1
|
Suleman M, Khan A, Khan SU, Alissa M, Alghamdi SA, Alghamdi A, Abdullah Alamro A, Crovella S. Screening of medicinal phytocompounds with structure-based approaches to target key hotspot residues in tyrosyl-DNA phosphodiesterase 1: augmenting sensitivity of cancer cells to topoisomerase I inhibitors. J Biomol Struct Dyn 2025:1-16. [PMID: 40231415 DOI: 10.1080/07391102.2025.2490061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/07/2024] [Indexed: 04/16/2025]
Abstract
One of cancer's well-known hallmarks is DNA damage, yet it's intriguing that DNA damage has been explored as a therapeutic strategy against cancer. Tyrosyl-DNA phosphodiesterase 1, involved in DNA repair from topoisomerase I inhibitors, a chemotherapy class for cancer treatment. Inhibiting TDP1 can increase unresolved Top1 cleavage complexes in cancer cells, inducing DNA damage and cell death. TDP1's catalytic activity depends on His263 and His493 residues. Using molecular simulation, structure-based drug design, and free energy calculation, we identified potential drugs against TDP1. A multi-step screening of medicinal plant compound databases (North Africa, East Africa, Northeast Africa, and South Africa) identified the top four candidates. Docking scores for top hits 1-4 were -7.76, -7.37, -7.35, and -7.24 kcal/mol. Top hit 3 exhibited the highest potency, forming a strong bonding network with both His263 and His493 residues. All-atoms simulations showed consistent dynamics for top hits 1-4, indicating stability and potential for efficient interaction with interface residues. Minimal fluctuations in residue flexibility suggest these compounds can stabilize internal flexibility upon binding. The binding free energies of -35.11, -36.70, -31.38, and -23.85 kcal/mol were calculated for the top hit 1-4 complexes. Furthermore, the chosen compounds demonstrate outstanding ADMET characteristics, such as excellent water solubility, effective gastrointestinal absorption, and the absence of hepatotoxicity. Cytotoxicity analysis revealed top hit 2 higher probability of activity against 24 cancer cell lines. Our findings suggest that these compounds (top hits 1-4) hold promise for innovative drug therapies, suitable for both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abir Abdullah Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Aiman S, Ahmad A, Malik A, Chen R, Hanif MF, Khan AA, Ansari MA, Farrukh S, Xu G, Shahab M, Huang K. Whole proteome-integrated and vaccinomics-based next generation mRNA vaccine design against Pseudomonas aeruginosa-A hierarchical subtractive proteomics approach. Int J Biol Macromol 2025; 309:142627. [PMID: 40174835 DOI: 10.1016/j.ijbiomac.2025.142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a multidrug-resistant opportunistic pathogen responsible for chronic obstructive pulmonary disease (COPD), cystic fibrosis, and ventilator-associated pneumonia (VAP), leading to cancer. Developing an efficacious vaccine remains the most promising strategy for combating P. aeruginosa infections. In this study, we employed an advanced in silico strategy to design a highly efficient and stable mRNA vaccine using immunoinformatics tools. Whole proteome data were utilized to identify highly immunogenic vaccine candidates using subtractive proteomics. Three extracellular proteins were prioritized for T- and linear B-cell epitope prediction. Beta-definsin protein sequence was incorporated as an adjuvant at the N-terminus of the construct. A total of 3 CTL, 3 HTL, and 3 linear B cell highly immunogenic epitopes were combined using specific linkers to design this multi-peptide construct. The 5' and 3' UTR sequences, Kozak sequence with a stop codon, and signal peptides followed by a poly-A tail were incorporated into the above vaccine construct to create our final mRNA vaccine. The vaccines exhibited antigenicity scores >0.88, ensuring high antigenicity with no allergenic or toxic. Physiochemical properties analysis revealed high solubility and thermostability. Three-dimensional structural analysis determined high-quality structures. Vaccine-receptor docking and molecular dynamic simulations demonstrated strong molecular interactions, stable binding affinities, dynamic nature, and structural stability of this vaccine, with significant immunogenic responses of the immune system against the vaccine. The immunological simulation indicates successful cellular and humoral immune responses to defend against P. aeruginosa infection. Validation of the study outcomes necessitates both experimental and clinical testing.
Collapse
Affiliation(s)
- Sara Aiman
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Liaobu Hospital of Dongguan City, Dongguan, China
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Muhammad Farhan Hanif
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mushtaq Ahmed Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Muhammad Shahab
- State key laboratories of chemical Resources Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kaisong Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Liaobu Hospital of Dongguan City, Dongguan, China.
| |
Collapse
|
3
|
Khan A, Sayaf AM, Mohammad A, Alshabrmi FM, Benameur T, Wei DQ, Yeoh KK, Agouni A. Discovery of anti-Ebola virus multi-target inhibitors from traditional Chinese medicine database using molecular screening, biophysical investigation, and binding free energy calculations. J Infect Public Health 2025; 18:102636. [PMID: 39798213 DOI: 10.1016/j.jiph.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025] Open
Abstract
INTRODUCTION Ebola virus (EBOV) is a highly lethal RNA virus that causes severe hemorrhagic fever in humans and non-human primates. The lack of effective treatment or vaccine for this pathogen poses a serious threat to a global pandemic. Therefore, it is imperative to explore new drugs and therapies to combat this life-threatening infection. MATERIALS AND METHODS In this study, we employed in silico methods to assess the inhibitory activity of natural products from traditional Chinese medicine (TCM) against four EBOV proteins that are crucial for viral replication and assembly: VP40, VP35, VP30, and VP24. We performed molecular docking of TCM compounds with the EBOV proteins and screened them based on their docking scores, binding free energies, and pharmacokinetic properties. RESULTS Our results pinpointed eight TCM compounds (TCM1797, TCM2872, TCM250, TCM2837, TCM2644, TCM4697, TCM2322, and TCM277) that exhibited superior efficacy in inhibiting all the EBOV proteins compared to the controls. These compounds interacted with key residues of the EBOV proteins through various types of bonds, such as hydrogen bonds, salt bridges, and π-π interactions, forming stable complexes that could disrupt the function of the EBOV proteins. These compounds were found to possess known antiviral activity, acceptable pharmacokinetic properties, and human usage history, which make them promising candidates for anti-EBOV drug development. Moreover, the molecular simulation analysis confirmed the binding stability, structural compactness, and residue flexibility properties of these compounds. Furthermore, the binding free energy results revealed that VP30-TCM2644, VP30-TCM4697, VP35-TCM2837, VP24-TCM250, and VP24-TCM277 complexes exhibit significant binding free energy values compared to the control ligands. Principal Component Analysis (PCA) and Free Energy Landscape (FEL) results revealed the trajectories' motion and conformational energy states. CONCLUSIONS Our findings provide valuable insights into the molecular mechanisms driving the efficacy of TCM drugs against EBOV and suggest novel approaches for the development of anti-EBOV therapies.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Division of Bioinformatics, Department of Biomedical Sciences, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | | | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahad M Alshabrmi
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kar Kheng Yeoh
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Gevorgyan S, Khachatryan H, Shavina A, Gharaghani S, Zakaryan H. Targeting SARS-CoV-2 main protease: a comprehensive approach using advanced virtual screening, molecular dynamics, and in vitro validation. Virol J 2024; 21:330. [PMID: 39707350 PMCID: PMC11662536 DOI: 10.1186/s12985-024-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
The COVID-19 pandemic, driven by the SARS-CoV-2 virus, necessitates the development of effective therapeutics. The main protease of the virus, Mpro, is a key target due to its crucial role in viral replication. Our study presents a novel approach combining ligand-based pharmacophore modeling with structure-based advanced virtual screening to identify potential inhibitors of Mpro. We screened around 200 million compounds using this integrated methodology, resulting in a shortlist of promising compounds. These were further scrutinized through molecular dynamics simulations, revealing their interaction dynamics with Mpro. Subsequent in vitro assays using the Mpro enzyme identified two compounds exhibiting significant micromolar inhibitory activity. These findings provide valuable scaffolds for the development of advanced therapeutics targeting Mpro. The comprehensive nature of our approach, spanning computational predictions to experimental validations, offers a robust pathway for rapid and efficient identification of potential drug candidates against COVID-19.
