1
|
Yang M, Wang J, Zhou Z, Li W, Verkhivker G, Xiao F, Hu G. Machine Learning and Structural Dynamics-Based Approach to Reveal Molecular Mechanism of PTEN Missense Mutations Shared by Cancer and Autism Spectrum Disorder. J Chem Inf Model 2025; 65:4173-4188. [PMID: 40228162 DOI: 10.1021/acs.jcim.5c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Missense mutations in oncogenic proteins that are concurrently associated with neurodevelopmental disorders have garnered significant attention. Phosphatase and tensin homologue (PTEN) serves as a paradigmatic model for mapping its mutational landscape and identifying genotypic predictors of distinct phenotypic outcomes, including cancer and autism spectrum disorder (ASD). Despite extensive research into the genotype-phenotype correlations of PTEN mutations, the mechanisms underlying the dual association of specific PTEN mutations with both cancer and ASD (PTEN-cancer/ASD mutations) remain elusive. This study introduces an integrative approach that combines machine learning (ML) with structural dynamics to elucidate the molecular effects of PTEN-cancer/ASD mutations. Analysis of biophysical and network-biology-based signatures reveals a complex energetic and functional landscape. Subsequently, an ML model and corresponding integrated score were developed to classify and predict PTEN-cancer/ASD mutations, underscoring the significance of protein dynamics in predicting cellular phenotypes. Further molecular dynamics simulations demonstrated that PTEN-cancer/ASD mutations induce dynamic alterations characterized by open conformational changes restricted to the P loop and coupled with interdomain allosteric regulation. This research aims to enhance the genotypic and phenotypic understanding of PTEN-cancer/ASD mutations through an interpretable ML model integrated with structural dynamics analysis. By identifying shared mechanisms between cancer and ASD, the findings pave the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miao Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jingran Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wentian Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-Carbon Fibers-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Dissanayake UC, Roy A, Maghsoud Y, Polara S, Debnath T, Cisneros GA. Computational studies on the functional and structural impact of pathogenic mutations in enzymes. Protein Sci 2025; 34:e70081. [PMID: 40116283 PMCID: PMC11926659 DOI: 10.1002/pro.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Enzymes are critical biological catalysts involved in maintaining the intricate balance of metabolic processes within living organisms. Mutations in enzymes can result in disruptions to their functionality that may lead to a range of diseases. This review focuses on computational studies that investigate the effects of disease-associated mutations in various enzymes. Through molecular dynamics simulations, multiscale calculations, and machine learning approaches, computational studies provide detailed insights into how mutations impact enzyme structure, dynamics, and catalytic activity. This review emphasizes the increasing impact of computational simulations in understanding molecular mechanisms behind enzyme (dis)function by highlighting the application of key computational methodologies to selected enzyme examples, aiding in the prediction of mutation effects and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Upeksha C. Dissanayake
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Arkanil Roy
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Yazdan Maghsoud
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Sarthi Polara
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Tanay Debnath
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - G. Andrés Cisneros
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
3
|
Yang M, Wang J, Zhou Z, Li W, Verkhivker G, Xiao F, Hu G. Decoding Mechanisms of PTEN Missense Mutations in Cancer and Autism Spectrum Disorder using Interpretable Machine Learning Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633473. [PMID: 39896643 PMCID: PMC11785095 DOI: 10.1101/2025.01.16.633473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Missense mutations in oncogenic proteins that are concurrently associated with neurodevelopmental disorders have garnered significant attention. Phosphatase and tensin homolog (PTEN) serves as a paradigmatic model for mapping its mutational landscape and identifying genotypic predictors of distinct phenotypic outcomes, including cancer and autism spectrum disorder (ASD). Despite extensive research into the genotype-phenotype correlations of PTEN mutations, the mechanisms underlying the dual association of specific PTEN mutations with both cancer and ASD (PTEN-cancer/ASD mutations) remain elusive. This study introduces an integrative approach that combines machine learning (ML) with structural dynamics to elucidate the molecular effects of PTEN-cancer/ASD mutations. Analysis of biophysical and network biology-based signatures reveals a complex energetic and functional landscape. Subsequently, an ML model and corresponding integrated score were developed to classify and predict PTEN-cancer/ASD mutations, underscoring the significance of protein dynamics in predicting cellular phenotypes. Further molecular dynamics simulations demonstrated that PTEN-cancer/ASD mutations induce dynamic alterations characterized by open conformational changes restricted to the P loop and coupled with inter-domain allosteric regulation. This research aims to enhance the genotypic and phenotypic understanding of PTEN-cancer/ASD mutations through an interpretable ML model integrated with structural dynamics analysis. By identifying shared mechanisms between cancer and ASD, the findings pave the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miao Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Jingran Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Wentian Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange 92866, California, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine 92618, California, United States
| | - Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Sanese P, Grossi V, Simone C. In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes. Cells 2024; 13:1314. [PMID: 39195204 PMCID: PMC11352798 DOI: 10.3390/cells13161314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in terms of cancer incidence worldwide and is responsible for 8% of all deaths globally. Approximately 10% of CRC cases are caused by inherited pathogenic mutations in driver genes involved in pathways that are crucial for CRC tumorigenesis and progression. These hereditary mutations significantly increase the risk of initial benign polyps or adenomas developing into cancer. In recent years, the rapid and accurate sequencing of CRC-specific multigene panels by next-generation sequencing (NGS) technologies has enabled the identification of several recurrent pathogenic variants with established functional consequences. In parallel, rare genetic variants that are not characterized and are, therefore, called variants of uncertain significance (VUSs) have also been detected. The classification of VUSs is a challenging task because each amino acid has specific biochemical properties and uniquely contributes to the structural stability and functional activity of proteins. In this scenario, the ability to computationally predict the effect of a VUS is crucial. In particular, in silico prediction methods can provide useful insights to assess the potential impact of a VUS and support additional clinical evaluation. This approach can further benefit from recent advances in artificial intelligence-based technologies. In this review, we describe the main in silico prediction tools that can be used to evaluate the structural and functional impact of VUSs and provide examples of their application in the analysis of gene variants involved in hereditary CRC syndromes.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
5
|
Nasir Shalal M, Aminzadeh M, Saberi A, Azizi Malmiri R, Aminzadeh R, Ghandil P. Genetic features of patients with MPS type IIIB: Description of five pathogenic gene variations. Gene 2024; 913:148354. [PMID: 38492611 DOI: 10.1016/j.gene.2024.148354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND There are four distinct forms of Sanfilippo syndrome (MPS type III), each of which is an autosomal lysosomal storage disorder. These forms are caused by abnormalities in one of four lysosomal enzymes. This study aimed to identify possible genetic variants that contribute to Sanfilippo IIIB in 14 independent families in Southwest Iran. METHODS Patients were included if their clinical features and enzyme assay results were suggestive. The patients were subsequently subjected to Sanger Sequencing to screen for Sanfilippo-related genes. Additional investigations have been conducted using various computational analyses to determine the probable functional effects of diagnosed variants. RESULTS Five distinct variations were identified in the NAGLU gene. This included two novel variants in two distinct families and three previously reported variants in 12 distinct families. All of these variations were recognized as pathogenic using the MutationTaster web server. In silico analysis showed that all detected variants affected protein structural stability; four destabilized protein structures, and the fifth variation had the opposite effect. CONCLUSION In this study, two novel variations in the NAGLU gene were identified. The results of this study positively contribute to the mutation diversity of the NAGLU gene. To identify new disease biomarkers and therapeutic targets, precision medicine must precisely characterize and account for genetic variations. New harmful gene variants are valuable for updating gene databases concerning Sanfilippo disease variations and NGS gene panels. This may also improve genetic counselling for rapid risk examinations and disease surveillance.
