1
|
Kalhor S, Fattahi A. Combinatorial MD/QM studies to develop novel ionic liquid-based anticancer drug delivery systems with aminium derived from carbohydrates as cationic components. Sci Rep 2024; 14:28980. [PMID: 39578478 PMCID: PMC11584647 DOI: 10.1038/s41598-024-74250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 11/24/2024] Open
Abstract
The main challenges in anticancer drug design include solubility in organic and aqueous phases, bioavailability, selective targeting of specific receptors, and low toxicity. Notably, solubility, bioavailability, and receptor-specific targeting are interconnected factors that significantly influence the therapeutic efficacy of anticancer drugs. The primary objective of this study is to design novel drug delivery systems based on ionic liquids. These systems incorporate structures such as N, N, N-trimethyl-2-(((2 S,3R,4 S,5 S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2 H-pyran-2-yl)oxy)ethan-1-aminium (GTA) and (2 S,3R,4 S,5 S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-N, N, N-trimethyltetrahydro-2 H-pyran-2-aminium (NTPA) derived from carbohydrates as cationic components, with anticancer drugs acting as anions. The goal is to investigate the effects of these novel pharmaceutical active ionic liquids on the interactions between the drugs and cell membranes. Additionally, this study examines changes in the solubility of anticancer drugs in both organic and aqueous phases after their conversion into ionic liquids. Molecular dynamics simulations (MD) and quantum mechanics calculations (QM) are employed to achieve these objectives. Known anticancer-candidate ionic liquid, such as 3-(2-((4-fluorophenyl)amino)-2-oxoethyl)-1-methyl-1 H-imidazol-3-ium-tetrafluoroborate, is considered as a reference point in our investigations. Furthermore, we aim to assess whether the direct attachment of the aminium group to the saccharide portion of the cations or the indirect attachment through a choline group significantly impacts the final properties of the designed anticancer ionic liquids. Another aim of this study is to demonstrate that QM studies need to be complemented by MD studies to provide insights into the behaviors of ionic liquids. Initially, we calculate the binding energies between cations and anions of all the ionic liquids at the B3LYP/6-311 + + G(d, p) level of theory. Subsequently, molecular dynamics simulations using GROMACS 5.2 are employed to obtain more precise information about these understudied ionic liquids. A combination of density functional theory (DFT) calculations and a solvation model based on density (SMD) is utilized to determine the solubility of free anticancer drugs and our active anticancer ionic liquids in various phases. We validate our findings by evaluating the interactions between the formulated ionic liquids and cell membranes using the DPPC model through combined MD simulations and docking procedures.
Collapse
Affiliation(s)
- Sepideh Kalhor
- Department of Chemistry, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| | - Alireza Fattahi
- Department of Chemistry, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Singh M, Jain P, Mohammad F, Singh P, Bahadur I, Abedigamba OP. Significant Increase in the Dipole Moment of Graphene on Functionalization: DFT Calculations and Molecular Dynamics Simulations. ACS OMEGA 2024; 9:16458-16468. [PMID: 38617684 PMCID: PMC11007824 DOI: 10.1021/acsomega.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
The limited solubility of graphene in water can be attributed to the existence of π-π bonds connecting its layers. Functionalized graphene or graphene oxide (GO) is frequently produced in order to overcome the shortcomings of graphene. Using density functional theory (DFT) calculation, functionalized graphene with various combinations of hydroxyl, epoxy, and carboxylic functional groups were investigated computationally. The study focused on the effects of functional group combinations on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, giving information about the chemical reactivity and stability of the molecules under investigation. Global chemical reactivity descriptors, including chemical hardness, softness, electronegativity, chemical potential, and electrophilicity index, were calculated to further elucidate the overall stability and reactivity of the molecules. The results demonstrated that the introduction of oxygen-containing functional groups on graphene significantly influenced its electronic properties, leading to variations in the chemical reactivity and stability. Molecular electrostatic potential (MEP) maps highlighted the susceptibility of specific regions to electrophilic and nucleophilic attacks. The flexibility and stability of functionalized graphene through root mean square fluctuation (RMSF) and root mean square deviation (RMSD) analyses indicate the stability of functionalized graphene in water. This comprehensive computational investigation provides valuable insights into the design and understanding of functionalized graphene for potential applications in drug delivery.