Collapse
Affiliation(s)
- Smbat Gevorgyan
- Laboratory of Antiviral Drug Discovery. Institute of Molecular Biology of National Academy of Sciences, 0014, Yerevan, Armenia.
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
| | - Hamlet Khachatryan
- Laboratory of Antiviral Drug Discovery. Institute of Molecular Biology of National Academy of Sciences, 0014, Yerevan, Armenia
- Denovo Sciences Inc, 0060, Yerevan, Armenia
| | - Anastasiya Shavina
- Laboratory of Antiviral Drug Discovery. Institute of Molecular Biology of National Academy of Sciences, 0014, Yerevan, Armenia
- Denovo Sciences Inc, 0060, Yerevan, Armenia
| | - Sajjad Gharaghani
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery. Institute of Molecular Biology of National Academy of Sciences, 0014, Yerevan, Armenia
- Denovo Sciences Inc, 0060, Yerevan, Armenia
| |
Collapse
|
5
|
Ahmad S, Ali SS, Iqbal A, Ali S, Hussain Z, Khan I, Khan H. Using a dual immunoinformatics and bioinformatics approach to design a novel and effective multi-epitope vaccine against human torovirus disease. Comput Biol Chem 2024; 113:108213. [PMID: 39326336 DOI: 10.1016/j.compbiolchem.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Human Torovirus (HToV), a member of the Coronaviridae family, causes severe enteric diseases with no specific medication available. To develop novel preventative measures, we employed immunoinformatics techniques to design a multi-epitope-based subunit vaccine (HToV-MEV) triggering diverse immune responses. We selected non-allergenic, non-toxic, and antigenic epitopes from structural polyproteins, joined them with suitable linkers, and added an adjuvant 50S ribosomal L7/L12 peptide. The vaccine's solubility score of 0.903678 and physiochemical properties were found effective. Molecular dynamics simulations and free energy calculations revealed strong binding affinity for Toll-like receptor 3 (TLR-3), with a lowest energy score of -303.88, indicating high affinity. In-silico cloning and codon optimization showed significant production potential in E. coli. Immune simulations predicted a human immunological response. Our results are promising, but subsequent in vivo research is recommended. The HToV-MEV vaccine design demonstrates potential for preventing HToV-related diseases, and further investigation is warranted to explore its therapeutic applications.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan.
| | - Shahid Ali
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Zahid Hussain
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Ishaq Khan
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Kpk 19200, Pakistan
| | - Hayat Khan
- Department of Genomics, Phenomics, and Bioinformatics, North Dakota State University, USA
| |
Collapse
|
6
|
Wu Y, Li L, Wang K, Zhang Y, Wang J, Feng TT, Li YT, Kong Q. COVID-AMD database for coronavirus-infected animal models with comparative analysis tools. Sci Rep 2024; 14:29567. [PMID: 39609461 PMCID: PMC11605124 DOI: 10.1038/s41598-024-80474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Respiratory infections caused by coronaviruses have posed serious and unpredictably public health threats; reliable animal models continue to be essential for advancing our understanding of the virus's transmission, pathophysiology, and immunological mechanisms. In response to the critical need for centralized resources in coronavirus research, the COVID-AMD database (Coronavirus Disease Animal Model Database, https://www.uc-med.net/CoV-AMD ) has been developed as an integrated platform. Data was gathered from public literature databases, refined and integrated using ETL (Extract, Transform, Load) methodology. After data conversion and cleaning, COVID-AMD was implemented using MySQL relational database with jQuery and JBoss. COVID-AMD database consolidates comprehensive data on animal models infected with various CoVs, including MERS-CoV, SARS-CoV, and SARS-CoV-2, featuring methodologies for establishing infection models, clinical features, and phenotypic data. It catalogs 869 animal models across 29 species and 312 virus strains, covering five diseases and ten infection routes. With global and advanced search capabilities, it facilitated data preprocessing, integration, analysis, and visualization, and provided tools for comparative analysis, model recommendation and omics analysis based on model and phenotype data. The open access to this rich repository aims to enable rapid identification of animal models for CoVs, thereby accelerating the development and clinical trial progression of prospective therapeutics and vaccines.
Collapse
Affiliation(s)
- Yue Wu
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China
| | - Lu Li
- Nutshell Therapeutics (Shanghai) Co., Ltd, 201210, Shanghai, China
| | - Kai Wang
- Nutshell Therapeutics (Shanghai) Co., Ltd, 201210, Shanghai, China
| | - Yang Zhang
- Nutshell Therapeutics (Shanghai) Co., Ltd, 201210, Shanghai, China
| | - Jue Wang
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China
| | - Ting-Ting Feng
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China
| | - Yi-Tong Li
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China
| | - Qi Kong
- Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China.
| |
Collapse
|
7
|
Gao T, Yan R, Fang N, He L, Duan Z, Wang J, Ye L, Hu S, Chen Y, Yuan S, Yan X, Yuan M. Alisol C 23-acetate might be a lead compound of potential lipase inhibitor from Alismatis Rhizoma: Screening, identification and molecular dynamics simulation. Int J Biol Macromol 2024; 278:134878. [PMID: 39168221 DOI: 10.1016/j.ijbiomac.2024.134878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Alismatis Rhizoma (AR), a traditional Chinese medicine for treating obesity in traditional Chinese medicine clinic, is recognized as a promising source of lead compounds of lipase inhibitors. Ultrafiltration centrifugal combined with liquid chromatography-mass spectrometry (UF-LC-MS) was used for screening potential lipase inhibitors from AR, and the result indicated the binding capacity between compound 7 and lipase (92.3 ± 1.28 %) was significantly higher than other triterpenoids, and was identified as alisol C 23-acetate. It exhibited a mixed-type inhibitory behavior with an IC50 value of 84.88 ± 1.03 μM. Subsequently, the binding pockets of alisol C 23-acetate to lipase were predicted, and their binding mechanism was explored with molecular simulation. Pocket 1 (active center) and pocket 4 might be the orthosteric and allosteric binding sites of alisol C 23-acetate to lipase, respectively. The interaction between alisol C 23-acetate and lipase was identified to involve key amino acid residues such as GLY-77, PHE-78, TYR-115, LEU-154, PRO-181, PHE-216, LEU-264, ASP-278, GLN-306, ARG-313, and VAL-426. Meanwhile, alisol C 23-acetate remained stable during the intestinal digestive but degraded in the gastric digestion. Overall, alisol C 23-acetate is expected to be the lead compound of lipase inhibitors for treating obesity.
Collapse
Affiliation(s)
- Tao Gao
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Rui Yan
- Wanzhou Food and Drug Inspection Institute, Wanzhou 404100, China
| | - Nan Fang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Lingzhi He
- Wanzhou Food and Drug Inspection Institute, Wanzhou 404100, China
| | - Zhihao Duan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jiyu Wang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | | | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China; State Key Laboratory Foundation of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Khachatryan H, Matevosyan M, Harutyunyan V, Gevorgyan S, Shavina A, Tirosyan I, Gabrielyan Y, Ayvazyan M, Bozdaganyan M, Fakhar Z, Gharaghani S, Zakaryan H. Computational evaluation and benchmark study of 342 crystallographic holo-structures of SARS-CoV-2 Mpro enzyme. Sci Rep 2024; 14:14255. [PMID: 38902397 PMCID: PMC11189913 DOI: 10.1038/s41598-024-65228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
The coronavirus disease 19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global health crisis with millions of confirmed cases and related deaths. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and presents an attractive target for drug development. Despite the approval of some drugs, the search for effective treatments continues. In this study, we systematically evaluated 342 holo-crystal structures of Mpro to identify optimal conformations for structure-based virtual screening (SBVS). Our analysis revealed limited structural flexibility among the structures. Three docking programs, AutoDock Vina, rDock, and Glide were employed to assess the efficiency of virtual screening, revealing diverse performances across selected Mpro structures. We found that the structures 5RHE, 7DDC, and 7DPU (PDB Ids) consistently displayed the lowest EF, AUC, and BEDROCK scores. Furthermore, these structures demonstrated the worst pose prediction results in all docking programs. Two structural differences contribute to variations in docking performance: the absence of the S1 subsite in 7DDC and 7DPU, and the presence of a subpocket in the S2 subsite of 7DDC, 7DPU, and 5RHE. These findings underscore the importance of selecting appropriate Mpro conformations for SBVS, providing valuable insights for advancing drug discovery efforts.
