1
|
Lin N, Song H, Zhang Y, Chen F, Xu J, Wu W, Tian Q, Luo C, Yao K, Hu L, Chen X. Truncation mutations of CRYGD gene in congenital cataracts cause protein aggregation by disrupting the structural stability of γD-crystallin. Int J Biol Macromol 2024; 277:134292. [PMID: 39084439 DOI: 10.1016/j.ijbiomac.2024.134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Congenital cataracts, a prevalent cause of blindness in children, are associated with protein aggregation. γD-crystallin, essential for sustaining lens transparency, exists as a monomer and exhibits excellent structural stability. In our cohort, we identified a nonsense mutation (c.451_452insGACT, p.Y151X) in the CRYGD gene. To explore the effect of truncation mutations on the structure of γD-crystallin, we examined the Y151X and T160RfsX8 mutations, both located in the Greek key motif 4 at the cellular and protein level in this study. Both truncation mutations induced protein misfolding and resulted in the formation of insoluble aggregates when overexpressed in HLE B3 and HEK 293T cells. Moreover, heat, UV irradiation, and oxidative stress increased the proportion of aggregates of mutants in the cells. We next purified γD-crystallin to estimate its structural changes. Truncation mutations led to conformational disruption and a concomitant decrease in protein solubility. Molecular dynamics simulations further demonstrated that partial deletion of the conserved domain within the Greek key motif 4 markedly compromised the overall stability of the protein structure. Finally, co-expression of α-crystallins facilitated the proper folding of truncated mutants and mitigated protein aggregation. In summary, the structural integrity of the Greek key motif 4 in γD-crystallin is crucial for overall structural stability.
Collapse
Affiliation(s)
- Ningqin Lin
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Hang Song
- Department of Ophthalmology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Beijing 100730, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Fanrui Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Chenqi Luo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| |
Collapse
|
2
|
Feng J, Niu H, Zhu S, Xiang W, Li X, Deng Y, Xu X, Yang W, Chung MC. Famine exposure in early life increases risk of cataracts in elderly stage. Front Nutr 2024; 11:1395205. [PMID: 38966422 PMCID: PMC11222645 DOI: 10.3389/fnut.2024.1395205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Epidemiological studies have shown that early-life nutritional deficiencies are associated with an increased risk of diseases later in life. This study aimed to explore the correlation between famine exposure during the early stages of life and cataracts. METHODS We included 5,931 participants from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) 2018 cross-sectional data in our study. Subjects were categorized into three groups by their age during the famine: adulthood group, school age famine exposure group, and teenage famine exposure group. Utilizing binary logistic regression models, we investigated the relationship between early-life famine exposure and cataracts. RESULTS Compared to the adulthood group, both the school age exposure group (OR = 2.49, 95%CI = 1.89-3.27) and teenage exposure group (OR = 1.45, 95%CI = 1.20-1.76) had a heightened risk of developing cataracts in elderly stage. And the sex differences in the impact of famine during early years on elderly cataract risk were observed, particularly indicating a higher risk among women who experienced childhood famine compared to men with similar exposure. CONCLUSION Famine exposure during the early stages of life is associated with a heightened risk of developing cataracts in old age. To prevent cataracts in elderly individuals, particularly in females, measures should be taken to address nutritional deficiencies in these specific periods.
Collapse
Affiliation(s)
- Jiayuan Feng
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
| | - Hui Niu
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
| | - Sijing Zhu
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Wanwan Xiang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
| | - Xiaoxue Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yang Deng
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xu Xu
- Human Resources Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
| | - Mei Chun Chung
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| |
Collapse
|
3
|
Chen H, Yu Y, Hu L, Wu X, Luo L, Lin H, Liu Y, Liu Z. Metabolomic profiling of the aqueous humor in patients with pediatric cataract. Exp Eye Res 2024; 243:109906. [PMID: 38657786 DOI: 10.1016/j.exer.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Pediatric cataract, including congenital and developmental cataract, is a kind of pediatric vision-threatening disease with extensive phenotypic heterogeneity and multiple mechanisms. We aimed to investigate the metabolite profile of aqueous humor (AH) in patients with pediatric cataracts, and identify underlying mutual correlations between differential metabolites. Metabolomic profiles of AH were analyzed and compared between pediatric cataract patients (n = 33) and age-related cataract patients without metabolic diseases (n = 29), using global untargeted metabolomics with ultra-high-performance liquid chromatography tandem mass spectrometry. Principal component analysis, partial least squares discriminant analysis and heat map were applied. Enriched pathway analysis was conducted using Kyoto Encyclopedia of Genes and Genomes. Receiver-operating characteristic (ROC) analyses were employed to select potential biomarkers. A total of 318 metabolites were identified, of which 54 differential metabolites (25 upregulated and 29 downregulated) were detected in pediatric cataract group compared with controls (variable importance of projection >1.0, fold change ≥1.5 or ≤ 0.667 and P < 0.05). A significant accumulation of N-Acetyl-Dl-glutamic acid was observed in pediatric cataract group. The differential metabolites were mainly enriched in histidine metabolism (increased L-Histidine and decreased 1-Methylhistamine) and the tryptophan metabolism (increased N-Formylkynurenine and L-Kynurenine). 5-Aminosalicylic acid showed strong positive mutual inter-correlation with L-Tyrosinemethylester and N,N-Diethylethanolamine, both of which were down-regulated in pediatric cataract group. The ROC analysis implied 11 metabolites served as potential biomarkers for pediatric cataract patients (all area under the ROC curve ≥0.900). These results illustrated novel potential metabolites and metabolic pathways in pediatric cataract, which provides new insights into the pathophysiology of pediatric cataract.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yinglin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Islam S, Do M, Frank BS, Hom GL, Wheeler S, Fujioka H, Wang B, Minocha G, Sell DR, Fan X, Lampi KJ, Monnier VM. α-Crystallin chaperone mimetic drugs inhibit lens γ-crystallin aggregation: potential role for cataract prevention. J Biol Chem 2022; 298:102417. [PMID: 36037967 PMCID: PMC9525908 DOI: 10.1016/j.jbc.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency–approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket–binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the “NC pocket” (residues 50–150) of HγD and one spanning the “NC tail” (residues 56–61 to 168–174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.