Collapse
Affiliation(s)
- Madhur
Babu Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College,
University of Delhi, Delhi 110021, India
- Department
of Chemistry, SRM Institute of Science &
Technology, NCR Campus, Ghaziabad 201204, India
| | - Pallavi Jain
- Department
of Chemistry, SRM Institute of Science &
Technology, NCR Campus, Ghaziabad 201204, India
| | - Faruq Mohammad
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Kingdom
of Saudi Arabia
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College,
University of Delhi, Delhi 110021, India
| | - Indra Bahadur
- Department
of Chemistry, Material Science, Innovation and Modelling (MaSIM) Research
Focus Area, North-West University (Mafikeng
Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | | |
Collapse
|
3
|
Li L, Guan W, Fan Y, He Q, Guo D, Yuan A, Xing Q, Wang Y, Ma Z, Ni J, Chen J, Zhou Q, Zhong Y, Li J, Zhang H. Zinc/carbon nanomaterials inhibit antibiotic resistance genes by affecting quorum sensing and microbial community in cattle manure production. BIORESOURCE TECHNOLOGY 2023; 387:129648. [PMID: 37572887 DOI: 10.1016/j.biortech.2023.129648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
This study used metagenomic sequencing to examine the effects of carbon-based zinc oxide nanoparticles (CZnONPs) and graphene-based zinc oxide nanoparticles (GZnONPs) on quorum sensing (QS), antibiotic resistance genes (ARGs) and microbial community changes during cattle manure production. The manure zinc content was significantly reduced in GZnONPs group. In the QS pathway, the autoinducer gene increases significantly in Control group, while the transporter and repressor genes experience a substantial increase in CZnONPs group. These results contributed to the significantly decreased the abundance of ARGs in GZnONPs group. The co-occurrence network analysis revealed a correlation between core ARGs and QS-related KEGG Orthology or ARGs' hosts, indicating that the selective pressure of zinc influences microbial QS, forming a unique ARG pattern in in vivo anaerobic fermentation. These findings suggest that implementing nutritional regulation in farming practices can serve as a preventive measure to mitigate the potential transmission of ARGs resulting from livestock waste.
Collapse
Affiliation(s)
- Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yihao Fan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qin He
- College of Life Sciences, Nanchang Normal University, Nanchang 330032, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - An Yuan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yang Wang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ziqin Ma
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jian Ni
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jia Chen
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qilong Zhou
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jiating Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| |
Collapse
|
4
|
Zhang H, Zhao Z, Guan W, Zhong Y, Wang Y, Zhou Q, Liu F, Luo Q, Liu J, Ni J, He N, Guo D, Li L, Xing Q. Nano-Selenium inhibited antibiotic resistance genes and virulence factors by suppressing bacterial selenocompound metabolism and chemotaxis pathways in animal manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115277. [PMID: 37499390 DOI: 10.1016/j.ecoenv.2023.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yang Wang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qilong Zhou
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Fuyu Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qi Luo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Junyi Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jian Ni
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| |
Collapse
|
5
|
Zhang H, Guan W, Shu J, Yu S, Xiong Y, Liu G, Zhong Y, Chen J, Zhao Z, He N, Xing Q, Guo D, Li L, Hongbing O. Graphene nano zinc oxide reduces the expression and release of antibiotic resistance-related genes and virulence factors in animal manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163520. [PMID: 37061060 DOI: 10.1016/j.scitotenv.2023.163520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Animal manure contains many antibiotic resistance genes (ARGs) and virulence factors (VFs), posing significant health threats to humans. However, the effects of graphene nano zinc oxide (GZnONP), a zinc bioaugmentation substitute, on bacterial chemotaxis, ARGs, and VFs in animal manure remain scanty. Herein, the effect of GZnONP on the in vivo anaerobic expression of ARGs and VFs in cattle manure was assessed using high-throughput sequencing. Results showed that GZnONP inhibited bacterial chemotaxis by reducing the zinc pressure under anaerobic fermentation, altering the microbial community structure. The expression of ARGs was significantly lower in GZnONP than in zinc oxide and nano zinc oxide (ZnONP) groups. The expression of VFs was lower in the GZnONP than in the zinc oxide and ZnONP groups by 9.85 % and 13.46 %, respectively. Co-occurrence network analysis revealed that ARGs and VFs were expressed by the Spirochaetes phylum, Paraprevotella genus, and Treponema genus et al. The ARGs-VFs coexistence was related to the expression/abundance of ARGs and VFs genes. GZnONP reduces the abundance of certain bacterial species by disrupting chemotaxis, minimizing the transfer of ARGs and VFs. These findings suggest that GZnONP, a bacterial chemotaxis suppressor, effectively reduces the expression and release of ARGs and VFs in animal manure.