Collapse
Affiliation(s)
- Hamlet Khachatryan
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.
| | - Mher Matevosyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Vardan Harutyunyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Smbat Gevorgyan
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Anastasiya Shavina
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Irina Tirosyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Yeva Gabrielyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Marusya Ayvazyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | | | - Zeynab Fakhar
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hovakim Zakaryan
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.
| |
Collapse
|
9
|
Shahab M, Zheng G, Alshabrmi FM, Bourhia M, Wondmie GF, Mohammad Salamatullah A. Exploring potent aldose reductase inhibitors for anti-diabetic (anti-hyperglycemic) therapy: integrating structure-based drug design, and MMGBSA approaches. Front Mol Biosci 2023; 10:1271569. [PMID: 38053577 PMCID: PMC10694256 DOI: 10.3389/fmolb.2023.1271569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Aldose reductase (AR) is an important target in the development of therapeutics against hyper-glycemia-induced health complications such as retinopathy, etc. In this study, we employed a combination of structure-based drug design, molecular simulation, and free energy calculation approaches to identify potential hit molecules against anti-diabetic (anti-hyperglycemic)-induced health complications. The 3D structure of aldoreductase was screened for multiple compound libraries (1,00,000 compounds) and identified as ZINC35671852, ZINC78774792 from the ZINC database, Diamino-di nitro-methyl dioctyl phthalate, and Penta-o-galloyl-glucose from the South African natural compounds database, and Bisindolylmethane thiosemi-carbazides and Bisindolylme-thane-hydrazone from the Inhouse database for this study. The mode of binding interactions of the selected compounds later predicted their aldose reductase inhibitory potential. These com-pounds interact with the key active site residues through hydrogen bonds, salt bridges, and π-π interactions. The structural dynamics and binding free energy results further revealed that these compounds possess stable dynamics with excellent binding free energy scores. The structures of the lead inhibitors can serve as templates for developing novel inhibitors, and in vitro testing to confirm their anti-diabetic potential is warranted. The current study is the first to design small molecule inhibitors for the aldoreductase protein that can be used in the development of therapeutic agents to treat diabetes.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | | | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Sokouti B. A review on in silico virtual screening methods in COVID-19 using anticancer drugs and other natural/chemical inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:994-1026. [PMID: 38023988 PMCID: PMC10651357 DOI: 10.37349/etat.2023.00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/22/2023] [Indexed: 12/01/2023] Open
Abstract
The present coronavirus disease 2019 (COVID-19) pandemic scenario has posed a difficulty for cancer treatment. Even under ideal conditions, malignancies like small cell lung cancer (SCLC) are challenging to treat because of their fast development and early metastases. The treatment of these patients must not be jeopardized, and they must be protected as much as possible from the continuous spread of the COVID-19 infection. Initially identified in December 2019 in Wuhan, China, the contagious coronavirus illness 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finding inhibitors against the druggable targets of SARS-CoV-2 has been a significant focus of research efforts across the globe. The primary motivation for using molecular modeling tools against SARS-CoV-2 was to identify candidates for use as therapeutic targets from a pharmacological database. In the published study, scientists used a combination of medication repurposing and virtual drug screening methodologies to target many structures of SARS-CoV-2. This virus plays an essential part in the maturation and replication of other viruses. In addition, the total binding free energy and molecular dynamics (MD) modeling findings showed that the dynamics of various medications and substances were stable; some of them have been tested experimentally against SARS-CoV-2. Different virtual screening (VS) methods have been discussed as potential means by which the evaluated medications that show strong binding to the active site might be repurposed for use against SARS-CoV-2.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran
| |
Collapse
|
11
|
Raturi A, Yadav V, Hoda N, Subbarao N, Chaudhry SA. In silico identification of colchicine derivatives as novel and potential inhibitors based on molecular docking and dynamic simulations targeting multifactorial drug targets involved in Alzheimer's disease. J Biomol Struct Dyn 2023; 42:11555-11573. [PMID: 37822182 DOI: 10.1080/07391102.2023.2263586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, characterized by a gradual and steady deterioration in cognitive function over time. At least 50 million people worldwide are considered to have AD or another form of dementia. AD is marked by a gradual decline in cognitive abilities, memory deterioration and neurodegenerative transformations within the brain. The intricate and multifaceted nature of polygenic AD presents significant challenges within the landscape of drug development. The pathophysiology of AD unfolds in a non-linear and dynamic pattern, encompassing various systems and giving rise to a multitude of factors and hypotheses that contribute to the disease's onset. These encompass theories such as the beta-amyloid hypothesis, cholinergic hypothesis, tau hypothesis, oxidative stress and more. In the realm of drug development, polypharmacological drug profiles have emerged as a strategy that can yield combined or synergistic effects, effectively mitigating undesirable side effects and significantly enhancing the therapeutic efficacy of essential medications. With this concept in mind, our in-silico study sought to delve into the binding interactions of a diverse array of colchicine derivative compounds. These derivatives are chosen for their potential anti-inflammatory, antioxidant, anti-neurodegenerative and neuroprotective properties against Alzheimer's and other neurodegenerative diseases. We investigated compound interactions with AD-related targets, utilizing comprehensive molecular docking and dynamic simulations. COM111X showed impressive docking with acetylcholinesterase, indicating potential as an anti-Alzheimer's drug. COM112Y displayed strong docking scores with PDE4D and butyrylcholinesterase, suggesting dual inhibition for Alzheimer's treatment. Further in vitro and in vivo studies are warranted to explore these findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adity Raturi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Vikas Yadav
- School of Computational and Integrative Sciences, Jawahar Lal Nehru University, New Delhi, India
| | - Nasimul Hoda
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawahar Lal Nehru University, New Delhi, India
| | | |
Collapse
|
12
|
Mohammad A, Alshawaf E, Arefanian H, Marafie SK, Khan A, Wei DQ, Al-Mulla F, Abubaker J. Targeting SARS-CoV-2 Macrodomain-1 to Restore the Innate Immune Response Using In Silico Screening of Medicinal Compounds and Free Energy Calculation Approaches. Viruses 2023; 15:1907. [PMID: 37766313 PMCID: PMC10538035 DOI: 10.3390/v15091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Among the different drug targets of SARS-CoV-2, a multi-domain protein known as NSP3 is a critical element of the translational and replication machinery. The macrodomain-I, in particular, has been reported to have an essential role in the viral attack on the innate immune response. In this study, we explore natural medicinal compounds and identify potential inhibitors to target the SARS-CoV-2-NSP3 macrodomain-I. Computational modeling and simulation tools were utilized to investigate the structural-dynamic properties using triplicates of 100 ns MD simulations. In addition, the MM/GBSA method was used to calculate the total binding free energy of each inhibitor bound to macrodomain-I. Two significant hits were identified: 3,5,7,4'-tetrahydroxyflavanone 3'-(4-hydroxybenzoic acid) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid. The structural-dynamic investigation of both compounds with macrodomain-I revealed stable dynamics and compact behavior. In addition, the total binding free energy for each complex demonstrated a robust binding affinity, of ΔG -61.98 ± 0.9 kcal/mol for Compound A, while for Compound B, the ΔG was -45.125 ± 2.8 kcal/mol, indicating the inhibitory potential of these compounds. In silico bioactivity and dissociation constant (KD) determination for both complexes further validated the inhibitory potency of each compound. In conclusion, the aforementioned natural products have the potential to inhibit NSP3, to directly rescue the host immune response. The current study provides the basis for novel drug development against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sulaiman K. Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| |
Collapse
|
13
|
Chang YJ, Le UNP, Liu JJ, Li SR, Chao ST, Lai HC, Lin YF, Hsu KC, Lu CH, Lin CW. Combining virtual screening with cis-/trans-cleavage enzymatic assays effectively reveals broad-spectrum inhibitors that target the main proteases of SARS-CoV-2 and MERS-CoV. Antiviral Res 2023; 216:105653. [PMID: 37321487 PMCID: PMC10264167 DOI: 10.1016/j.antiviral.2023.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is essential for viral replication, which suggests that the Mpro is a critical target in the development of small molecules to treat COVID-19. This study used an in-silico prediction approach to investigate the complex structure of SARS-CoV-2 Mpro in compounds from the United States National Cancer Institute (NCI) database, then validate potential inhibitory compounds against the SARS-CoV-2 Mpro in cis- and trans-cleavage proteolytic assays. Virtual screening of ∼280,000 compounds from the NCI database identified 10 compounds with highest site-moiety map scores. Compound NSC89640 (coded C1) showed marked inhibitory activity against the SARS-CoV-2 Mpro in cis-/trans-cleavage assays. C1 strongly inhibited SARS-CoV-2 Mpro enzymatic activity, with a half maximal inhibitory concentration (IC50) of 2.69 μM and a selectivity index (SI) of >74.35. The C1 structure served as a template to identify structural analogs based on AtomPair fingerprints to refine and verify structure-function associations. Mpro-mediated cis-/trans-cleavage assays conducted with the structural analogs revealed that compound NSC89641 (coded D2) exhibited the highest inhibitory potency against SARS-CoV-2 Mpro enzymatic activity, with an IC50 of 3.05 μM and a SI of >65.57. Compounds C1 and D2 also displayed inhibitory activity against MERS-CoV-2 with an IC50 of <3.5 μM. Thus, C1 shows potential as an effective Mpro inhibitor of SARS-CoV-2 and MERS-CoV. Our rigorous study framework efficiently identified lead compounds targeting the SARS-CoV-2 Mpro and MERS-CoV Mpro.