Collapse
Affiliation(s)
- Mahzad Nasir Shalal
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Aminzadeh
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizi Malmiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Aminzadeh
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Ahmad H, Ali A, Ali R, Khalil AT, Khan I, Khan MM, Alorini M. Preliminary insights on the mutational spectrum of BRCA1 and BRCA2 genes in Pakhtun ethnicity breast cancer patients from Khyber Pakhtunkhwa (KP), Pakistan. Neoplasia 2024; 51:100989. [PMID: 38537553 PMCID: PMC11026844 DOI: 10.1016/j.neo.2024.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Gene mutations are a source of genetic instability which fuels the progression of cancer. Mutations in BRCA1 and BRCA2 are considered as major drivers in the progression of breast cancer and their detection indispensable for devising therapeutic and management approaches. The current study aims to identify novel pathogenic and recurrent mutations in BRCA1 and BRCA2 in Pakhtun population from the Khyber Pakhtunkhwa. To determine the BRCA1 and BRCA2 pathogenic mutation prevalence in Pakhtun population from KP, whole exome sequencing of 19 patients along with 6 normal FFPE embedded blocks were performed. The pathogenicity of the mutations were determined and they were further correlated with different hormonal, sociogenetic and clinicopathological features. We obtained a total of 10 mutations (5 somatic and 5 germline) in BRCA1 while 27 mutations (24 somatic and 3 germline) for BRCA2. Five and seventeen pathogenic or deleterious mutations were identified in BRCA1 and BRCA2 respectively by examining the mutational spectrum through SIFT, PolyPhen-2 and Mutation Taster. Among the SNVs, BRCA1 p.P824L, BRCA2 p. P153Q, p.I180F, p.D559Y, p.G1529R, p.L1576F, p.E2229K were identified as mutations of the interaction sites as predicted by the deep algorithm based ISPRED-SEQ prediction tool. SAAFEQ-SEQ web-based algorithm was used to calculate the changes in free energy and effect of SNVs on protein stability. All SNVs were found to have a destabilizing effect on the protein. ConSurf database was used to determine the evolutionary conservation scores and nature of the mutated residues. Gromacs 4.5 was used for the molecular simulations. Ramachandran plots were generated using procheck server. STRING and GeneMania was used for prediction of the gene interactions. The highest number of mutations (BRCA1 7/10, 70 %) were on exon 9 and (BRCA2, 11/27; 40 %) were on exon 11. 40 % and 60 % of the BRCA2 mutations were associated Grade 2 and Grade 3 tumors respectively. The present study reveals unique BRCA1 and BRCA2 mutations in Pakhtun population. We further suggest sequencing of the large cohorts for further characterizing the pathogenic mutations.
Collapse
Affiliation(s)
- Hilal Ahmad
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, KP, Pakistan
| | - Asif Ali
- Institute of Pathology and Diagnostic Medicine (IPDM), Khyber Medical University, Peshawar, KP, Pakistan; College of Medicine, Gulf Medical University, Ajman, United Arab Emirates; School of Medicine, University of Glasgow, UK.
| | - Roshan Ali
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, KP, Pakistan
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, KP, Pakistan.
| | - Ishaq Khan
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, KP, Pakistan
| | - Mah Muneer Khan
- Department of Surgery, Khyber Teaching Hospital, Medical Teaching Institution, Peshawar, KP, Pakistan
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
7
|
Jang H, Chen J, Iakoucheva LM, Nussinov R. Cancer and Autism: How PTEN Mutations Degrade Function at the Membrane and Isoform Expression in the Human Brain. J Mol Biol 2023; 435:168354. [PMID: 37935253 PMCID: PMC10842829 DOI: 10.1016/j.jmb.2023.168354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Mutations causing loss of PTEN lipid phosphatase activity can promote cancer, benign tumors (PHTS), and neurodevelopmental disorders (NDDs). Exactly how they preferentially trigger distinct phenotypic outcomes has been puzzling. Here, we demonstrate that PTEN mutations differentially allosterically bias P loop dynamics and its connection to the catalytic site, affecting catalytic activity. NDD-related mutations are likely to sample conformations of the functional wild-type state, while sampled conformations for the strong, cancer-related driver mutation hotspots favor catalysis-primed conformations, suggesting that NDD mutations are likely to be weaker, and our large-scale simulations show why. Prenatal PTEN isoform expression data suggest exons 5 and 7, which harbor NDD mutations, as cancer-risk carriers. Since cancer requires more than a single mutation, our conformational and genomic analysis helps discover how same protein mutations can foster different clinical manifestations, articulates a role for co-occurring background latent driver mutations, and uncovers relationships of splicing isoform expression to life expectancy.
Collapse
Affiliation(s)
- Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Jiaye Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
8
|
Hitomi M, Venegas J, Kang SC, Eng C. Differential cell cycle checkpoint evasion by PTEN germline mutations associated with dichotomous phenotypes of cancer versus autism spectrum disorder. Oncogene 2023; 42:3698-3707. [PMID: 37907589 DOI: 10.1038/s41388-023-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Individuals with a PTEN germline mutation receive the molecular diagnosis of PTEN hamartoma tumor syndrome (PHTS). PHTS displays a complex spectrum of clinical phenotypes including harmartomas, predisposition to cancers, and autism spectrum disorder (ASD). Clear-cut genotype-phenotype correlations are yet to be established due to insufficient information on the PTEN function being impacted by mutations. To fill this knowledge gap, we compared functional impacts of two selected missense PTEN mutant alleles, G132D and M134R, each respectively being associated with distinct clinical phenotype, ASD or thyroid cancer without ASD using gene-edited human induced pluripotent stem cells (hiPSCs). In homozygous hiPSCs, PTEN expression was severely reduced by M134R mutation due to shortened protein half-life. G132D suppressed PTEN expression to a lesser extent than Μ134R mutation without altering protein half-life. When challenged with γ-irradiation, G132D heterozygous cells exited radiation-induced G2 arrest earlier than wildtype and M134R heterozygous hiPSCs despite the similar DNA damage levels as the latter two. Immunoblotting analyses suggested that γ-irradiation induced apoptosis in G132D heterozygous cells to lesser degrees than in the hiPSCs of other genotypes. These data suggest that ASD-associated G132D allele promotes genome instability by premature cell cycle reentry with incomplete DNA repair.
Collapse
Affiliation(s)
- Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Juan Venegas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
9
|
Ahmad H, Ali A, Ali R, Khalil AT, Khan I, Khan MM, Alorini M. Mutational Landscape and In-Silico Analysis of TP53, PIK3CA, and PTEN in Patients with Breast Cancer from Khyber Pakhtunkhwa. ACS OMEGA 2023; 8:43318-43331. [PMID: 38024667 PMCID: PMC10652387 DOI: 10.1021/acsomega.3c07472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Herein, we report the mutational spectrum of three breast cancer candidate genes (TP53, PIK3CA, and PTEN) using WES for identifying potential biomarkers. The WES data were thoroughly analyzed using SAMtools for variant calling and identification of the mutations. Various bioinformatic tools (SIFT, PolyPhen-2, Mutation Taster, ISPRED-SEQ, SAAFEQ-SEQ, ConSurf, PROCHECK etc.) were used to determine the pathogenicity and nature of the SNVs. Selected interaction site (IS) mutations were visualized in PyMOL after building 3D structures in Swiss-Model. Ramachandran plots were generated by using the PROCHECK server. The selected IS mutations were subjected to molecular dynamic simulation (MDS) studies using Gromacs 4.5. STRING and GeneMANIA were used for the prediction of gene-gene interactions and pathways. Our results revealed that the luminal A molecular subtype of the breast cancer was most common, whereas a high percentage of was Her2 negatives. Moreover, the somatic mutations were more common as compared to the germline mutations in TP53, PIK3CA, and PTEN. 20% of the identified mutations are reported for the first time from Khyber Pakhtunkhwa. In the enrolled cohort, 23 mutations were nonsynonymous SNVs. The frequency of mutations was the highest in PIK3CA, followed by TP53 and PTEN. A total of 13 mutations were found to be highly pathogenic. Four novel mutations were identified on PIK3CA and one each on PTEN and TP53. SAAFEQ-SEQ predicted the destabilizing effect for all mutations. ISPRED-SEQ predicted 9 IS mutations (6 on TP53 and 3 on PIK3CA), whereas no IS mutation was predicted on PTEN. The TP53 IS mutations were TP53R43H, TP53Y73X, TP53K93Q, TP53K93R, TP53D149E, and TP53Q199X; whereas for PIK3CA, the IS mutations were PIK3CAL156V, PIK3CAM610K, and PIK3CAH1047R. Analysis from the ConSurf Web server revealed five SNVs with a highly conserved status (conservation score 9) across TP53 and PTEN. TP53P33R was found predominant in the grade 3 tumors, whereas PTENp.C65S was distributed on ER+, ER-, PR+, PR-, Her2+, and Her2- patients. TP53p.P33R mutation was found to be recurring in the 14/19 (73.6%) patients and, therefore, can be considered as a potential biomarker. Finally, these mutations were studied in the context of their potential association with different hormonal and social factors.