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jun Shu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Sen Yu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yingmin Xiong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Gao Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jia Chen
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | | |
Collapse
|
6
|
Nishat M, Hossain MR, Hasan MM, Hossain MK, Hossain MA, Ahmed F. Interaction of Anagrelide drug molecule on pristine and doped boron nitride nanocages: a DFT, RDG, PCM and QTAIM investigation. J Biomol Struct Dyn 2023; 41:3413-3429. [PMID: 35272575 DOI: 10.1080/07391102.2022.2049369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 01/15/2023]
Abstract
Nowadays, a nanostructure-based drug delivery system is one of the most noticeable topics to be studied, and in this regard, boron nitride nanoclusters are promising drug carriers for targeted drug delivery systems. In this article, the interaction mechanism of Anagrelide (AG) drug with B12N12 and Al- and Ga-doped B12N12 nanocages have been investigated using DFT with B3LYP/6-31 G (d, p) method in both gas and water media. All our studied complexes are thermodynamically stable, and doped nanocage complexes have higher negative adsorption energy (EAd.) and negative solvation energy than AG/B12N12 complexes which correspond to the stability of these systems in both media. The negative highest EAd value is 64.98 kcal/mol (63.17 kcal/mol) and 65.69 kcal/mol (65.11 kcal/mol) in gas (water) media for complex F (AG/AlB11N12) and complex I (AG/GaB11N12) respectively, which refers to the highest stability of these systems. The enhanced values of dipole moment (from 12.40 (12.65) Debye to 17.21 (17.69) Debye in complex F (complex I)) also confirm their stability. The QTAIM and RDG analysis endorse the strong adsorption nature of the AG drug onto the AlB11N12, and GaB11N12 nanocages, which is consistent with the adsorption energy as chemisorption occurs for these complexes. According to the electronic properties, doped nanocages show high sensitivity that infers their promising nature for drug delivery purposes. Thus, complex F and complex I are promising drug delivery systems, and doped nanocages (AlB11N12 and GaB11N12) are better carriers than pristine nanocages for the AG drug delivery system.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maliha Nishat
- Department of Physics, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Mehade Hasan
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Kamal Hossain
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Abul Hossain
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Ullah Z, Jee Kim H, Sheena Mary Y, Belboukhari N, Sekkoum K, Kraimi A, Zhan X, Wook Kwon H. Unlocking the Potential of Ovalene: A Dual-Purpose Sensor and Drug Enhancer. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
8
|
Al-Otaibi JS, Sheena Mary Y, Shyma Mary Y, Kumar Trivedi R, Chakraborty B, Churchill DG. Theoretical SERS study of the strength and suitability of Cu12 nanostar for SERS: Complete theoretical studies, coinage metal SM12 comparisons, benzothiazole (BTH) adsorbent. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Potential of B 24O 24 nanocluster for sensing and delivering chlormethine anticancer drug: a DFT study. J Mol Model 2022; 28:236. [PMID: 35900596 DOI: 10.1007/s00894-022-05224-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
In the present research, the adsorption and release of chlormethine (CM) drug on the B24O24 nanocage have been reported in the water media and gas phase at GGA/PBE/DNP computational level. The interaction between B24O24 nanocage and CM drug shows that adsorptions of the chlormethine on B24O24 nanocage for the most stable complexes are - 1.47 to - 1.36 eV in the gas phase and water media, respectively. The CM adsorption caused a notable change in the band gap (Eg) and work function (Φ) of the B24O24 nanocage in the studied complexes. The binding of chlormethine to B24O24 also significantly increased the polarity of the drug carrier, which is a desirable property for drug delivery in biological environments. CM drugs can be released from the nanocage in the presence of an external electric field along the X-axis direction. The present study results show that the B24O24 nanocage is a possible carrier for delivering chlormethine drugs.