Collapse
Affiliation(s)
- Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Uyen Nguyen Phuong Le
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Graduate Institute of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Jia-Jun Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Sin-Rong Li
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Ting Chao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| | - Cheng-Wen Lin
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Graduate Institute of Biological Sciences and Technology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
Khan A, Shahab M, Nasir F, Waheed Y, Alshammari A, Mohammad A, Zichen G, Li R, Wei DQ. Exploring the Traditional Chinese Medicine (TCM) database chemical space to target I7L protease from monkeypox virus using molecular screening and simulation approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:689-708. [PMID: 37675795 DOI: 10.1080/1062936x.2023.2250723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
In the current study, we used molecular screening and simulation approaches to target I7L protease from monkeypox virus (mpox) from the Traditional Chinese Medicines (TCM) database. Using molecular screening, only four hits TCM27763, TCM33057, TCM34450 and TCM31564 demonstrated better pharmacological potential than TTP6171 (control). Binding of these molecules targeted Trp168, Asn171, Arg196, Cys237, Ser240, Trp242, Glu325, Ser326, and Cys328 residues and may affect the function of I7L protease in in vitro assay. Moreover, molecular simulation revealed stable dynamics, tighter structural packing and less flexible behaviour for all the complexes. We further reported that the average hydrogen bonds in TCM27763, TCM33057, TCM34450 and TCM31564I7L complexes remained higher than the control drug. Finally, the BF energy results revealed -62.60 ± 0.65 for the controlI7L complex, for the TCM27763I7L complex -71.92 ± 0.70 kcal/mol, for the TCM33057I7L complex the BF energy was -70.94 ± 0.70 kcal/mol, for the TCM34450I7L the BF energy was -69.94 ± 0.85 kcal/mol while for the TCM31564I7L complex the BF energy was calculated to be -69.16 ± 0.80 kcal/mol. Although, we used stateoftheart computational methods, these are theoretical insights that need further experimental validation.
Collapse
Affiliation(s)
- A Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, P.R. China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - M Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - F Nasir
- Amna Inayat Medical College, Lahore, Pakistan
| | - Y Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - A Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - G Zichen
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - R Li
- Department of Flowers, college of Horticulture, China Agriculture University, Beijing, P.R. China
| | - D Q Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, P.R. China
- Peng Cheng Laboratory, Vanke Cloud City, Shenzhen, P.R China
| |
Collapse
|
15
|
Khan A, Adil S, Qudsia HA, Waheed Y, Alshabrmi FM, Wei DQ. Structure-based design of promising natural products to inhibit thymidylate kinase from Monkeypox virus and validation using free energy calculations. Comput Biol Med 2023; 158:106797. [PMID: 36966556 PMCID: PMC10029349 DOI: 10.1016/j.compbiomed.2023.106797] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023]
Abstract
Monkeypox (MPXV) is a globally growing public health concern with 80,328 active cases and 53 deaths have been reported. No specific vaccine or drug is available for the treatment of MPXV. Hence, the current study also employed structure-based drug designing, molecular simulation, and free energy calculation methods to identify potential hit molecules against the TMPK of MPXV, which is a replicatory protein that helps the virus to replicate its DNA and increase the number of DNAs in the host cell. The 3D structure of TMPK was modeled with AlphaFold and screening of multiple natural products libraries (4,71,470 compounds) identified TCM26463, TCM2079, and TCM29893 from traditional Chinese medicines database (TCM), SANC00240, SANC00984, and SANC00986 South African natural compounds database (SANCDB), NPC474409, NPC278434 and NPC158847 from NPASS (natural product activity and species source database) while CNP0404204, CNP0262936, and CNP0289137 were shortlisted from coconut database (collection of open natural products) as the best hits. These compounds interact with the key active site residues through hydrogen bonds, salt bridges, and pie-pie interactions. The structural dynamics and binding free energy results further revealed that these compounds possess stable dynamics with excellent binding free energy scores. Moreover, the dissociation constant (KD) and bioactivity analysis revealed stronger activity of these compounds exhibit stronger biological activity against MPXV and may inhibit it in in vitro conditions. All the results demonstrated that the designed novel compounds possess stronger inhibitory activity than the control complex (TPD-TMPK) from the vaccinia virus. The current study is the first to design small molecule inhibitors for the replication protein of MPXV which may help in controlling the current epidemic and also overcome the challenge of vaccine evasion.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Shoaib Adil
- Gujranwala Medical College, Gondlanwala Rd, Gujranwala, Punjab, Pakistan
| | | | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
16
|
Albaqami FF, Altharawi A, Althurwi HN, Alharthy KM, Qasim M, Muhseen ZT, Tahir ul Qamar M. Computational Modeling and Evaluation of Potential mRNA and Peptide-Based Vaccine against Marburg Virus (MARV) to Provide Immune Protection against Hemorrhagic Fever. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5560605. [PMID: 37101690 PMCID: PMC10125739 DOI: 10.1155/2023/5560605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 04/28/2023]
Abstract
A hemorrhagic fever caused by the Marburg virus (MARV) belongs to the Filoviridae family and has been classified as a risk group 4 pathogen. To this day, there are no approved effective vaccinations or medications available to prevent or treat MARV infections. Reverse vaccinology-based approach was formulated to prioritize B and T cell epitopes utilizing a numerous immunoinformatics tools. Potential epitopes were systematically screened based on various parameters needed for an ideal vaccine such as allergenicity, solubility, and toxicity. The most suitable epitopes capable of inducing immune response were shortlisted. Epitopes with population coverage of 100% and fulfilling set parameters were selected for docking with human leukocyte antigen molecules, and binding affinity of each peptide was analyzed. Finally, 4 CTL and HTL each while 6 B cell 16-mers were used for designing multiepitope subunit (MSV) and mRNA vaccine joined via suitable linkers. Immune simulations were used to validate the constructed vaccine's capacity to induce a robust immune response whereas molecular dynamics simulations were used to confirm epitope-HLA complex stability. Based on these parameter's studies, both the vaccines constructed in this study offer a promising choice against MARV but require further experimental verification. This study provides a rationale point to begin with the development of an efficient vaccine against Marburg virus; however, the findings need further experimental validation to confirm the computational finding of this study.
