronic neurodegenerative diseases with debilitating effects. Initially the review elaborates on the factors influencing the misfolding and aggregation. Next, it addresses our current understanding of the amyloid structures and the associated aggregation mechanisms, finally, summarizing the contribution of this computational tool in the search for therapeutic strategies against the respective protein-deposition diseases.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Chimi Rekha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
4
|
Tompa DR, Muthusamy S, Srikanth S, Kadhirvel S. Molecular dynamics of far positioned surface mutations of Cu/Zn SOD1 promotes altered structural stability and metal-binding site: Structural clues to the pathogenesis of amyotrophic lateral sclerosis. J Mol Graph Model 2020; 100:107678. [PMID: 32768728 DOI: 10.1016/j.jmgm.2020.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) mutations are associated to the motor neuron disorder, amyotrophic lateral sclerosis (ALS), which is characterized by aggregates of the misfolded proteins. The distribution of mutations all over the three-dimensional structure of SOD1 makes it complex to determine the exact molecular mechanism underlying SOD1 destabilization and the associated ALS pathology. In this study, we have examined structure and dynamics of SOD1 protein upon two ALS associated point mutations at the surface residue Glu100 (E100G and E100K), which is located far from the Cu and Zn sites and dimer interface. The molecular dynamics simulations were performed for these mutants for 50ns using GROMACS package. Our results indicate that the mutations result in structural destabilization by affecting the gate keeping role of Glu100 and loss of electrostatic interactions on the protein surface which stabilizes the β-barrel structure of the native form. Further, these mutations could increase the fluctuations in the zinc-binding loop (loop IV), primarily due to loss of hydrogen bond between Asp101 and Arg79. The relaxed conformation of Arg79 further affects the native conformation of His80 and Asp83, that results in altered zinc site geometry and the structure of the substrate channel. Our results clearly suggest that, similar to the mutations located at metal sites/dimer interface/disulfide regions, the mutations at the far positioned site (Glu100) also induce significant conformational changes that could affect the metallation and structure of SOD1 molecule, resulting in formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Sureshan Muthusamy
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Srimari Srikanth
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
5
|
Thiagarajan R, Varsha MKNS, Srinivasan V, Ravichandran R, Saraboji K. Vitamin K1 prevents diabetic cataract by inhibiting lens aldose reductase 2 (ALR2) activity. Sci Rep 2019; 9:14684. [PMID: 31604989 PMCID: PMC6789135 DOI: 10.1038/s41598-019-51059-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
This study investigated the potential of vitamin K1 as a novel lens aldose reductase inhibitor in a streptozotocin-induced diabetic cataract model. A single, intraperitoneal injection of streptozotocin (STZ) (35 mg/kg) resulted in hyperglycemia, activation of lens aldose reductase 2 (ALR2) and accumulation of sorbitol in eye lens which could have contributed to diabetic cataract formation. However, when diabetic rats were treated with vitamin K1 (5 mg/kg, sc, twice a week) it resulted in lowering of blood glucose and inhibition of lens aldose reductase activity because of which there was a corresponding decrease in lens sorbitol accumulation. These results suggest that vitamin K1 is a potent inhibitor of lens aldose reductase enzyme and we made an attempt to understand the nature of this inhibition using crude lens homogenate as well as recombinant human aldose reductase enzyme. Our results from protein docking and spectrofluorimetric analyses clearly show that vitamin K1 is a potent inhibitor of ALR2 and this inhibition is primarily mediated by the blockage of DL-glyceraldehyde binding to ALR2. At the same time docking also suggests that vitamin K1 overlaps at the NADPH binding site of ALR2, which probably shows that vitamin K1 could possibly bind both these sites in the enzyme. Another deduction that we can derive from the experiments performed with pure protein is that ALR2 has three levels of affinity, first for NADPH, second for vitamin K1 and third for the substrate DL-glyceraldehyde. This was evident based on the dose-dependency experiments performed with both NADPH and DL-glyceraldehyde. Overall, our study shows the potential of vitamin K1 as an ALR2 inhibitor which primarily blocks enzyme activity by inhibiting substrate interaction of the enzyme. Further structural studies are needed to fully comprehend the exact nature of binding and inhibition of ALR2 by vitamin K1 that could open up possibilities of its therapeutic application.