Collapse
Affiliation(s)
- Hilal Ahmad
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Asif Ali
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar, Peshawar 25000, Pakistan
- College
of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
- School
of Medicine, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Roshan Ali
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Ali Talha Khalil
- Department
of Pathology, Lady Reading Hospital Medical
Teaching Institution (LRH-MTI), Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Ishaq Khan
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Mah Muneer Khan
- General Surgery, Khyber Teaching Hospital Medical Teaching Institute, Peshawar 25000, Pakistan
| | - Mohammed Alorini
- Department
of Basic Medical Sciences, Unaizah College of Medicine and Medical
Sciences, Qassim University, Unaizah, 56219, Saudi Arabia
| |
Collapse
|
10
|
Liu D, MacFarland SP, Yehia L, Duvall MM, Mamula P, Kurowski JA, Greene CS, Radhakrishnan K, Eng C. A Bi-Institutional Study of Gastrointestinal and Hepatic Manifestations in Children With PTEN Hamartoma Tumor Syndrome. GASTRO HEP ADVANCES 2023; 3:250-259. [PMID: 39129943 PMCID: PMC11307957 DOI: 10.1016/j.gastha.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/16/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims PTEN hamartoma tumor syndrome (PHTS) confers a high risk of specific cancers and is the most common genetic cause of autism spectrum disorder (ASD). Gastrointestinal (GI) phenotypes in PHTS are poorly characterized in children. Thus, we aimed to characterize the GI and hepatic manifestations in children with PHTS and to investigate genotype-phenotype associations. Methods We performed a retrospective chart review of prospectively accrued children with PHTS at 2 tertiary-care centers. Wilcoxon rank-sum, Chi-squared, and Fisher's exact tests and Firth's logistic regression were utilized to explore associations between variables. Results This series included 80 children with disease-causing PTEN variants. Common GI manifestations included constipation in 41 (51%), feeding issues in 31 (39%), and polyps in 22 (28%) children. The polyps were of mixed histologic types. Eosinophilic gastrointestinal disorders were observed in 5 (6%) children. Crohn's disease, celiac disease, and protein-losing enteropathy were observed once each. Eosinophilic gastrointestinal disorders were observed exclusively in patients without ASD (P = .052). Nonsense PTEN variants were enriched in those with polyps (P = .029). Missense PTEN variants (OR 2.9, P = .034) and upper GI polyps (OR 4.4, P = .018) were associated with increased odds of constipation. Conclusion Constipation and feeding issues are common in children with PHTS. Polyps are more prevalent in children with PHTS than previously described and associated with nonsense PTEN variants. Children without ASD represent a distinct patient subset with a predisposition to eosinophilic gastrointestinal disorders and possibly upper GI polyps. Endoscopic evaluation should continue to be performed in symptomatic children with PHTS, with consideration of closer follow-up in those without ASD.
Collapse
Affiliation(s)
- Darren Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Suzanne P. MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, The University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Melani M. Duvall
- Division of Oncology, Children’s Hospital of Philadelphia, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Petar Mamula
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jacob A. Kurowski
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Colleen S. Greene
- Division of Oncology, Children’s Hospital of Philadelphia, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kadakkal Radhakrishnan
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Smith IN, Dawson JE, Eng C. Comparative Protein Structural Network Analysis Reveals C-Terminal Tail Phosphorylation Structural Communication Fingerprint in PTEN-Associated Mutations in Autism and Cancer. J Phys Chem B 2023; 127:634-647. [PMID: 36626331 PMCID: PMC9885960 DOI: 10.1021/acs.jpcb.2c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Indexed: 01/11/2023]
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tightly regulated dual-specificity phosphatase and key regulator of the PI3K/AKT/mTOR signaling pathway. PTEN phosphorylation at its carboxy-terminal tail (CTT) serine/threonine cluster negatively regulates its tumor suppressor function by inducing a stable, closed, and inactive conformation. Germline PTEN mutations predispose individuals to PTEN hamartoma tumor syndrome (PHTS), a rare inherited cancer syndrome and, intriguingly, one of the most common causes of autism spectrum disorder (ASD). However, the mechanistic details that govern phosphorylated CTT catalytic conformational dynamics in the context of PHTS-associated mutations are unknown. Here, we utilized a comparative protein structure network (PSN)-based approach to investigate PTEN CTT phosphorylation-induced conformational dynamics specific to PTEN-ASD compared to PTEN-cancer phenotypes. Results from our study show differences in structural flexibility, inter-residue contacts, and allosteric communication patterns mediated by CTT phosphorylation, differentiating PTEN-ASD and PTEN-cancer phenotypes. Further, we identified perturbations among global metapaths and community network connections within the active site and inter-domain regions, indicating the significance of these regions in transmitting information across the PSN. Together, our studies provide a mechanistic underpinning of allosteric regulation through the coupled interplay of CTT phosphorylation conformational dynamics in PTEN-ASD and PTEN-cancer mutations. Importantly, the detailed atomistic interactions and structural consequences of PTEN variants reveal potential allosteric druggable target sites as a viable and currently unexplored treatment approach for individuals with different PHTS-associated mutations.