Collapse
Affiliation(s)
- Faisal F. Albaqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M. Alharthy
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon 51001, Iraq
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| |
Collapse
|
17
|
Immunostimulatory Activity of Cordyceps militaris Fermented with Pediococcus pentosaceus SC11 Isolated from a Salted Small Octopus in Cyclophosphamide-Induced Immunocompromised Mice and Its Inhibitory Activity against SARS-CoV 3CL Protease. Microorganisms 2022; 10:microorganisms10122321. [PMID: 36557573 PMCID: PMC9781638 DOI: 10.3390/microorganisms10122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the immune-enhancing and anti-viral effects of germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus SC11 (GRC-SC11) isolated from a salted small octopus. The cordycepin, β-glucan, and total flavonoid contents increased in GRC after SC11 fermentation. GRC-SC11 inhibits 3CL protease activity in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). GRC-SC11 significantly increased thymus and spleen indices in immunocompromised mice. The rate of splenocyte proliferation was higher in GRC-SC11-treated immunocompromised mice than that in GRC-treated immunocompromised mice in the presence or absence of concanavalin A. In addition, GRC-SC11 increased the phagocytic activity and nitric oxide production in immunocompromised mice. The mRNA expression of interferon-gamma (IFN-γ), interferon-alpha (IFN-α), and interferon-stimulated gene 15 (ISG15) was up-regulated in GRC-SC11 treated RAW 264.7 macrophages, compared to GRC. Our study indicates that GRC-SC11 might be a potential therapeutic agent for immunocompromised patients who are vulnerable to SARS-CoV infection.
Collapse
|
18
|
Sayed DSE, Abdelrehim ESM. Spectroscopic details on the molecular structure of pyrimidine‑2‑thiones heterocyclic compounds: computational and antiviral activity against the main protease enzyme of SARS-CoV-2. BMC Chem 2022; 16:82. [PMID: 36324115 PMCID: PMC9628048 DOI: 10.1186/s13065-022-00881-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Computational tools in investigating of spectral heterocyclic compounds ranges based on pyrimidine‑2‑thiones, take some importance in identifying their molecular and electronic behavior. Some charcoal heterocyclic compounds were previously synthesized in our laboratory and their experimental results were compared with the computational evaluation. Computational spectroscopic analytical items (IR, NMR and UV–Vis) were calculated using the more popular DFT methods and the predicted results were compared with the reported experimental ones. Quantum and chemical parameters were calculated and molecular electrostatic surface potential (MEP) was studied which predicted the highly electronic sites around the compounds. Some molecular properties (ionization energy, electron affinity, energy gap, hardness, electronegativity, electrophilicity index, static dipole moment and average linear polarizability) of these Schiff bases which were computed at B3LYP/6-31G(d,p) level in aqueous phase. Benchmark analysis was performed for three ab initio functionals such B3LYP, BPV86 and B3PW91 methods to explain the data resulted from NMR spectra. The docking study of some selected previously synthesized compounds was performed using the viral Mpro enzyme protein in compared to a k36 reference ligand inhibitor. The study indicated the ability of the synthesized compounds to form H-bond and hydrophobic (VDW, π-alkyl and π-sulfur) interactions with Mpro enzyme receptor with high inhibition effect of compound L2.
Collapse
Affiliation(s)
- Doaa S El Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | | |
Collapse
|
19
|
Doshi S, Chepuri SP. A computational approach to drug repurposing using graph neural networks. Comput Biol Med 2022; 150:105992. [PMID: 36228466 PMCID: PMC9429273 DOI: 10.1016/j.compbiomed.2022.105992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
Drug repurposing is an approach to identify new medical indications of approved drugs. This work presents a graph neural network drug repurposing model, which we refer to as GDRnet, to efficiently screen a large database of approved drugs and predict the possible treatment for novel diseases. We pose drug repurposing as a link prediction problem in a multi-layered heterogeneous network with about 1.4 million edges capturing complex interactions between nearly 42,000 nodes representing drugs, diseases, genes, and human anatomies. GDRnet has an encoder-decoder architecture, which is trained in an end-to-end manner to generate scores for drug-disease pairs under test. We demonstrate the efficacy of the proposed model on real datasets as compared to other state-of-the-art baseline methods. For a majority of the diseases, GDRnet ranks the actual treatment drug in the top 15. Furthermore, we apply GDRnet on a coronavirus disease (COVID-19) dataset and show that many drugs from the predicted list are being studied for their efficacy against the disease.
Collapse
|
20
|
Dey R, Samadder A, Nandi S. Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Curr Top Med Chem 2022; 22:2410-2434. [PMID: 36281864 DOI: 10.2174/1568026623666221020163831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 01/20/2023]
Abstract
There is a need to explore natural compounds against COVID-19 due to their multitargeted actions against various targets of nCoV. They act on multiple sites rather than single targets against several diseases. Thus, there is a possibility that natural resources can be repurposed to combat COVID-19. However, the biochemical mechanisms of these inhibitors were not known. To reveal the mode of anti-nCoV action, structure-based docking plays a major role. The present study is an attempt to explore various potential targets of SARS-CoV-2 and the structure-based screening of various potential natural inhibitors to combat the novel coronavirus.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
21
|
Guo L, Zafar F, Moeen N, Alshabrmi FM, Lin J, Ali SS, Munir M, Khan A, Wei D. Ultra-Large-Scale Screening of Natural Compounds and Free Energy Calculations Revealed Potential Inhibitors for the Receptor-Binding Domain (RBD) of SARS-CoV-2. Molecules 2022; 27:7317. [PMID: 36364143 PMCID: PMC9656483 DOI: 10.3390/molecules27217317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2023] Open
Abstract
The emergence of immune-evading variants of SARS-CoV-2 further aggravated the ongoing pandemic. Despite the deployments of various vaccines, the acquired mutations are capable of escaping both natural and vaccine-induced immune responses. Therefore, further investigation is needed to design a decisive pharmacological treatment that could efficiently block the entry of this virus into cells. Hence, the current study used structure-based methods to target the RBD of the recombinant variant (Deltacron) of SARS-CoV-2, which was used as a model variant. From the virtual drug screenings of various databases, a total of four hits were identified as potential lead molecules. Key residues were blocked by these molecules with favorable structural dynamic features. The binding free energies further validated the potentials of these molecules. The TBE for MNP was calculated to be -32.86 ± 0.10 kcal/mol, for SANC00222 the TBE was -23.41 ± 0.15 kcal/mol, for Liriodenine the TBE was -34.29 ± 0.07 kcal/mol, while for Carviolin the TBE was calculated to be -27.67 ± 0.12 kcal/mol. Moreover, each complex demonstrated distinct internal motion and a free energy profile, indicating a different strategy for the interaction with and inhibition of the RBD. In conclusion, the current study demands further in vivo and in vitro validation for the possible usage of these compounds as potential drugs against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Lisha Guo
- Zhongjing Chinese Medicine College, Nanyang Institute of Technology, 80 Changjiang Road, Nanyang 473004, China
| | - Faryar Zafar
- Nishtar Medical University, Multan 59341, Pakistan
| | - Nawal Moeen
- Nawaz Sharif Medical College, Gujrat 50700, Pakistan
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Junqi Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
| | - Dongqing Wei
- Division of Biomedical and Life Sciences, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
22
|
Althurwi HN, Alharthy KM, Albaqami FF, Altharawi A, Javed MR, Muhseen ZT, Tahir ul Qamar M. mRNA-Based Vaccine Designing against Epstein-Barr Virus to Induce an Immune Response Using Immunoinformatic and Molecular Modelling Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13054. [PMID: 36293632 PMCID: PMC9602923 DOI: 10.3390/ijerph192013054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Epstein-Barr Virus (EBV) is a human pathogen that has a morbidity rate of 90% in adults worldwide. Infectious mononucleosis is caused by EBV replication in B cells and epithelial cells of the host. EBV has also been related to autoimmune illnesses, including multiple sclerosis and cancers like nasopharyngeal carcinomas and Burkitt's lymphoma. Currently, no effective medications or vaccinations are available to treat or prevent EBV infection. Thus, the current study focuses on a bioinformatics approach to design an mRNA-based multi-epitope (MEV) vaccine to prevent EBV infections. For this purpose, we selected six antigenic proteins from the EBV proteome based on their role in pathogenicity to predict, extract, and analyze T and B cell epitopes using immunoinformatics tools. The epitopes were directed through filtering parameters including allergenicity, toxicity, antigenicity, solubility, and immunogenicity assessment, and finally, the most potent epitopes able to induce T and B cell immune response were selected. In silico molecular docking of prioritized T cell peptides with respective Human Leukocytes Antigens molecules, were carried out to evaluate the individual peptide's binding affinity. Six CTL, four HTL, and ten linear B cell epitopes fulfilled the set parameters and were selected for MEV-based mRNA vaccine. The prioritized epitopes were joined using suitable linkers to improve epitope presentation. The immune simulation results affirmed the designed vaccine's capacity to elicit a proper immune response. The MEV-based mRNA vaccine constructed in this study offers a promising choice for a potent vaccine against EBV.