Collapse
Affiliation(s)
- R Thiagarajan
- School of Chemical & Biotechnology, SASTRA University, Tamil Nadu, India.
- Department of Advanced Zoology & Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, 600004, India.
| | - M K N Sai Varsha
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - V Srinivasan
- Disease Program Lead - Diabetes, MedGenome Inc., Bangalore, India
| | - R Ravichandran
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY, 10016, USA
| | - K Saraboji
- School of Chemical & Biotechnology, SASTRA University, Tamil Nadu, India
| |
Collapse
|
6
|
Li HL, Lee JR, Hahn MJ, Yang JM, Meng FG, Wu JW, Park YD. The omics based study for the role of superoxide dismutase 2 (SOD2) in keratinocytes: RNA sequencing, antibody-chip array and bioinformatics approaches. J Biomol Struct Dyn 2019; 38:2884-2897. [DOI: 10.1080/07391102.2019.1648321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hai-Long Li
- Institute of Molecular Enzymology, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Jae-Rin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myong-Joon Hahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Fan-Guo Meng
- Institute of Molecular Enzymology, Medical College of Soochow University, Suzhou, Jiangsu, PR China
- Redox Medical Center for Public Health, Soochow University, Suzhou, Jiangsu, PR China
| | - Jia-Wei Wu
- Institute of Molecular Enzymology, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Yong-Doo Park
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
7
|
Kumar Ghosh D, Nanaji Shrikondawar A, Ranjan A. Local structural unfolding at the edge-strands of beta sheets is the molecular basis for instability and aggregation of G85R and G93A mutants of superoxide dismutase 1. J Biomol Struct Dyn 2019; 38:647-659. [DOI: 10.1080/07391102.2019.1584125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
8
|
Xiao J, Melvin RL, Salsbury FR. Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning. J Biomol Struct Dyn 2019; 37:982-999. [PMID: 29471734 PMCID: PMC6207482 DOI: 10.1080/07391102.2018.1445032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
Thrombin is a key component for chemotherapeutic and antithrombotic therapy development. As the physiologic and pathologic roles of the light chain still remain vague, here, we continue previous efforts to understand the impacts of the disease-associated single deletion of LYS9 in the light chain. By combining supervised and unsupervised machine learning methodologies and more traditional structural analyses on data from 10 μs molecular dynamics simulations, we show that the conformational ensemble of the ΔK9 mutant is significantly perturbed. Our analyses consistently indicate that LYS9 deletion destabilizes both the catalytic cleft and regulatory functional regions and result in some conformational changes that occur in tens to hundreds of nanosecond scaled motions. We also reveal that the two forms of thrombin each prefer a distinct binding mode of a Na+ ion. We expand our understanding of previous experimental observations and shed light on the mechanisms of the LYS9 deletion associated bleeding disorder by providing consistent but more quantitative and detailed structural analyses than early studies in literature. With a novel application of supervised learning, i.e. the decision tree learning on the hydrogen bonding features in the wild-type and ΔK9 mutant forms of thrombin, we predict that seven pairs of critical hydrogen bonding interactions are significant for establishing distinct behaviors of wild-type thrombin and its ΔK9 mutant form. Our calculations indicate the LYS9 in the light chain has both localized and long-range allosteric effects on thrombin, supporting the opinion that light chain has an important role as an allosteric effector.