Collapse
Affiliation(s)
- Iris N. Smith
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
| | - Jennifer E. Dawson
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
| | - Charis Eng
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio44195, United
States
- Case
Comprehensive Cancer Center, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio44106, United States
- Taussig
Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio44195, United States
- Department
of Genetics and Genome Sciences, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio44106, United States
| |
Collapse
|
12
|
Cetintas VB, Duzgun Z, Akalin T, Ozgiray E, Dogan E, Yildirim Z, Akinturk N, Biceroglu H, Ertan Y, Kosova B. Molecular dynamic simulation and functional analysis of pathogenic PTEN mutations in glioblastoma. J Biomol Struct Dyn 2023; 41:11471-11483. [PMID: 36591942 DOI: 10.1080/07391102.2022.2162582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
PTEN, a dual-phosphatase and scaffold protein, is one of the most commonly mutated tumour suppressor gene across various cancer types in human. The aim of this study therefore was to investigate the stability, structural and functional effects, and pathogenicity of 12 missense PTEN mutations (R15S, E18G, G36R, N49I, Y68H, I101T, C105F, D109N, V133I, C136Y, R173C and N276S) found by next generation sequencing of the PTEN gene in tissue samples obtained from glioblastoma patients. Computational tools and molecular dynamic simulation programs were used to identify the deleterious effects of these mutations. Furthermore, PTEN mRNA and protein expression levels were evaluated by qRT-PCR, Western Blot, and immunohistochemistry staining methods. Various computational tools predicted strong deleterious effects for the G36R, C105F, C136Y and N276S mutations. Molecular dynamic simulation revealed a significant decrease in protein stability for the Y68H and N276S mutations when compared with the wild type protein; whereas, C105F, D109N, V133I and R173C showed partial stability reduction. Significant residual fluctuations were observed in the R15S, N49I and C136Y mutations and radius of gyration graphs revealed the most compact structure for D109N and least for C136Y. In summary, our study is the first one to show the presence of PTEN E18G, N49I, D109N and N276S mutations in glioblastoma patients; where, D109N is neutral and N276S is a damaging and disease-associated mutation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Zekeriya Duzgun
- Department of Medical Biology, Giresun University Faculty of Medicine, Giresun, Turkey
| | - Taner Akalin
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Erkin Ozgiray
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Eda Dogan
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Zafer Yildirim
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nevhis Akinturk
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Huseyin Biceroglu
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Yesim Ertan
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Buket Kosova
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
13
|
Hendricks LA, Hoogerbrugge N, Venselaar H, Aretz S, Spier I, Legius E, Brems H, de Putter R, Claes KB, Evans DG, Woodward ER, Genuardi M, Brugnoletti F, van Ierland Y, Dijke K, Tham E, Tesi B, Schuurs-Hoeijmakers JH, Branchaud M, Salvador H, Jahn A, Schnaiter S, Anastasiadou VC, Brunet J, Oliveira C, Roht L, Blatnik A, Irmejs A, Mensenkamp AR, Vos JR, Duijkers F, Giltay JC, van Hest LP, Kleefstra T, Leter EM, Nielsen M, Nijmeijer SW, Olderode-Berends MJ. Genotype-phenotype associations in a large PTEN Hamartoma Tumor Syndrome (PHTS) patient cohort. Eur J Med Genet 2022; 65:104632. [DOI: 10.1016/j.ejmg.2022.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
|
14
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Smith IN, Dawson JE, Krieger J, Thacker S, Bahar I, Eng C. Structural and Dynamic Effects of PTEN C-Terminal Tail Phosphorylation. J Chem Inf Model 2022; 62:4175-4190. [PMID: 36001481 PMCID: PMC9472802 DOI: 10.1021/acs.jcim.2c00441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/28/2022]
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene encodes a tightly regulated dual-specificity phosphatase that serves as the master regulator of PI3K/AKT/mTOR signaling. The carboxy-terminal tail (CTT) is key to regulation and harbors multiple phosphorylation sites (Ser/Thr residues 380-385). CTT phosphorylation suppresses the phosphatase activity by inducing a stable, closed conformation. However, little is known about the mechanisms of phosphorylation-induced CTT-deactivation dynamics. Using explicit solvent microsecond molecular dynamics simulations, we show that CTT phosphorylation leads to a partially collapsed conformation, which alters the secondary structure of PTEN and induces long-range conformational rearrangements that encompass the active site. The active site rearrangements prevent localization of PTEN to the membrane, precluding lipid phosphatase activity. Notably, we have identified phosphorylation-induced allosteric coupling between the interdomain region and a hydrophobic site neighboring the active site in the phosphatase domain. Collectively, the results provide a mechanistic understanding of CTT phosphorylation dynamics and reveal potential druggable allosteric sites in a previously believed clinically undruggable protein.
Collapse
Affiliation(s)
- Iris N. Smith
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
| | - Jennifer E. Dawson
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
| | - James Krieger
- Department
of Computational and Systems Biology, University
of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Stetson Thacker
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio 44195, United
States
| | - Ivet Bahar
- Department
of Computational and Systems Biology, University
of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Charis Eng
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio 44195, United
States
- Case
Comprehensive Cancer Center, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Taussig
Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
- Department
of Genetics and Genome Sciences, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
16
|
Abstract
Three-dimensional protein structural data at the molecular level are pivotal for successful precision medicine. Such data are crucial not only for discovering drugs that act to block the active site of the target mutant protein but also for clarifying to the patient and the clinician how the mutations harbored by the patient work. The relative paucity of structural data reflects their cost, challenges in their interpretation, and lack of clinical guidelines for their utilization. Rapid technological advancements in experimental high-resolution structural determination increasingly generate structures. Computationally, modeling algorithms, including molecular dynamics simulations, are becoming more powerful, as are compute-intensive hardware, particularly graphics processing units, overlapping with the inception of the exascale era. Accessible, freely available, and detailed structural and dynamical data can be merged with big data to powerfully transform personalized pharmacology. Here we review protein and emerging genome high-resolution data, along with means, applications, and examples underscoring their usefulness in precision medicine. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA; .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA;
| | - Guy Nir
- Department of Biochemistry and Molecular Biology, Department of Neuroscience, Cell Biology and Anatomy, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA;
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Comprehensive characterization of PTEN mutational profile in a series of 34,129 colorectal cancers. Nat Commun 2022; 13:1618. [PMID: 35338148 PMCID: PMC8956741 DOI: 10.1038/s41467-022-29227-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Loss of expression or activity of the tumor suppressor PTEN acts similarly to an activating mutation in the oncogene PIK3CA in elevating intracellular levels of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), inducing signaling by AKT and other pro-tumorigenic signaling proteins. Here, we analyze sequence data for 34,129 colorectal cancer (CRC) patients, capturing 3,434 PTEN mutations. We identify specific patterns of PTEN mutation associated with microsatellite stability/instability (MSS/MSI), tumor mutational burden (TMB), patient age, and tumor location. Within groups separated by MSS/MSI status, this identifies distinct profiles of nucleotide hotspots, and suggests differing profiles of protein-damaging effects of mutations. Moreover, discrete categories of PTEN mutations display non-identical patterns of co-occurrence with mutations in other genes important in CRC pathogenesis, including KRAS, APC, TP53, and PIK3CA. These data provide context for clinical targeting of proteins upstream and downstream of PTEN in distinct CRC cohorts.
Collapse
|
18
|
Kaymakcalan H, Kaya İ, Cevher Binici N, Nikerel E, Özbaran B, Görkem Aksoy M, Erbilgin S, Özyurt G, Jahan N, Çelik D, Yararbaş K, Yalçınkaya L, Köse S, Durak S, Ercan-Sencicek AG. Prevalence and clinical/molecular characteristics of PTEN mutations in Turkish children with autism spectrum disorders and macrocephaly. Mol Genet Genomic Med 2021; 9:e1739. [PMID: 34268892 PMCID: PMC8404225 DOI: 10.1002/mgg3.1739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) germline mutations are associated with cancer syndromes (PTEN hamartoma tumor syndrome; PHTS) and in pediatric patients with autism spectrum disorder (ASD) and macrocephaly. The exact prevalence of PTEN mutations in patients with ASD and macrocephaly is uncertain; with prevalence rates ranging from 1% to 17%. Most studies are retrospective and contain more adult than pediatric patients, there is a need for more prospective pediatric studies. Methods We recruited 131 patients (108 males, 23 females) with ASD and macrocephaly between the ages of 3 and 18 from five child and adolescent psychiatry clinics in Turkey from July 2018 to December 2019. We defined macrocephaly as occipito‐frontal HC size at or greater than 2 standard deviations (SD) above the mean for age and sex on standard growth charts. PTEN gene sequence analysis was performed using a MiSeq next generation sequencing (NGS) platform, (Illumina). Conclusion PTEN gene sequence analyses identified three pathogenic/likely pathogenic mutations [NM_000314.6; p.(Pro204Leu), (p.Arg233*) and novel (p.Tyr176Cys*8)] and two variants of uncertain significance (VUS) [NM_000314.6; p.(Ala79Thr) and c.*10del]. We also report that patient with (p.Tyr176Cys*8) mutation has Grade 1 hepatosteatosis, a phenotype not previously described. This is the first PTEN prevalence study of patients with ASD and macrocephaly in Turkey and South Eastern Europe region with a largest homogenous cohort. The prevalence of PTEN mutations was found 3.8% (VUS included) or 2.29% (VUS omitted). We recommend testing for PTEN mutations in all patients with ASD and macrocephaly.