Collapse
Affiliation(s)
- Hassan N. Althurwi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah 51001, Babylon, Iraq
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| |
Collapse
|
23
|
deAndrés-Galiana EJ, Fernández-Martínez JL, Álvarez-Machancoses Ó, Bea G, Galmarini CM, Kloczkowski A. Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19. Comput Biol Med 2022; 149:106029. [PMID: 36067633 PMCID: PMC9423878 DOI: 10.1016/j.compbiomed.2022.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/08/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND To understand the transcriptomic response to SARS-CoV-2 infection, is of the utmost importance to design diagnostic tools predicting the severity of the infection. METHODS We have performed a deep sampling analysis of the viral transcriptomic data oriented towards drug repositioning. Using different samplers, the basic principle of this methodology the biological invariance, which means that the pathways altered by the disease, should be independent on the algorithm used to unravel them. RESULTS The transcriptomic analysis of the altered pathways, reveals a distinctive inflammatory response and potential side effects of infection. The virus replication causes, in some cases, acute respiratory distress syndrome in the lungs, and affects other organs such as heart, brain, and kidneys. Therefore, the repositioned drugs to fight COVID-19 should, not only target the interferon signalling pathway and the control of the inflammation, but also the altered genetic pathways related to the side effects of infection. We also show via Principal Component Analysis that the transcriptome signatures are different from influenza and RSV. The gene COL1A1, which controls collagen production, seems to play a key/vital role in the regulation of the immune system. Additionally, other small-scale signature genes appear to be involved in the development of other COVID-19 comorbidities. CONCLUSIONS Transcriptome-based drug repositioning offers possible fast-track antiviral therapy for COVID-19 patients. It calls for additional clinical studies using FDA approved drugs for patients with increased susceptibility to infection and with serious medical complications.
Collapse
Affiliation(s)
- Enrique J deAndrés-Galiana
- Group of Inverse Problems, Optimization and Machine Learning. Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain; Department of Computer Science, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain.
| | - Juan Luis Fernández-Martínez
- Group of Inverse Problems, Optimization and Machine Learning. Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain; DeepBioInsights, Spain.
| | - Óscar Álvarez-Machancoses
- Group of Inverse Problems, Optimization and Machine Learning. Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain.
| | - Guillermina Bea
- Group of Inverse Problems, Optimization and Machine Learning. Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain; DeepBioInsights, Spain.
| | - Carlos M Galmarini
- Topazium Artificial Intelligence, Paseo de la Castellana 40, 28046, Madrid, Spain.
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Negru PA, Miculas DC, Behl T, Bungau AF, Marin RC, Bungau SG. Virtual screening of substances used in the treatment of SARS-CoV-2 infection and analysis of compounds with known action on structurally similar proteins from other viruses. Biomed Pharmacother 2022; 153:113432. [PMID: 36076487 PMCID: PMC9289048 DOI: 10.1016/j.biopha.2022.113432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is considered the etiological agent of the disease that caused the COVID-19 pandemic, and for which there is currently no effective treatment. This pandemic has shown that the rapid identification of therapeutic compounds is critical (when a new virus with high transmissibility occurs) to prevent or reduce as much as possible the loss of human lives. To meet the urgent need for drugs, many strategies were applied for the discovery, respectively the identification of potential therapies / drugs for SARS-CoV-2. Molecular docking and virtual screening are two of the in silico tools/techniques that provided the identification of few SARS-CoV-2 inhibitors, removing ineffective or less effective drugs and thus preventing the loss of resources such as time and additional costs. The main target of this review is to provide a comprehensive overview of how in-silico tools have been used in the crisis management of anti-SARS-CoV-2 drugs, especially in virtual screening of substances used in the treatment of SARS-CoV-2 infection and analysis of compounds with known action on structurally similar proteins from other viruses; also, completions were added to the way in which these methods came to meet the requirements of biomedical research in the field. Moreover, the importance and impact of the topic approached for researchers was highlighted by conducting an extensive bibliometric analysis.
Collapse
Affiliation(s)
- Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Denisa Claudia Miculas
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Alexa Florina Bungau
- Medicine Programm of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ruxandra-Cristina Marin
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
26
|
Search for Novel Potent Inhibitors of the SARS-CoV-2 Papain-like Enzyme: A Computational Biochemistry Approach. Pharmaceuticals (Basel) 2022; 15:ph15080986. [PMID: 36015134 PMCID: PMC9414997 DOI: 10.3390/ph15080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid emergence and spread of new variants of coronavirus type 2, as well as the emergence of zoonotic viruses, highlights the need for methodologies that contribute to the search for new pharmacological treatments. In the present work, we searched for new SARS-CoV-2 papain-like protease inhibitors in the PubChem database, which has more than 100 million compounds. Based on the ligand efficacy index obtained by molecular docking, 500 compounds with higher affinity than another experimentally tested inhibitor were selected. Finally, the seven compounds with ADME parameters within the acceptable range for such a drug were selected. Next, molecular dynamics simulation studies at 200 ns, ΔG calculations using molecular mechanics with generalized Born and surface solvation, and quantum mechanical calculations were performed with the selected compounds. Using this in silico protocol, seven papain-like protease inhibitors are proposed: three compounds with similar free energy (D28, D04, and D59) and three compounds with higher binding free energy (D60, D99, and D06) than the experimentally tested inhibitor, plus one compound (D24) that could bind to the ubiquitin-binding region and reduce the effect on the host immune system. The proposed compounds could be used in in vitro assays, and the described protocol could be used for smart drug design.
Collapse
|
27
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Shahab M, Hayat C, Sikandar R, Zheng G, Akter S. In silico designing of a multi-epitope vaccine against Burkholderia pseudomallei: reverse vaccinology and immunoinformatics. J Genet Eng Biotechnol 2022; 20:100. [PMID: 35821357 PMCID: PMC9275536 DOI: 10.1186/s43141-022-00379-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Burkholderia pseudomallei is an infectious agent causing severe disease melioidosis resulting in pneumonia, fever, and acute septicemia in humans. B. pseudomallei show resistance to drugs. No such FDA-approved vaccine is available against B. pseudomallei, and treatment is limited to therapy. Therefore, the scientific study was designed to develop a vaccine for B. pseudomallei. The protein sequence of B. pseudomallei was retrieved from NCBI. B-cell and T-cell epitopes were identified and further screened for allergenicity, antigenicity docking, and simulation. RESULTS Here, in this study, in silico approach was applied to design a multi-epitope subunit vaccine peptide consisting of linear B-cell and T-cell epitopes of proteins considered to be potential novel vaccine candidates. Peptide epitopes were joined by adjuvant and EAAAK, CPGPG, and AAY linkers. This constructed vaccine was subjected to in silico immune simulations by C-ImmSim. The protein construct was cloned into PET28a (+) vector for expression study in Escherichia coli using SnapGene. CONCLUSION The designed multi-epitope vaccine was analyzed for its physicochemical, structural, and immunological characteristics, and it was found to be antigenic, soluble, stable, nonallergenic, and have a high affinity to its target receptor. The immune simulation studies were carried out on the C-ImmSim showing increased production of cellular and humoral responses indicating that the constructed vaccine proved effective and able to provoke humoral and cell-mediated response immune responses. In silico study could be a breakthrough in designing effective vaccines to eradicate B. pseudomallei globally.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chandni Hayat
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Ramin Sikandar
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh.