Collapse
Affiliation(s)
- Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, USA
- Department of Computer Science, Wake Forest University, Winston Salem, USA
| | - Ryan L. Melvin
- Department of Physics, Wake Forest University, Winston-Salem, USA
- Department of Mathematics and Statistics, Wake Forest University, Winston-Salem,USA
| | | |
Collapse
|
9
|
Sahu TK, Pradhan D, Rao AR, Jena L. In silico site-directed mutagenesis of neutralizing mAb 4C4 and analysis of its interaction with G-H loop of VP1 to explore its therapeutic applications against FMD. J Biomol Struct Dyn 2018; 37:2641-2651. [PMID: 30051760 DOI: 10.1080/07391102.2018.1494631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Investigating the behaviour of bio-molecules through computational mutagenesis is gaining interest to facilitate the development of new therapeutic solutions for infectious diseases. The antigenetically variant genotypes of foot and mouth disease virus (FMDV) and their subsequent infections are challenging to tackle with traditional vaccination. In such scenario, neutralizing antibodies might provide an alternate solution to manage the FMDV infection. Thus, we have analysed the interaction of the mAb 4C4 with a synthetic G-H loop of FMDV-VP1 through in silico mutagenesis and molecular modelling. Initially, a set of 25,434 mutants were designed and the mutants having better energetic stability than 4C4 were clustered based on sequence identity. The best mutant representing each cluster was selected and evaluated for its binding affinity with the antigen in terms of docking scores, interaction energy and binding energy. Six mutants have confirmed better binding affinities towards the antigen than 4C4. Further, interaction of these mutants with the natural G-H loop that is bound to mAb SD6 was also evaluated. One 4C4 variant having mutations at the positions 2034(N→L), 2096(N→C), 2098(D→Y), 2532(T→K) and 2599(A→G) has revealed better binding affinities towards both the synthetic and natural G-H loops than 4C4 and SD6, respectively. A molecular dynamic simulation for 50 ns was conducted for mutant and wild-type antibody structures which supported the pre-simulation results. Therefore, these mutations on mAb 4C4 are believed to provide a better antibody-based therapeutic option for FMD. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanmaya Kumar Sahu
- a Centre for Agricultural Bioinformatics , ICAR-Indian Agricultural Statistics Research Institute , New Delhi , Delhi , India
| | - Dibyabhaba Pradhan
- b Biomedical Informatics Centre , ICMR-National Institute of Pathology , New Delhi , Delhi , India.,c ICMR-Computational Genomics Centre , Indian Council of Medical Research , New Delhi , Delhi , India
| | - Atmakuri Ramakrishna Rao
- a Centre for Agricultural Bioinformatics , ICAR-Indian Agricultural Statistics Research Institute , New Delhi , Delhi , India
| | - Lingaraj Jena
- d Bioinformatics Centre , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| |
Collapse
|
10
|
Smith IN, Thacker S, Jaini R, Eng C. Dynamics and structural stability effects of germline PTEN mutations associated with cancer versus autism phenotypes. J Biomol Struct Dyn 2018; 37:1766-1782. [PMID: 29663862 DOI: 10.1080/07391102.2018.1465854] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Individuals with germline mutations in the tumor suppressor gene phosphatase and tensin homolog (PTEN), irrespective of clinical presentation, are diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers a high risk of breast, thyroid, and other cancers or autism spectrum disorder (ASD) with macrocephaly. It remains unclear why mutations in one gene can lead to seemingly disparate phenotypes. Thus, we sought to identify differences in ASD vs. cancer-associated germline PTEN missense mutations by investigating putative structural effects induced by each mutation. We utilized a theoretical computational approach combining in silico structural analysis and molecular dynamics (MD) to interrogate 17 selected mutations from our patient population: six mutations were observed in patients with ASD (only), six mutations in patients with PHTS-associated cancer (only), four mutations shared across both phenotypes, and one mutation with both ASD and cancer. We demonstrate structural stability changes where all six cancer-associated mutations showed a global decrease in structural stability and increased dynamics across the domain interface with a proclivity to unfold, mediating a closed (inactive) active site. In contrast, five of the six ASD-associated mutations showed localized destabilization that contribute to the partial opening of the active site. Our results lend insight into distinctive structural effects of germline PTEN mutations associated with PTEN-ASD vs. those associated with PTEN-cancer, potentially aiding in identification of the shared and separate molecular features that contribute to autism or cancer, thus, providing a deeper understanding of genotype-phenotype relationships for germline PTEN mutations.