Collapse
Affiliation(s)
- Sidra Islam
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Michael Do
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Brett S Frank
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Grant L Hom
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Samuel Wheeler
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Hisashi Fujioka
- Cryo-EM Core Facility, School of Medicine, Case Western Reserve University, Case Western Reserve University, Cleveland, OH 44016
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Dept of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | - Geeta Minocha
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - David R Sell
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Xingjun Fan
- Dept of Cell Biology and Anatomy, Augusta University, Georgia, GA 30912
| | - Kirsten J Lampi
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Vincent M Monnier
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106; Dept of Biochemistry, Case Western Reserve University, Cleveland OH 44106.
| |
Collapse
|
5
|
Zhao Q, Dai H, Wang J, Yan F, Jang G, Ma J, Wang B, Li H. A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Zuogui Yin in the Treatment of Male Infertility. Comb Chem High Throughput Screen 2020; 24:803-813. [PMID: 32838712 DOI: 10.2174/1386207323999200824112611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Traditional Chinese medicine (TCM), as a complementary and alternative therapy, has played increasingly important roles in clinical treatment and disease prevention. Zuogui Yin (ZGY) is one of the well-known TCM prescriptions used for the treatment of male infertility. To fully reveal the potential mechanisms underlying the therapeutic effects of ZGY on male infertility, a network pharmacology approach was conducted at the molecular level. METHODS Network pharmacology approach was used in this study, which mainly included active compound screening, target prediction, gene enrichment analysis, and network analysis. RESULTS The network analysis successfully identified 148 potential active ingredients of ZGY and 155 predicted targets that were associated with male infertility. ZGY might play a role in the treatment of male infertility by regulating ten hub targets (VEGFA, CASP3, TNF, AKT1, EGF, EGFR, IL-6, MAPK1, TP53, and PTGS2) and six pathways (TNF signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, Toll-like receptor signaling pathway, VEGF signaling pathway, and MAPK signaling pathway). CONCLUSION This study explored the pharmacological activity and molecular mechanisms of ZGY against male infertility from a holistic perspective. The underlying molecular mechanisms were closely related to the intervention of oxidative stress and apoptosis with CASP3, TP53, AKT1, and MAPK1 being possible targets.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Hengheng Dai
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Jisheng Wang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Fei Yan
- Beijing University of Chinese Medicine, Beijing 100029, Beijing, China
| | - Guejin Jang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Jianxiong Ma
- Department of Andrology, Hang Zhou Red Cross Hospital, Hangzhou 310003, Zhejiang, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Haisong Li
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| |
Collapse
|
6
|
Rana S, Ghosh KS. Inhibition of fibrillation of human γd-crystallin by a flavonoid morin. J Biomol Struct Dyn 2020; 39:4279-4289. [PMID: 32469293 DOI: 10.1080/07391102.2020.1775701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To inhibit the formation of amyloid fibrils by human γd-crystallin (HGD), a series of four flavonoids (quercertin, rutin, morin and hesperetin) was tested. Only morin had demonstrated significant inhibition of HGD fibrillation. Results from fluorimetric assay techniques (using thioflavin T and ANS), FTIR, circular dichroism and microscopic imaging (fluorescence microscopy and transmission electron microscopy) confirmed HGD fibrillation inhibition by morin. HGD-morin complex formation at ground state resulted tryptophan fluorescence quenching through static mechanism, which was also confirmed by determining the excited-state life time of HGD tryptophan residues. Förster resonance energy transfer occurs from HGD to morin. Synchronous, three-dimensional fluorescence, FTIR and circular dichroism results suggest that major changes in HGD conformation did not occur on binding with morin. The interactions between HGD and morin involve hydrogen bonding and/or van der Waals forces. Docking predictions also support experimental results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, India
| |
Collapse
|
7
|
Olchawa MM, Krzysztynska-Kuleta OI, Mokrzynski KT, Sarna PM, Sarna TJ. Quercetin protects ARPE-19 cells against photic stress mediated by the products of rhodopsin photobleaching. Photochem Photobiol Sci 2020; 19:1022-1034. [DOI: 10.1039/d0pp00165a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to intense light could increase the risk of phototoxic reactions mediated by rhodopsin photobleaching products (RPBP) that might accumulate in photoreceptor outer segments (POS).
Collapse
Affiliation(s)
- Magdalena M. Olchawa
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Olga I. Krzysztynska-Kuleta
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Krystian T. Mokrzynski
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Piotr M. Sarna
- Fluid Mechanics Laboratory
- Faculty of Mechanical Engineering
- Cracow University of Technology
- Poland
| | - Tadeusz J. Sarna
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| |
Collapse
|