Collapse
|
10
|
Al-Otaibi JS, Mary YS, Mary YS. DFT analysis of valproic acid adsorption onto Al 12/B 12-N 12/P 12 nanocages with solvent effects. J Mol Model 2022; 28:98. [PMID: 35322870 DOI: 10.1007/s00894-022-05088-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 01/30/2023]
Abstract
Using density functional theory, the adsorption of valproic acid onto the surface of fullerene-like nanocages was investigated. Valproic acid interacts with the nanocages through the carboxylic group with energies of - 144.14, - 109.71, - 105.22, and - 84.96 kcal/mol. The frontier molecular orbital (FMO) energy levels were considerably altered upon adsorption, resulting in a reduction in energy gap and increase in electrical conductivity. This suggests that nanocages could be used as sensors as well as options for drug administration in biological systems. Solvation effects in water are also reported.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Y Sheena Mary
- Thushara, Neethinagar-64, Pattathanam, Kollam, Kerala, India
| | - Y Shyma Mary
- Thushara, Neethinagar-64, Pattathanam, Kollam, Kerala, India
| |
Collapse
|
11
|
Gómez E, Ramírez Guarnizo NA, Perea JD, López AS, Prías-Barragán JJ. Exploring Molecular and Electronic Property Predictions of Reduced Graphene Oxide Nanoflakes via Density Functional Theory. ACS OMEGA 2022; 7:3872-3880. [PMID: 35155884 PMCID: PMC8829850 DOI: 10.1021/acsomega.1c00963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
In this research, we perform a theoretical interpretation of molecular and electronic properties of reduced graphene oxide (rGO) nanoflakes through the density functional theory. Here, two pristine graphene nanoflake systems were passivated by hydrogen atoms at their edges, armchair (C58H20) and zigzag (C54H20); besides, we implemented 12 rGO systems with a range of low oxide coverage (1, 3, and 4%). Computational calculations were carried out employing the functional hybrid B3LYP and the basis 6-31G(d, p) and 6-311G(d, p) levels of theory. We brought the proposed molecular structures to a stable minimum. We determined the global reactivity descriptors through chemical potential, hardness, softness, and index of electrophilicity. Besides, the maps of electrostatic potential were generated. We found that the hydroxyl and epoxy functional groups dope the graphene molecule in p-type and n-type forms, respectively. In addition, we could attribute the increases of the oxide coverage and the chemical potential to the softness of the molecule. These results suggest that structures with this type of doping can help in developing advanced electronics of sensors and devices.
Collapse
Affiliation(s)
- Erica
Valencia Gómez
- Chemistry
Program, Faculty of Basic Science and Technology, University of Quindío, Cra 15#12N, Armenia 460, Quindío, Colombia
| | - Nathalia A. Ramírez Guarnizo
- Chemistry
Program, Faculty of Basic Science and Technology, University of Quindío, Cra 15#12N, Armenia 460, Quindío, Colombia
| | - Jose Dario Perea
- University
of Toronto, Chemistry Sandford Fleming Building10 King’s College Rd Toronto,
ON M5S 3G4, Toronto, Ontario M5S 1A1, Canada
| | - Alberto Sánchez López
- Chemistry
Program, Faculty of Basic Science and Technology, University of Quindío, Cra 15#12N, Armenia 460, Quindío, Colombia
| | - Jhon J. Prías-Barragán
- Universidad
del Quindio, Interdisciplinary Institute of Sciences, Cra. 15 Calle 12 Norte, Armenia 460, Quindío, Colombia
| |
Collapse
|
12
|
Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022; 12:736177. [PMID: 35155223 PMCID: PMC8831729 DOI: 10.3389/fonc.2022.736177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common primary malignant tumors of the central nervous system, and their conventional treatment involves maximal safe surgical resection combined with radiotherapy and temozolomide chemotherapy; however, this treatment does not meet the requirements of patients in terms of survival and quality of life. Graphene oxide (GO) has excellent physical and chemical properties and plays an important role in the treatment of gliomas mainly through four applications, viz. direct killing, drug delivery, immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in the treatment of gliomas in recent years and also highlights new ideas for the treatment of these tumors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| |
Collapse
|
13
|