Collapse
Affiliation(s)
- Hande Kaymakcalan
- Pediatric Genetics Unit, Department of Pediatrics, Demiroglu Bilim University, Istanbul, Turkey
| | - İlyas Kaya
- Department of Child and Adolescent Psychiatry, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Nagihan Cevher Binici
- Department of Child and Adolescent Psychiatry, Dr Behcet Uz Child Disease and Surgery Training and Research Hospital, Istanbul, Turkey
| | - Emrah Nikerel
- Department of Bioinformatics, Yeditepe University, Istanbul, Turkey
| | - Burcu Özbaran
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Görkem Aksoy
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Seda Erbilgin
- Department of Child and Adolescent Psychiatry, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Gonca Özyurt
- Department of Child and Adolescent Psychiatry, Izmir Katip Celebi University Faculty of Medicine, Izmir, Turkey
| | - Noor Jahan
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Didem Çelik
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Kanay Yararbaş
- Department of Medical Genetics, Demiroglu Bilim University, Istanbul, Turkey
| | - Leyla Yalçınkaya
- Department of Molecular Biology and Genetics, Bilkent University Faculty of Science, Ankara, Turkey
| | - Sezen Köse
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Sibel Durak
- Department of Child and Adolescent Psychiatry, Dr Behcet Uz Child Disease and Surgery Training and Research Hospital, Istanbul, Turkey
| | - Adife Gulhan Ercan-Sencicek
- Masonic Medical Research Institute, Utica, New York, USA.,Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurosurgery, Program on Neurogenetics, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Bucher M, Niebling S, Han Y, Molodenskiy D, Hassani Nia F, Kreienkamp HJ, Svergun D, Kim E, Kostyukova AS, Kreutz MR, Mikhaylova M. Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses. eLife 2021; 10:66165. [PMID: 33945465 PMCID: PMC8169116 DOI: 10.7554/elife.66165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/01/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the SH3- and ankyrin repeat (SHANK) protein family are considered as master scaffolds of the postsynaptic density of glutamatergic synapses. Several missense mutations within the canonical SHANK3 isoform have been proposed as causative for the development of autism spectrum disorders (ASDs). However, there is a surprising paucity of data linking missense mutation-induced changes in protein structure and dynamics to the occurrence of ASD-related synaptic phenotypes. In this proof-of-principle study, we focus on two ASD-associated point mutations, both located within the same domain of SHANK3 and demonstrate that both mutant proteins indeed show distinct changes in secondary and tertiary structure as well as higher conformational fluctuations. Local and distal structural disturbances result in altered synaptic targeting and changes of protein turnover at synaptic sites in rat primary hippocampal neurons.
Collapse
Affiliation(s)
- Michael Bucher
- AG Optobiology, Institute of Biology, Humboldt-University, Berlin, Germany.,DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,RG Neuroplasticity, Leibniz-Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Stephan Niebling
- Molecular Biophysics and High-Throughput Crystallization, European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Yuhao Han
- DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Structural Cell Biology of Viruses, Centre for Structural Systems Biology (CSSB) and Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Dmitry Molodenskiy
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, DESY, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute of Human Genetics, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, Center for Obstetrics and Pediatrics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, DESY, Hamburg, Germany
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS) and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Alla S Kostyukova
- DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University (WSU), Pullman, United States
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz-Institute for Neurobiology (LIN), Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt-University, Berlin, Germany.,DFG Emmy Noether Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
20
|
Jang H, Smith IN, Eng C, Nussinov R. The mechanism of full activation of tumor suppressor PTEN at the phosphoinositide-enriched membrane. iScience 2021; 24:102438. [PMID: 34113810 PMCID: PMC8169795 DOI: 10.1016/j.isci.2021.102438] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor suppressor PTEN, the second most highly mutated protein in cancer, dephosphorylates signaling lipid PIP3 produced by PI3Ks. Excess PIP3 promotes cell proliferation. The mechanism at the membrane of this pivotal phosphatase is unknown hindering drug discovery. Exploiting explicit solvent simulations, we tracked full-length PTEN trafficking from the cytosol to the membrane. We observed its interaction with membranes composed of zwitterionic phosphatidylcholine, anionic phosphatidylserine, and phosphoinositides, including signaling lipids PIP2 and PIP3. We tracked its moving away from the zwitterionic and getting absorbed onto anionic membrane that harbors PIP3. We followed it localizing on microdomains enriched in signaling lipids, as PI3K does, and observed PIP3 allosterically unfolding the N-terminal PIP2 binding domain, positioning it favorably for the polybasic motif interaction with PIP2. Finally, we determined PTEN catalytic action at the membrane, all in line with experimental observations, deciphering the mechanisms of how PTEN anchors to the membrane and restrains cancer. PTEN localizes on membrane microdomains enriched in phosphoinositides, as PI3K does Full PTEN activation requires both signaling lipids, PIP2 and PIP3 Strong salt bridge interactions sustain stable PTEN membrane localization Substrate-induced P loop conformational change implicates PTEN catalytic activity
Collapse
Affiliation(s)
- Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Iris Nira Smith
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Germline High Risk Cancer Focus Group, Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Nussinov R, Zhang M, Tsai CJ, Jang H. Phosphorylation and Driver Mutations in PI3Kα and PTEN Autoinhibition. Mol Cancer Res 2020; 19:543-548. [PMID: 33288731 DOI: 10.1158/1541-7786.mcr-20-0818] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
PI3K and PTEN are the second and third most highly mutated proteins in cancer following only p53. Their actions oppose each other. PI3K phosphorylates signaling lipid PIP2 to PIP3 PTEN dephosphorylates it back. Driver mutations in both proteins accrue PIP3 PIP3 recruits AKT and PDK1 to the membrane, promoting cell-cycle progression. Here we review phosphorylation events and mutations in autoinhibition in PI3K and PTEN from the structural standpoint. Our purpose is to clarify how they control the autoinhibited states. In autoinhibition, a segment or a subunit of the protein occludes its functional site. Protein-protein interfaces are often only marginally stable, making them sensitive to changes in conditions in living cells. Phosphorylation can stabilize or destabilize the interfaces. Driver mutations commonly destabilize them. In analogy to "passenger mutations," we coin "passenger phosphorylation" to emphasize that the presence of a phosphorylation recognition sequence logo does not necessarily imply function. Rather, it may simply reflect a statistical occurrence. In both PI3K and PTEN, autoinhibiting phosphorylation events are observed in the occluding "piece." In PI3Kα, the "piece" is the p85α subunit. In PTEN, it is the C-terminal segment. In both enzymes the stabilized interface covers the domain that attaches to the membrane. Driver mutations that trigger rotation of the occluding piece or its deletion prompt activation. To date, both enzymes lack specific, potent drugs. We discuss the implications of detailed structural and mechanistic insight into oncogenic activation and how it can advance allosteric precision oncology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland. .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| |
Collapse
|
22
|
Chen Y, Lu H, Zhang N, Zhu Z, Wang S, Li M. PremPS: Predicting the impact of missense mutations on protein stability. PLoS Comput Biol 2020; 16:e1008543. [PMID: 33378330 PMCID: PMC7802934 DOI: 10.1371/journal.pcbi.1008543] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/12/2021] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Computational methods that predict protein stability changes induced by missense mutations have made a lot of progress over the past decades. Most of the available methods however have very limited accuracy in predicting stabilizing mutations because existing experimental sets are dominated by mutations reducing protein stability. Moreover, few approaches could consistently perform well across different test cases. To address these issues, we developed a new computational method PremPS to more accurately evaluate the effects of missense mutations on protein stability. The PremPS method is composed of only ten evolutionary- and structure-based features and parameterized on a balanced dataset with an equal number of stabilizing and destabilizing mutations. A comprehensive comparison of the predictive performance of PremPS with other available methods on nine benchmark datasets confirms that our approach consistently outperforms other methods and shows considerable improvement in estimating the impacts of stabilizing mutations. A protein could have multiple structures available, and if another structure of the same protein is used, the predicted change in stability for structure-based methods might be different. Thus, we further estimated the impact of using different structures on prediction accuracy, and demonstrate that our method performs well across different types of structures except for low-resolution structures and models built based on templates with low sequence identity. PremPS can be used for finding functionally important variants, revealing the molecular mechanisms of functional influences and protein design. PremPS is freely available at https://lilab.jysw.suda.edu.cn/research/PremPS/, which allows to do large-scale mutational scanning and takes about four minutes to perform calculations for a single mutation per protein with ~ 300 residues and requires ~ 0.4 seconds for each additional mutation.