| |
Collapse
|
29
|
Naman ZT, Kadhim S, Al-Isawi ZJK, Butch CJ, Muhseen ZT. Computational Investigations of Traditional Chinese Medicinal Compounds against the Omicron Variant of SARS-CoV-2 to Rescue the Host Immune System. Pharmaceuticals (Basel) 2022; 15:ph15060741. [PMID: 35745660 PMCID: PMC9227372 DOI: 10.3390/ph15060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Macrodomain-I of the NSP3 (non-structural protein 3) is responsible for immune response hijacking in the SARS-CoV-2 infection known as COVID-19. In the omicron variant (B.1.1.529), this domain harbors a new mutation, V1069I, which may increase the binding of ADPr and consequently the infection severity. This macrodomain-I, due to its significant role in infection, is deemed to be an important drug target. Hence, using structural bioinformatics and molecular simulation approaches, we performed a virtual screening of the traditional Chinese medicines (TCM) database for potential anti-viral drugs. The screening of 57,000 compounds yielded the 10 best compounds with docking scores better than the control ADPr. Among the top ten, the best three hits—TCM42798, with a docking score of −13.70 kcal/mol, TCM47007 of −13.25 kcal/mol, and TCM30675 of −12.49 kcal/mol—were chosen as the best hits. Structural dynamic features were explored including stability, compactness, flexibility, and hydrogen bonding, further demonstrating the anti-viral potential of these hits. Using the MM/GBSA approach, the total binding free energy for each complex was reported to be −69.78 kcal/mol, −50.11 kcal/mol, and −47.64 kcal/mol, respectively, which consequently reflect the stronger binding and inhibitory potential of these compounds. These agents might suppress NSP3 directly, allowing the host immune system to recuperate. The current study lays the groundwork for the development of new drugs to combat SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Ziad Tareq Naman
- Department of Medical Laboratory Techniques, Al-Ma’Moon University College, Aladhamia, Baghdad 72029, Iraq;
| | - Salim Kadhim
- College of Pharmacy, University of Alkafeel, Najaf 61001, Iraq;
| | - Zahraa J. K. Al-Isawi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Kufa, Najaf 61001, Iraq;
| | - Christopher J. Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
- Correspondence: (C.J.B.); (Z.T.M.)
| | - Ziyad Tariq Muhseen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon 51001, Iraq
- Correspondence: (C.J.B.); (Z.T.M.)
| |
Collapse
|
30
|
Singh K, Coopoosamy RM, Gumede NJ, Sabiu S. Computational Insights and In Vitro Validation of Antibacterial Potential of Shikimate Pathway-Derived Phenolic Acids as NorA Efflux Pump Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082601. [PMID: 35458799 PMCID: PMC9031328 DOI: 10.3390/molecules27082601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
The expression of the efflux pump systems is the most important mechanism of antibiotic resistance in bacteria, as it contributes to reduced concentration and the subsequent inactivity of administered antibiotics. NorA is one of the most studied antibacterial targets used as a model for efflux-mediated resistance. The present study evaluated shikimate pathway-derived phenolic acids against NorA (PDB ID: 1PW4) as a druggable target in antibacterial therapy using in silico modelling and in vitro methods. Of the 22 compounds evaluated, sinapic acid (−9.0 kcal/mol) and p-coumaric acid (−6.3 kcal/mol) had the best and most prominent affinity for NorA relative to ciprofloxacin, a reference standard (−4.9 kcal/mol). A further probe into the structural stability and flexibility of the resulting NorA-phenolic acids complexes through molecular dynamic simulations over a 100 ns period revealed p-coumaric acid as the best inhibitor of NorA relative to the reference standard. In addition, both phenolic acids formed H-bonds with TYR 76, a crucial residue implicated in NorA efflux pump inhibition. Furthermore, the phenolic acids demonstrated favourable drug likeliness and conformed to Lipinski’s rule of five for ADME properties. For the in vitro evaluation, the phenolic acids had MIC values in the range 31.2 to 62.5 μg/mL against S. aureus, and E. coli, and there was an overall reduction in MIC following their combination with ciprofloxacin. Taken together, the findings from both the in silico and in vitro evaluations in this study have demonstrated high affinity of p-coumaric acid towards NorA and could be suggestive of its exploration as a novel NorA efflux pump inhibitor.
Collapse
Affiliation(s)
- Karishma Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
| | - Roger M. Coopoosamy
- Department of Nature Conservation, Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa;
| | - Njabulo J. Gumede
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa;
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
- Correspondence:
| |
Collapse
|
31
|
Molecular Docking as a Potential Approach in Repurposing Drugs Against COVID-19: a Systematic Review and Novel Pharmacophore Models. CURRENT PHARMACOLOGY REPORTS 2022; 8:212-226. [PMID: 35381996 PMCID: PMC8970976 DOI: 10.1007/s40495-022-00285-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Purpose of Review This article provides a review of the recent literature related to the FDA-approved drugs that had been repurposed as potential drug candidates against COVID-19. Moreover, we performed a quality pharmacophore study for frequently studied targets, namely, the main protease, RNA-dependent RNA polymerase, and spike protein. Recent Findings Ever since the COVID-19 pandemic, the whole spectrum of scientific community is still unable to invent an absolute therapeutic agent for COVID-19. Considering such a fact, drug repurposing strategies seem a truly viable approach to develop novel therapeutic interventions. Summery Drug repurposing explores previously approved drugs of known safety and pharmacokinetics profile for possible new effects, reducing the cost, time, and predicting prospective side effects and drug interactions. COVID-19 virulent machinery appeared similar to other viruses, making antiviral agents widely repurposed in pursuit for curative candidates. Our main protease pharmacophoric study revealed multiple features and could be a probable starting point for upcoming research.
Collapse
|
32
|
Chen K, Krischuns T, Varga L, Harigua-Souiai E, Paisant S, Zettor A, Chiaravalli J, Delpal A, Courtney D, O'Brien A, Baker S, Decroly E, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. Antiviral Res 2022; 201:105272. [PMID: 35278581 PMCID: PMC8906008 DOI: 10.1016/j.antiviral.2022.105272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
Effective drugs against SARS-CoV-2 are urgently needed to treat severe cases of infection and for prophylactic use. The main viral protease (nsp5 or 3CLpro) represents an attractive and possibly broad-spectrum target for drug development as it is essential to the virus life cycle and highly conserved among betacoronaviruses. Sensitive and efficient high-throughput screening methods are key for drug discovery. Here we report the development of a gain-of-signal, highly sensitive cell-based luciferase assay to monitor SARS-CoV-2 nsp5 activity and show that it is suitable for the screening of compounds in a 384-well format. A benefit of miniaturisation and automation is that screening can be performed in parallel on a wild-type and a catalytically inactive nsp5, which improves the selectivity of the assay. We performed molecular docking-based screening on a set of 14,468 compounds from an in-house chemical database, selected 359 candidate nsp5 inhibitors and tested them experimentally. We identified two molecules which show anti-nsp5 activity, both in our cell-based assay and in vitro on purified nsp5 protein, and inhibit SARS-CoV-2 replication in A549-ACE2 cells with EC50 values in the 4–8 μM range. The here described high-throughput-compatible assay will allow the screening of large-scale compound libraries for SARS-CoV-2 nsp5 inhibitors. Moreover, we provide evidence that this assay can be adapted to other coronaviruses and viruses which rely on a viral protease.