Mian SA, Khan SU, Hussain A, Rauf A, Ahmed E, Jang J. Molecular Modelling of Optical Biosensor Phosphorene-Thioguanine for Optimal Drug Delivery in Leukemia Treatment. Cancers (Basel) 2022; 14:545. [PMID: 35158813 PMCID: PMC8833433 DOI: 10.3390/cancers14030545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Thioguanine is an anti-cancer drug used for the treatment of leukemia. However, thioguanine has weak aqueous solubility and low biocompatibility, which limits its performance in the treatment of cancer. In the present work, these inadequacies were targeted using density functional theory-based simulations. Three stable configurations were obtained for the adsorption of thioguanine molecules on the phosphorene surface, with adsorption energies in the range of -76.99 to -38.69 kJ/mol, indicating physisorption of the drug on the phosphorene surface. The calculated bandgap energies of the individual and combined geometries of phosphorene and thioguanine were 0.97 eV, 2.81 eV and 0.91 eV, respectively. Owing to the physisorption of the drug molecule on the phosphorene surface, the bandgap energy of the material had a direct impact on optical conductivity, which was significantly altered. All parameters that determine the potential ability for drug delivery were calculated, such as the dipole moment, chemical hardness, chemical softness, chemical potential, and electrophilicity index. The higher dipole moment (1.74 D) of the phosphorene-thioguanine complex reflects its higher biodegradability, with no adverse physiological effects.
Collapse
Affiliation(s)
- Shabeer Ahmad Mian
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan; (S.U.K.); (A.H.); (A.R.)
| | - Shafqat Ullah Khan
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan; (S.U.K.); (A.H.); (A.R.)
| | - Akbar Hussain
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan; (S.U.K.); (A.H.); (A.R.)
| | - Abdur Rauf
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan; (S.U.K.); (A.H.); (A.R.)
| | - Ejaz Ahmed
- Department of Physics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Joonkyung Jang
- Department of Nano Energy Engineering, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
14
|
Ema SN, Khaleque MA, Ghosh A, Piya AA, Habiba U, Shamim SUD. Surface adsorption of nitrosourea on pristine and doped (Al, Ga and In) boron nitride nanosheets as anticancer drug carriers: the DFT and COSMO insights. RSC Adv 2021; 11:36866-36883. [PMID: 35494400 PMCID: PMC9043538 DOI: 10.1039/d1ra07555a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
To minimize the side effects of chemotherapeutic drugs and enhance the effectiveness of cancer treatment, it is necessary to find a suitable drug delivery carrier for anticancer drugs. Recently nanomaterials are extensively being studied as drug vehicles and transport drugs in tumor cells. Using DFT calculations, the adsorption behavior with electronic sensitivity and reactivity of pristine and doped (Al, Ga and In)-BNNS towards the nitrosourea (NU) drug has been investigated in gas as well as water media. Our calculations showed that the NU drug is physically adsorbed on the pristine BNNS with −0.49 and −0.26 eV by transferring little amount of charge of about 0.033e and 0.046e in gas and water media in the most stable complex. But after replacing one of the central B atoms with an Al or Ga or In atom, the sensitivity of the doped BNNS remarkably enhances towards the NU drug molecules. The NU drug prefers to be chemically adsorbed on the BN(Al)NS, BN(Ga)NS and BN(In)NS by −1.28, −1.58 and −3.06 eV in the gas phase and −1.34, −1.23 and −3.65 eV in water media in the most stable complexes respectively. The large destabilization of LUMO energies after the adsorption of the NU drug on the BN(Al)NS, BN(Ga)NS and BN(In)NS significantly reduces their Eg from 4.37 to 0.69, 4.37 to 1.04 and 4.33 to 0.66 eV in the S1 complex respectively. The reduction of Eg of doped BNNS by the NU drug greatly enhances the electrical conductivity which can be converted to an electrical signal. Therefore, this doped BNNS can be used as a fascinating electronic sensor for the detection of NU drug molecules. Furthermore the work function of the doped BNNS was largely affected by the NU drug adsorption about 47.3%, 39.3% and 40.4% in the gas phase and 41.3%, 36.6% and 31.6% in water media in the S1 complex of NU/BN(Al)NS, NU/BN(Ga)NS and NU/BN(In)NS respectively. Thus, the doped BNNS may be used as a Ф type sensor for NU drug molecules. Doped (Al, Ga and In)-BNNS can be used as fascinating drug carriers for the NU drug.![]()
Collapse
Affiliation(s)
- Shania Nusrat Ema
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Md Abdul Khaleque
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Ananya Ghosh
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Afiya Akter Piya
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Umme Habiba
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| |
Collapse
|
15
|