Collapse
Affiliation(s)
- Iris Nira Smith
- a Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Stetson Thacker
- a Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA.,e Cleveland Clinic Lerner College of Medicine , Cleveland , OH , USA
| | - Ritika Jaini
- a Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA.,d Germline High Risk Cancer Focus Group , Comprehensive Cancer Center, Case Western Reserve University School of Medicine , Cleveland , OH , USA.,e Cleveland Clinic Lerner College of Medicine , Cleveland , OH , USA
| | - Charis Eng
- a Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA.,b Taussig Cancer Institute, Cleveland Clinic , Cleveland , OH , USA.,c Department of Genetics and Genome Sciences, Case Westren Reserve University School of Medicine , Cleveland , OH , USA.,d Germline High Risk Cancer Focus Group , Comprehensive Cancer Center, Case Western Reserve University School of Medicine , Cleveland , OH , USA.,e Cleveland Clinic Lerner College of Medicine , Cleveland , OH , USA
| |
Collapse
|
11
|
Vijayakumar S, Das P. Structural, molecular motions, and free-energy landscape of Leishmania sterol-14α-demethylase wild type and drug resistant mutant: a comparative molecular dynamics study. J Biomol Struct Dyn 2018; 37:1477-1493. [PMID: 29620481 DOI: 10.1080/07391102.2018.1461135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sterol-14α-demethylase (CYP51) is an ergosterol pathway enzyme crucial for the survival of infectious Leishmania parasite. Recent high-throughput metabolomics and whole genome sequencing study revealed amphotericin B resistance in Leishmania is indeed due to mutation in CYP51. The residue of mutation (asparagine 176) is conserved across the kinetoplastidae and not in yeast or humans, portraying its functional significance. In order to understand the possible cause for the resistance, knowledge of structural changes due to mutation is of high importance. To shed light on the structural changes of wild and mutant CYP51, we conducted comparative molecular dynamics simulation study. The active site, substrate biding cavity, substrate channel entrance (SCE), and cavity involving the mutated site were studied based on basic parameters and large concerted molecular motions derived from essential dynamics analyses of 100 ns simulation. Results indicated that mutant CYP51 is stable and less compact than the wild type. Correspondingly, the solvent accessible surface area (SASA) of the mutant was found to be increased, especially in active site and cavities not involving the mutation site. Free-energy landscape analysis disclosed mutant to have a rich conformational diversity than wild type, with various free-energy conformations of mutant having SASA greater than wild type with SCE open. More residues were found to interact with the mutant CYP51 upon docking of substrate to both the wild and mutant CYP51. These results indicate that, relative to wild type, the N176I mutation of CYP51 in Leishmania mexicana could possibly favor increased substrate binding efficiency.