Collapse
Affiliation(s)
- Yuting Chen
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Haoyu Lu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ning Zhang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zefeng Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shuqin Wang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Minghui Li
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Iqbal S, Pérez-Palma E, Jespersen JB, May P, Hoksza D, Heyne HO, Ahmed SS, Rifat ZT, Rahman MS, Lage K, Palotie A, Cottrell JR, Wagner FF, Daly MJ, Campbell AJ, Lal D. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Proc Natl Acad Sci U S A 2020; 117:28201-28211. [PMID: 33106425 PMCID: PMC7668189 DOI: 10.1073/pnas.2002660117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.
Collapse
Affiliation(s)
- Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142;
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
| | - Eduardo Pérez-Palma
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jakob B Jespersen
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - David Hoksza
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague 11636, Czech Republic
| | - Henrike O Heyne
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Institute for Molecular Medicine Finland, University of Helsinki, 00100 Helsinki, Finland
| | - Shehab S Ahmed
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| | - Zaara T Rifat
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| | - M Sohel Rahman
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Institute for Molecular Medicine Finland, University of Helsinki, 00100 Helsinki, Finland
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
| | - Florence F Wagner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Institute for Molecular Medicine Finland, University of Helsinki, 00100 Helsinki, Finland
| | - Arthur J Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142;
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142;
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
24
|
Comprehensive in silico mutational-sensitivity analysis of PTEN establishes signature regions implicated in pathogenesis of Autism Spectrum Disorders. Genomics 2020; 113:999-1017. [PMID: 33152507 DOI: 10.1016/j.ygeno.2020.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023]
Abstract
An extensively studied cancer and Autism Spectrum Disorders (ASD) gene like PTEN provided an exclusive opportunity to map its mutational-landscape, compare and establish plausible genotypic predictors of ASD-associated phenotypic outcomes. Our exhaustive in silico analysis on 4252 SNPs using >30 tools identified increased mutational-density in exon7. Phosphatase domain, although evolutionarily conserved, had the most nsSNPs localised within signature regions. The evolutionarily variable C-terminal side contained the highest truncating-SNPs outside signature regions of C2 domain and most PTMs within C-tail site which displayed maximum intolerance to polymorphisms, and permitted benign but destabilising nsSNPs that enhanced its intrinsically-disordered nature. ASD-associated SNPs localised within ATP-binding motifs and Nuclear-Localising-Sequences were the most potent triggers of ASD manifestation. These, along with variations within P, WPD and TI loops, M1 within phosphatase domain, M2 and MoRFs of C2 domain, caused severe long-range conformational fluctuations altering PTEN's dynamic stability- not observed in variations outside signature regions. 3'UTR-SNPs affected 44 strong miRNA brain-specific targets; several 5' UTR-SNPs targeted transcription-factor POLR2A and 10 pathogenic Splice-Affecting-Variants were identified.
Collapse
|
25
|
An Integrated Deep-Mutational-Scanning Approach Provides Clinical Insights on PTEN Genotype-Phenotype Relationships. Am J Hum Genet 2020; 106:818-829. [PMID: 32442409 DOI: 10.1016/j.ajhg.2020.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
Germline variation in PTEN results in variable clinical presentations, including benign and malignant neoplasia and neurodevelopmental disorders. Despite decades of research, it remains unclear how the PTEN genotype is related to clinical outcomes. In this study, we combined two recent deep mutational scanning (DMS) datasets probing the effects of single amino acid variation on enzyme activity and steady-state cellular abundance with a large, well-curated clinical cohort of PTEN-variant carriers. We sought to connect variant-specific molecular phenotypes to the clinical outcomes of individuals with PTEN variants. We found that DMS data partially explain quantitative clinical traits, including head circumference and Cleveland Clinic (CC) score, which is a semiquantitative surrogate of disease burden. We built logistic regression models that use DMS and CADD scores to separate clinical PTEN variation from gnomAD control-only variation with high accuracy. By using a survival-like analysis, we identified molecular phenotype groups with differential risk of early cancer onset as well as lifetime risk of cancer. Finally, we identified classes of DMS-defined variants with significantly different risk levels for classical hamartoma-related features (odds ratio [OR] range of 4.1-102.9). In stark contrast, the risk for developing autism or developmental delay does not significantly change across variant classes (OR range of 5.4-12.4). Together, these findings highlight the potential impact of combining DMS datasets with rich clinical data and provide new insights that might guide personalized clinical decisions for PTEN-variant carriers.
Collapse
|
26
|
Multi-model functionalization of disease-associated PTEN missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. Nat Commun 2020; 11:2073. [PMID: 32350270 PMCID: PMC7190743 DOI: 10.1038/s41467-020-15943-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/03/2020] [Indexed: 01/16/2023] Open
Abstract
Functional variomics provides the foundation for personalized medicine by linking genetic variation to disease expression, outcome and treatment, yet its utility is dependent on appropriate assays to evaluate mutation impact on protein function. To fully assess the effects of 106 missense and nonsense variants of PTEN associated with autism spectrum disorder, somatic cancer and PTEN hamartoma syndrome (PHTS), we take a deep phenotypic profiling approach using 18 assays in 5 model systems spanning diverse cellular environments ranging from molecular function to neuronal morphogenesis and behavior. Variants inducing instability occur across the protein, resulting in partial-to-complete loss-of-function (LoF), which is well correlated across models. However, assays are selectively sensitive to variants located in substrate binding and catalytic domains, which exhibit complete LoF or dominant negativity independent of effects on stability. Our results indicate that full characterization of variant impact requires assays sensitive to instability and a range of protein functions. Mutations in PTEN have been associated with various human disease, including autism spectrum disorder (ASD) and cancer. Here, the authors assess the function of 106 PTEN variants in yeast, invertebrate models and cell culture and report that PTEN variants generally decrease protein stability.
Collapse
|
27
|
Abstract
Germline pathogenic phosphatase and tensin homolog (PTEN) mutations cause PTEN hamartoma tumor syndrome (PHTS), characterized by various benign and malignant tumors of the thyroid, breast, endometrium, and other organs. Patients with PHTS may present with other clinical features such as macrocephaly, intestinal polyposis, cognitive changes, and pathognomonic skin changes. Clinically, deregulation of PTEN function is implicated in other human diseases in addition to many types of human cancer. PTEN is an important phosphatase that counteracts one of the most critical cancer pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathways. Although PTEN can dephosphorylate lipids and proteins, it also has functions independent of phosphatase activity in normal and pathological states. It is positively and negatively regulated at the transcriptional level as well as posttranslationally by phosphorylation, ubiquitylation, oxidation, and acetylation. Although most of its tumor-suppressor activity is likely to be caused by lipid dephosphorylation at the plasma membrane, PTEN also resides in the cytoplasm and nucleus, and its subcellular distribution is under strict control. In this review, we highlight our current knowledge of PTEN function and recent discoveries in understanding PTEN function regulation and how this can be exploited therapeutically for cancer treatment.