Molecular docking, DFT analysis, and dynamics simulation of natural bioactive compounds targeting ACE2 and TMPRSS2 dual binding sites of spike protein of SARS CoV-2. J Mol Liq 2021; 342:116942. [PMID: 34305216 PMCID: PMC8267125 DOI: 10.1016/j.molliq.2021.116942] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022]
Abstract
The scientific community is continuously working to discover drug candidates against potential targets of SARS-CoV-2, but effective treatment has not been discovered yet. The virus enters the host cell through molecular interaction with its enzymatic receptors i.e., ACE2 and TMPRSS2, which, if, synergistically blocked can lead to the development of novel drug candidates. In this study, 1503 natural bioactive compounds were screened by HTVS, followed by SP and XP docking using Schrodinger Maestro software. Bio-0357 (protozide) and Bio-597 (chrysin) were selected for dynamics simulation based on synergistic binding affinity on S1 (docking score −9.642 and −8.78 kcal/mol) and S2 domains (-5.83 and −5.3 kcal/mol), and the RMSD, RMSF and Rg analyses showed stable interaction. The DFT analysis showed that the adsorption of protozide/chrysin, the band gap of protozide/chrysin-F/G reduced significantly. From SERS, results, it can be concluded that QDs nanocluster will act as a sensor for the detection of drugs. The docking study showed Bio-0357 and Bio-0597 bind to both S1 and S2 domains through stable molecular interactions, which can lead to the discovery of new drug candidates to prevent the entry of SARS-CoV-2. This in-silico study may be helpful to researchers for further in vitro experimental validation and development of new therapy for COVID-19.
Collapse
|
16
|
Computational Study of Sorbic Acid Drug Adsorption onto Coronene/Fullerene/Fullerene-Like X12Y12 (X = Al, B and Y = N, P) Nanocages: DFT and Molecular Docking Investigations. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02106-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Al-Otaibi JS, Mary YS, Mary YS, Kaya S, Serdaroglu G. DFT computational study of trihalogenated aniline derivative's adsorption onto graphene/fullerene/fullerene-like nanocages, X 12Y 12 (X = Al, B, and Y = N, P). J Biomol Struct Dyn 2021; 40:8630-8643. [PMID: 33876711 DOI: 10.1080/07391102.2021.1914172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adsorption of 2,4,6-tribromoaniline (BA), 2,4,6-trifluoroaniline (FA) and 2,4,6-trichloroaniline (CA) onto the surface of coronene/fullerene/fullerene-like nanocages was investigated by theoretical calculations. Due to the adsorption of BA/FA/CA, there are significant changes in chemical descriptors and nonlinear optical properties. Energy gap values of all nanoclusters are lowered, giving an increase in conductivity of complexes except for fullerene. All complex's ultraviolet visible wavenumber is blue-shifted and especially for fullerene complex, the values are very high. The enhancement of Raman intensities shows that it is possible to design a nanocage sensor for detecting these compounds by surface-enhanced Raman scattering (SERS).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Goncagül Serdaroglu
- Faculty of Education, Math. and Sci. Edu, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
18
|
Rad AS, Ardjmand M, Esfahani MR, Khodashenas B. DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV-vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119082. [PMID: 33120121 PMCID: PMC7568174 DOI: 10.1016/j.saa.2020.119082] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 05/03/2023]
Abstract
With the global epidemic of the COVID-19 virus, extensive and rapid research on drug therapy is underway around the world. In this regard, one of the most widely studied drugs is Favipiravir. Our aim in this paper is to conduct comprehensive research based on the Density Functional Theory (DFT) on the potential of metallofullerenes as suitable drug carriers. The surface interaction of Favipiravir with organometallic compound resulted by doping of the five transition metals of the first row of the periodic table (Ti, Cr, Cr, Fe, Ni, and Zn) was examined in depth to select the most suitable metallofullerenes. First, the adsorption geometries of Favipiravir drug onto each metallofullerene were deeply investigated. It was found that Cr-, Fe-, and Ni-doped fullerenes provide the excellent adsorbent property with adsorption energies of -148.2, -149.6, and -146.6 kJ/mol, respectively. The Infrared spectroscopy (IR) study was conducted to survey the stretching vibration of bonds involving in the systems, specialty the CO in the drug, CM in the metallofullerene, and MO in the metallofullerene-drug complex. Finally, the UV-vis analysis showed that the absorption spectra for the studied systems may be attributed to the transition from π-π* and/or n-π*.