Collapse
Affiliation(s)
- Saravanan Vijayakumar
- a Department of Statistics/Bioinformatics , Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research , Agamkuan, Patna 800007 , Bihar , India
| | - Pradeep Das
- b Department of Molecular Biology/Bioinformatics Centre , Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research , Agamkuan, Patna 800007 , Bihar , India
| |
Collapse
|
12
|
Rungsung I, Ramaswamy A. Effects of Peutz-Jeghers syndrome (PJS) causing missense mutations L67P, L182P, G242V and R297S on the structural dynamics of LKB1 (Liver kinase B1) protein. J Biomol Struct Dyn 2018; 37:796-810. [PMID: 29447078 DOI: 10.1080/07391102.2018.1441070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The liver kinase B1 (LKB1) is encoded by LKB1 gene. Several pathogenic mutations of LKB1 causing Peutz-Jeghers syndrome and also cancers in breast, gastric, pancreas, and colon have been reported. The present study is focused to analyze the effects on the structural dynamics of LKB1 caused by the 4 pathogenic missense mutations (L67P, L182P, G242V, and R297S), which are reported to reduce the catalytic activity. In this study, the structural changes of LKB1 in apo- and in heterotrimeric complex (LKB1-STRADα-MO25α) form with wild and mutated LKB1 are investigated using all atomistic molecular dynamic simulation. The present study reveals that these four mutations initiate local structural distortions and the solvent accessibility of the surrounding regions of ATP-binding pocket such as glycine-rich loop, αB and αC loop, activation and catalytic loops. The mutations of L67P, L182P, and G242 V induce distortions of the secondary structure of β1-β3 sheets, π - π interaction (observed between Phe204 of LKB1 and Phe243 of MO25α), and increase the helical properties (both helical twist and length) of the adjacent αH-helix, respectively. The active kinase features like the conformation of catalytic and activation loops, salt bridge and, finally, the formation of stable R- and C-hydrophobic spines are also found to be perturbed by these mutations. Hence, the observed mutation-induced structural distortions fail to coordinate the essential binding nature of LKB1 with STRADα and MO25α, which eventually affects the native function of LKB1. These observations are in line with the experimentally reported reduced kinase activity of LKB1.
Collapse
Affiliation(s)
- Ikrormi Rungsung
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| | - Amutha Ramaswamy
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| |
Collapse
|
13
|
Sridharan U, Ragunathan P, Spellerberg B, Ponnuraj K. Molecular dynamics simulation of metal free structure of Lmb, a laminin-binding adhesin of Streptococcus agalactiae: metal removal and its structural implications. J Biomol Struct Dyn 2018; 37:714-725. [PMID: 29421962 DOI: 10.1080/07391102.2018.1438923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Metal-binding receptors are one of the extracellular components of ATP-binding cassette transporters that are essential for regulation of metal homeostasis in bacteria. Laminin-binding adhesin (Lmb) of Streptococcus agalactiae falls under this class of solute binding proteins. It binds to zinc with a high affinity. Crystal structure of Lmb solved previously by our group reveals that the zinc is tetrahedrally coordinated by three histidines and a glutamate at the interdomain cleft. Lmb contains a long disordered loop close to the metal-binding site whose precise function is unknown. Several experimental attempts to produce apo-Lmb failed and this prompted us to carry out in silico studies to analyse the structural importance of the metal in Lmb. Here, we present the results of the molecular dynamics (MD) simulation studies of native, apo-(metal removed) and the long loop truncated Lmb models along with a homologous protein, TroA from Treponema pallidum that was taken up for validating the MD results of Lmb. Absence of a metal results in significant structural changes in Lmb, particularly at the metal-binding pocket and with the long loop, although the overall fold is retained. This study thus revealed that the Lmb can exist in different conformational states with subtle differences in the overall fold based on the presence or absence of the metal. This could be functionally important for a putative metal uptake and release and also for the adhesive function of Lmb in recognizing laminin, which contains a high number of zinc finger motifs.
Collapse
Affiliation(s)
- Upasana Sridharan
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai , India
| | - Preethi Ragunathan
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai , India
| | - Barbara Spellerberg
- b Institute for Medical Microbiology and Hygiene , University of Ulm , Ulm , Germany
| | - Karthe Ponnuraj
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai , India
| |
Collapse
|
14
|
Raghuraman P, Sudandiradoss C. R516Q mutation in Melanoma differentiation-associated protein 5 (MDA5) and its pathogenic role towards rare Singleton-Merten syndrome; a signature associated molecular dynamics study. J Biomol Struct Dyn 2018; 37:750-765. [DOI: 10.1080/07391102.2018.1439770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- P. Raghuraman
- Department of Biotechnology, School of Bioscience and Technology, VIT University, Vellore 632014, India
| | - C. Sudandiradoss
- Department of Biotechnology, School of Bioscience and Technology, VIT University, Vellore 632014, India
| |
Collapse
|