Collapse
Affiliation(s)
- Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore 169610.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
28
|
Kumar R, Kumar R, Tanwar P, Rath GK, Kumar R, Kumar S, Dash N, Das P, Hussain S. Deciphering the impact of missense mutations on structure and dynamics of SMAD4 protein involved in pathogenesis of gall bladder cancer. J Biomol Struct Dyn 2020; 39:1940-1954. [PMID: 32151199 DOI: 10.1080/07391102.2020.1740789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gall bladder cancer (GBC) is the most common malignancy of biliary tract cancer associated with high mortality rate and poor prognosis due to lack of suitable biomarkers. In this study, we explored the structural and functional effects of different missense mutations occurs in SMAD4 that was associated with the development of GBC. We utilized in silico methods to predict the harmful effects of nonsynonymous missense mutations and monitored the stability of protein. We found that all mutations (D351N, G352E, R361C, R361H, E526Q) associated with SMAD4 were deleterious in nature resulting in the formation of deformed or unstable protein structure. Molecular dynamics simulation studies revealed how these mutations affect protein stability, structure, conformation and function. We observed, different mutants increase the compactness and rigidity of SMAD4 protein, alter secondary structure composition, decrease the surface area and protein-ligand interaction and affect its conformation. Findings of current work indicated that the analyzed mutations might affect the structure of protein and its caliber to interact with other molecules, which probably related to functional impairment of SMAD4 upon D351N, G352E, R361C, R361H, E526Q mutations and their involvement in cancer. Hence, the present study has significance of rational drug design and further increase our understanding of GBC development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh Kumar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Kumar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - G K Rath
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ritesh Kumar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Dr. B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Showket Hussain
- Division of Molecular Oncology, National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
29
|
Zhang J. Two-dimensional infrared spectral explorations into bilayer and monolayer self-assemblies of amphiphilic polypeptides. J Biomol Struct Dyn 2020; 39:9-19. [PMID: 31914853 DOI: 10.1080/07391102.2020.1713891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Poly(2-(3-((2-hydroxyethyl)amino)-3-oxopropyl)ethyleneamido) (PHAOE) is an amphiphilic polypeptide. The self-assembly is significant, but the ultrafast dynamic analyses of the peptide self-assembly are exiguous and worth further exploring. In this investigation, the temporal dynamic characteristics of the aggregates and unaggregated PHAOEs are mined by the two-dimensional infrared (2D IR) spectroscopy. The homogeneous and inhomogeneous diffusion processes of the carbonyl stretching modes of the unaggregated PHAOEs are slower than those of the self-assemblies. The inhomogeneous spectral diffusion proportion of the biopolymer PHAOE in methanol is greater than that in dimethyl sulfoxide (DMSO). The solvation shells surround the aggregates and unaggregated PHAOEs in the protic solvent methanol, but there are not any solvation shells around the aggregates or unaggregated PHAOEs in the dipolar solvent DMSO. The massive hydrogen-bonded monolayer self-assembly has merely an aggregate of PHAOEs and no solvation shell in DMSO. But the hydrogen-bonded bilayer self-assembly has a self-assembled methanol shell and an interior aggregate of PHAOEs in methanol. The self-assemblies of PHAOEs motivate the methanols to self-assemble. The large delocalized amide structure results in the fast spectral diffusion of the carbonyl stretching mode.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jun Zhang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
30
|
Yehia L, Ni Y, Feng F, Seyfi M, Sadler T, Frazier TW, Eng C. Distinct Alterations in Tricarboxylic Acid Cycle Metabolites Associate with Cancer and Autism Phenotypes in Cowden Syndrome and Bannayan-Riley-Ruvalcaba Syndrome. Am J Hum Genet 2019; 105:813-821. [PMID: 31564436 PMCID: PMC6817552 DOI: 10.1016/j.ajhg.2019.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Germline heterozygous PTEN mutations cause subsets of Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS); these subsets are characterized by high risks of breast, thyroid, and other cancers and, in one subset, autism spectrum disorder (ASD). Up to 10% of individuals with PTENMUT CS, CS-like syndrome, or BRRS have germline SDHx (succinate dehydrogenase, mitochondrial complex II) variants, which modify cancer risk. PTEN contributes to metabolic reprogramming; this is a well-established role in a cancer context. Relatedly, SDH sits at the crossroad of the electron transport chain and tricarboxylic acid (TCA) cycle, two central bioenergetic pathways. Intriguingly, PTENMUT and SDHMUT individuals have reduced SDH catalytic activity, resulting in succinate accumulation; this indicates a common genotype-independent biochemical alteration. Here, we conducted a TCA targeted metabolomics study on 511 individuals with CS, CS-like syndrome, or BRRS with various genotypes (PTEN or SDHx, mutant or wild type [WT]) and phenotypes (cancer or ASD) and a series of 187 population controls. We found consistent TCA cycle metabolite alterations in cases with various genotypes and phenotypes compared to controls, and we found unique correlations of individual metabolites with particular genotype-phenotype combinations. Notably, increased isocitrate (p = 1.2 × 10−3), but reduced citrate (p = 5.0 × 10−4), were found to be associated with breast cancer in individuals with PTENMUT/SDHxWT. Conversely, increased lactate was associated with neurodevelopmental disorders regardless of genotype (p = 9.7 × 10−3); this finding was replicated in an independent validation series (n = 171) enriched for idiopathic ASD (PTENWT, p = 5.6 × 10−4). Importantly, we identified fumarate (p = 1.9 × 10−2) as a pertinent metabolite, distinguishing individuals who develop ASD from those who develop cancer. Our observations suggest that TCA cycle metabolite alterations are germane to the pathobiology of PTEN-related CS and BRRS, as well as genotype-independent ASD, with implications for potential biomarker and/or therapeutic value.
Collapse
|
31
|
Abstract
PTEN is a tumor suppressor gene that classically dampens the PI3K/AKT/mTOR growth-promoting signaling cascade. PTEN dysfunction causes dysregulation of this and other pathways, resulting in overgrowth. Cowden syndrome, a hereditary cancer predisposition and overgrowth disorder, was the first Mendelian condition associated with germline PTEN mutations. Since then, significant advances by the research and medical communities have elucidated how clinical phenotypic manifestations result from the underlying germline PTEN mutations. With time, it became evident that PTEN mutations can result in a broad phenotypic spectrum, causing seemingly disparate disorders from cancer to autism. Hence, the umbrella term of PTEN hamartoma tumor syndrome (PHTS) was coined. Timely diagnosis and understanding the natural history of PHTS are vital because early recognition enables gene-informed management, particularly as related to high-risk cancer surveillance and addressing the neurodevelopmental symptoms.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; , ,
| | - Emma Keel
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; , ,
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
32
|
Smith IN, Thacker S, Seyfi M, Cheng F, Eng C. Conformational Dynamics and Allosteric Regulation Landscapes of Germline PTEN Mutations Associated with Autism Compared to Those Associated with Cancer. Am J Hum Genet 2019; 104:861-878. [PMID: 31006514 PMCID: PMC6506791 DOI: 10.1016/j.ajhg.2019.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/08/2019] [Indexed: 01/07/2023] Open
Abstract
Individuals with germline PTEN tumor-suppressor variants have PTEN hamartoma tumor syndrome (PHTS). Clinically, PHTS has variable presentations; there are distinct subsets of PHTS-affected individuals, such as those diagnosed with autism spectrum disorder (ASD) or cancer. It remains unclear why mutations in one gene can lead to such seemingly disparate phenotypes. Therefore, we sought to determine whether it is possible to predict a given PHTS-affected individual's a priori risk of ASD, cancer, or the co-occurrence of both phenotypes. By integrating network proximity analysis performed on the human interactome, molecular simulations, and residue-interaction networks, we demonstrate the role of conformational dynamics in the structural communication and long-range allosteric regulation of germline PTEN variants associated with ASD or cancer. We show that the PTEN interactome shares significant overlap with the ASD and cancer interactomes, providing network-based evidence that PTEN is a crucial player in the biology of both disorders. Importantly, this finding suggests that a germline PTEN variant might perturb the ASD or cancer networks differently, thus favoring one disease outcome at any one time. Furthermore, protein-dynamic structural-network analysis reveals small-world structural communication mediated by highly conserved functional residues and potential allosteric regulation of PTEN. We identified a salient structural-communication pathway that extends across the inter-domain interface for cancer-only mutations. In contrast, the structural-communication pathway is predominantly restricted to the phosphatase domain for ASD-only mutations. Our integrative approach supports the prediction and potential modulation of the relevant conformational states that influence structural communication and long-range perturbations associated with mutational effects that lead to PTEN-ASD or PTEN-cancer phenotypes.