Collapse
Affiliation(s)
- Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, United States.
| | - Bahareh Khodashenas
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
19
|
Hossain MR, Hasan MM, Nishat M, Noor-E-Ashrafi, Ahmed F, Ferdous T, Hossain MA. DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114627] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Mary YS, Mary YS. Utilization of doped/undoped graphene quantum dots for ultrasensitive detection of duphaston, a SERS platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118865. [PMID: 32889339 DOI: 10.1016/j.saa.2020.118865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Recently nanocluster based drug delivery systems have become the most skillful to study. Interaction mechanism of duphaston (DPH) over graphene (G), carboxyl substituted graphene (COG) and doped COG-X (X = O/S/N/B) were investigated. We studied different spectroscopic properties of adsorbed DPH with nanoclusters. To study effect adsorption of DPH with nanoclusters, the adsorption energies were measured. To track DPH, surface enhanced Raman scattering is used since it is an efficient approach to vibrational spectroscopy. The DPH detection was investigated using GQDs SERS property. For the adsorption of DPH with COG-B nanocluster maximum energy interaction is determined. DPH works on the electrophilic site of nanoclusters as donor of electrons and adsorbs. Charge transfer is higher for to COG-B nanocluster than for other nanoclusters. Variations in chemical descriptors are also noted to understand sensing property of DPH molecule-nanoclusters. The analysis of different properties demonstrates enhancement effect which makes it significant in detecting DPH in other products.
Collapse
Affiliation(s)
- Y Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India.
| | - Y Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| |
Collapse
|
21
|
Rahman H, Hossain MR, Ferdous T. The recent advancement of low-dimensional nanostructured materials for drug delivery and drug sensing application: A brief review. J Mol Liq 2020; 320:114427. [PMID: 33012931 PMCID: PMC7525470 DOI: 10.1016/j.molliq.2020.114427] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023]
Abstract
In this review article, we have presented a detailed analysis of the recent advancement of quantum mechanical calculations in the applications of the low-dimensional nanomaterials (LDNs) into biomedical fields like biosensors and drug delivery systems development. Biosensors play an essential role for many communities, e.g. law enforcing agencies to sense illicit drugs, medical communities to remove overdosed medications from the human and animal body etc. Besides, drug delivery systems are theoretically being proposed for many years and experimentally found to deliver the drug to the targeted sites by reducing the harmful side effects significantly. In current COVID-19 pandemic, biosensors can play significant roles, e.g. to remove experimental drugs during the human trials if they show any unwanted adverse effect etc. where the drug delivery systems can be potentially applied to reduce the side effects. But before proceeding to these noble and expensive translational research works, advanced theoretical calculations can provide the possible outcomes with considerable accuracy. Hence in this review article, we have analyzed how theoretical calculations can be used to investigate LDNs as potential biosensor devices or drug delivery systems. We have also made a very brief discussion on the properties of biosensors or drug delivery systems which should be investigated for the biomedical applications and how to calculate them theoretically. Finally, we have made a detailed analysis of a large number of recently published research works where theoretical calculations were used to propose different LDNs for bio-sensing and drug delivery applications.
Collapse
Affiliation(s)
- Hamidur Rahman
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tahmina Ferdous
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
22
|
Synthesis and application of chitosan/tripolyphosphate/graphene oxide hydrogel as a new drug delivery system for Sumatriptan Succinate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113835] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Padash R, Esfahani MR, Rad AS. The computational quantum mechanical study of sulfamide drug adsorption onto X12Y12 fullerene-like nanocages: detailed DFT and QTAIM investigations. J Biomol Struct Dyn 2020; 39:5427-5437. [DOI: 10.1080/07391102.2020.1792991] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rahman Padash
- Department of Chemistry, Yasouj University, Yasouj, Iran
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|