Collapse
Affiliation(s)
- Iris Nira Smith
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Marilyn Seyfi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Forés-Martos J, Catalá-López F, Sánchez-Valle J, Ibáñez K, Tejero H, Palma-Gudiel H, Climent J, Pancaldi V, Fañanás L, Arango C, Parellada M, Baudot A, Vogt D, Rubenstein JL, Valencia A, Tabarés-Seisdedos R. Transcriptomic metaanalyses of autistic brains reveals shared gene expression and biological pathway abnormalities with cancer. Mol Autism 2019; 10:17. [PMID: 31007884 PMCID: PMC6454734 DOI: 10.1186/s13229-019-0262-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Background Epidemiological and clinical evidence points to cancer as a comorbidity in people with autism spectrum disorders (ASD). A significant overlap of genes and biological processes between both diseases has also been reported. Methods Here, for the first time, we compared the gene expression profiles of ASD frontal cortex tissues and 22 cancer types obtained by differential expression meta-analysis and report gene, pathway, and drug set-based overlaps between them. Results Four cancer types (brain, thyroid, kidney, and pancreatic cancers) presented a significant overlap in gene expression deregulations in the same direction as ASD whereas two cancer types (lung and prostate cancers) showed differential expression profiles significantly deregulated in the opposite direction from ASD. Functional enrichment and LINCS L1000 based drug set enrichment analyses revealed the implication of several biological processes and pathways that were affected jointly in both diseases, including impairments of the immune system, and impairments in oxidative phosphorylation and ATP synthesis among others. Our data also suggest that brain and kidney cancer have patterns of transcriptomic dysregulation in the PI3K/AKT/MTOR axis that are similar to those found in ASD. Conclusions Comparisons of ASD and cancer differential gene expression meta-analysis results suggest that brain, kidney, thyroid, and pancreatic cancers are candidates for direct comorbid associations with ASD. On the other hand, lung and prostate cancers are candidates for inverse comorbid associations with ASD. Joint perturbations in a set of specific biological processes underlie these associations which include several pathways previously implicated in both cancer and ASD encompassing immune system alterations, impairments of energy metabolism, cell cycle, and signaling through PI3K and G protein-coupled receptors among others. These findings could help to explain epidemiological observations pointing towards direct and inverse comorbid associations between ASD and specific cancer types and depict a complex scenario regarding the molecular patterns of association between ASD and cancer. Electronic supplementary material The online version of this article (10.1186/s13229-019-0262-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaume Forés-Martos
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Ferrán Catalá-López
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,2Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Blasco-Ibañez 15, 46010 Valencia, Spain.,3INCLIVA Health Research Institute, Valencia, Spain.,4Department of Health Planning and Economics, National School of Public Health/IMIENS, Institute of Health Carlos III, Madrid, Spain
| | | | | | - Héctor Tejero
- 7Structural Biology Program, Spanish National Cancer Research Program (CNIO), Madrid, Spain
| | - Helena Palma-Gudiel
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,8Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Joan Climent
- 3INCLIVA Health Research Institute, Valencia, Spain.,9Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Ramon y Cajal s/n 46115 Alfara del Patriarca, Valencia, Spain
| | - Vera Pancaldi
- 5Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Lourdes Fañanás
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,8Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Celso Arango
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mara Parellada
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Anaïs Baudot
- 11Aix-Marseille Univ, Inserm, MMG, Marseille Medical Genetics, Marseille, France
| | - Daniel Vogt
- 12Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824 USA
| | - John L Rubenstein
- 13Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158 USA.,14Department of Psychiatry, University of California, San Francisco, CA 94158 USA
| | - Alfonso Valencia
- 5Barcelona Supercomputing Center (BSC), Barcelona, Spain.,15Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Rafael Tabarés-Seisdedos
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,2Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Blasco-Ibañez 15, 46010 Valencia, Spain.,3INCLIVA Health Research Institute, Valencia, Spain
| |
Collapse
|
34
|
Yehia L, Ngeow J, Eng C. PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest 2019; 129:452-464. [PMID: 30614812 DOI: 10.1172/jci121277] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) classically counteracts the PI3K/AKT/mTOR signaling cascade. Germline pathogenic PTEN mutations cause PTEN hamartoma tumor syndrome (PHTS), featuring various benign and malignant tumors, as well as neurodevelopmental disorders such as autism spectrum disorder. Germline and somatic mosaic mutations in genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN predispose to syndromes with partially overlapping clinical features, termed the "PTEN-opathies." Experimental models of PTEN pathway disruption uncover the molecular and cellular processes influencing clinical phenotypic manifestations. Such insights not only teach us about biological mechanisms in states of health and disease, but also enable more accurate gene-informed cancer risk assessment, medical management, and targeted therapeutics. Hence, the PTEN-opathies serve as a prototype for bedside to bench, and back to the bedside, practice of evidence-based precision medicine.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joanne Ngeow
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore.,Oncology Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Computational Approaches to Prioritize Cancer Driver Missense Mutations. Int J Mol Sci 2018; 19:ijms19072113. [PMID: 30037003 PMCID: PMC6073793 DOI: 10.3390/ijms19072113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a complex disease that is driven by genetic alterations. There has been a rapid development of genome-wide techniques during the last decade along with a significant lowering of the cost of gene sequencing, which has generated widely available cancer genomic data. However, the interpretation of genomic data and the prediction of the association of genetic variations with cancer and disease phenotypes still requires significant improvement. Missense mutations, which can render proteins non-functional and provide a selective growth advantage to cancer cells, are frequently detected in cancer. Effects caused by missense mutations can be pinpointed by in silico modeling, which makes it more feasible to find a treatment and reverse the effect. Specific human phenotypes are largely determined by stability, activity, and interactions between proteins and other biomolecules that work together to execute specific cellular functions. Therefore, analysis of missense mutations’ effects on proteins and their complexes would provide important clues for identifying functionally important missense mutations, understanding the molecular mechanisms of cancer progression and facilitating treatment and prevention. Herein, we summarize the major computational approaches and tools that provide not only the classification of missense mutations as cancer drivers or passengers but also the molecular mechanisms induced by driver mutations. This review focuses on the discussion of annotation and prediction methods based on structural and biophysical data, analysis of somatic cancer missense mutations in 3D structures of proteins and their complexes, predictions of the effects of missense mutations on protein stability, protein-protein and protein-nucleic acid interactions, and assessment of conformational changes in protein conformations induced by mutations.
Collapse
|