Collapse
|
33
|
In Silico study for acyclovir, ganciclovir and its derivatives to fight the COVID-19: Molecular docking, DFT calculations, ADME and td-Molecular dynamics simulations. J INDIAN CHEM SOC 2022. [PMCID: PMC8931996 DOI: 10.1016/j.jics.2022.100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present work, we have designed three molecules, acyclovir (A), ganciclovir (G) and derivative of hydroxymethyl derivative of ganciclovir (CH2OH of G, that is D) and investigated their biological potential against the Mpro of nCoV via in silico studies. Further, density functional theory (DFT) calculations of A, G and D were performed using Gaussian 16 on applying B3LYP under default condition to collect the information for the delocalization of electron density in their optimized geometry. Authors have also calculated various energies including free energy of A, G and D in Hartree per particle. It can be seen that D has the least free energy. As mentioned, the molecular docking of the A, G and D against the Mpro of nCoV was performed using iGemdock, an acceptable computational tool and the interaction has been studied in the form of physical data, that is, binding energy for A, G and D were calculated in kcal/mol. It can be seen the D showed effective binding, that is, maximum inhibition that A and G. For a better understanding for the inhibition of the Mpro of nCoV by A, G and D, temperature dependent molecular dynamics simulations were performed. Different trajectories like RMSD, RMSF, Rg and hydrogen bond were extracted and analyzed. The results of molecular docking of A, G and D corroborate with the td-MD simulations and hypothesized that D could be a promising candidate to inhibit the activity of Mpro of nCoV.
Collapse
|
34
|
Hakami AR. Targeting the RBD of Omicron Variant (B.1.1.529) with Medicinal Phytocompounds to Abrogate the Binding of Spike Glycoprotein with the hACE2 Using Computational Molecular Search and Simulation Approach. BIOLOGY 2022; 11:258. [PMID: 35205124 PMCID: PMC8869371 DOI: 10.3390/biology11020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to inflict chaos globally. The emergence of a novel Omicron variant (B.1.1.529) in South Africa harbors 30 mutations in the spike protein. The variant is distinguished from other variants of concern (VOCs) with an increased (15) number of mutations in the receptor-binding domain (RBD) and suggests higher chances of causing reinfections. Initial reports also claimed that this variant escapes all the neutralizing antibodies, thus demanding a novel strategy against it. Thus, in this study, we performed a computational molecular screening against the RBD of the Omicron (B.1.1.529) variant and assessed the binding affinity of potent drugs against the RBD. The multi-steps screening of the South African Natural Compounds Database (SANCDB) revealed four medicinal compounds as excellent (potential) anti-viral agents against the Omicron variant, namely SANC00944, SANC01032, SANC00992, and SANC00317. The simulation analysis of these compounds in complex with the RBD demonstrated stable dynamics and structural compactness. Moreover, the residual flexibility analysis revealed that the flexibility of three loops required for interaction with hACE2 has been reduced by the binding of these drugs. The post-simulation validation of these compounds such as binding free energy, in silico bioactivity, and dissociation constant prediction validated the anti-viral potency of these compounds. The total binding free energy (TBFE) for the SANC01032-RBD complex was reported to be -46.54 kcal/mol; for the SANC01032-RBD complex, the TBFE was -41.88 kcal/mol; for the SANC00992-RBD complex the TBFE was -29.05 kcal/mol, while for the SANC00317-RBD complex the TBFE was -31.03 kcal/mol. The results showed the inhibition potential of these compounds by targeting the RBD. In conclusion, this study will help in the design and discovery of novel drug therapeutics, which may be used against the emerging Omicron variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Abdulrahim R Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| |
Collapse
|
35
|
Cayona R, Creencia E. Phytochemicals of Euphorbia hirta L. and Their Inhibitory Potential Against SARS-CoV-2 Main Protease. Front Mol Biosci 2022; 8:801401. [PMID: 35187071 PMCID: PMC8855059 DOI: 10.3389/fmolb.2021.801401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Euphorbia hirta L. is a medicinal plant widely used in the Philippines and across tropical Asia against various diseases, including respiratory disorders. In this study, the phytochemical components of E. hirta were investigated in silico for their potential to inhibit the severe acute respiratory syndrome-coronavirus-2 main protease (SARS-CoV-2 Mpro), a coronavirus disease 2019 (COVID-19) drug target that plays a critical role in the infection process of SARS-CoV-2. Phytochemical mining in tandem with virtual screening (PM-VS) was the strategy implemented in this study, which allows efficient preliminary in silico assessment of the COVID-19 therapeutic potential of the reported phytochemicals from the plant. The main rationale for considering E. hirta in the investigation was its reported efficacy against respiratory disorders. It is very promising to investigate the phytochemicals of E. hirta for their potential efficacy against diseases, such as COVID-19, that also target the respiratory system. A total of 298 E. hirta phytochemicals were comprehensively collected from the scientific literature. One hundred seventy of these phytochemicals were computed through molecular docking and were shown to have comparable or better binding properties (promising inhibitors) toward SARS-CoV-2 Mpro than known in vitro inhibitors. In connection to our previous work considering different medicinal plants, antiviral compounds were also rediscovered from the phytochemical composition of E. hirta. This finding provides additional basis for the potential of the plant (or its phytochemicals) as a COVID-19 therapeutic directly targeting drug targets such as SARS-CoV-2 Mpro and/or addressing respiratory-system-related symptoms. The study also highlights the utility of PM-VS, which can be efficiently implemented in the preliminary steps of drug discovery and development.
Collapse
Affiliation(s)
- Ruel Cayona
- *Correspondence: Ruel Cayona, ; Evelyn Creencia,
| | | |
Collapse
|
36
|
Humayun F, Khan A, Ahmad S, Yuchen W, Wei G, Nizam-Uddin N, Hussain Z, Khan W, Zaman N, Rizwan M, Waseem M, Wei DQ. Abrogation of SARS-CoV-2 interaction with host (NRP1) neuropilin-1 receptor through high-affinity marine natural compounds to curtail the infectivity: A structural-dynamics data. Comput Biol Med 2022; 141:104714. [PMID: 34772509 PMCID: PMC8324387 DOI: 10.1016/j.compbiomed.2021.104714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
The evolution of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants around the globe has made the coronavirus disease 2019 (COVID-19) pandemic more worrisome, pressuring the health care system and resulting in an increased mortality rate. Recent studies recognized neuropilin-1 (NRP1) as a key facilitator in the invasion of the new SARS-CoV-2 into the host cell. Therefore, it is considered an imperative drug target for the treatment of COVID-19. Hence, a thorough analysis was needed to understand the impact and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to identify novel marine natural products which could block this receptor and stop the virus entry. We discovered that the binding affinity of CMNPD10175, CMNPD10017, CMNPD10114, CMNPD10115, CMNPD10020. CMNPD10018, CMNPD10153, CMNPD10149 CMNPD10464 and CMNPD10019 were substantial during the virtual screening (VS). We further explored these compounds by analyzing their absorption, distribution, metabolism, and excretion and toxicity (ADMET) properties and structural-dynamics features. Free energy calculations further established that all the compounds exhibit stronger binding energy for NRP1. Consequently, we hypothesized that these compounds might be the best lead candidates for therapeutic interventions hindering virus binding to the host cell. This study provides a strong impetus to develop novel drugs against the SARS-CoV-2 by targeting NRP1.
Collapse
Affiliation(s)
- Fahad Humayun
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Khyber Pakhtunkhwa, Pakistan.
| | - Wang Yuchen
- Beijing 161 High School, No. 94, Nanheng West Street, Xicheng District, Beijing, PR China.
| | - Guoshen Wei
- Yangpu High School, Yangpu, Shanghai, PR China.
| | - N Nizam-Uddin
- Biomedical Engineering Department, HITEC University, Taxila, Pakistan.
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Wajid Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
37
|
Alatawi EA, Alshabrmi FM. Structural and Dynamic Insights into the W68L, L85P, and T87A Mutations of Mycobacterium tuberculosis Inducing Resistance to Pyrazinamide. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1615. [PMID: 35162636 PMCID: PMC8835092 DOI: 10.3390/ijerph19031615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Abstract
Tuberculosis (TB), the most frequent bacterium-mediated infectious disease caused by Mycobacterium tuberculosis, has been known to infect humans since ancient times. Although TB is common worldwide, the most recent report by the WHO (World Health Organization) listed the three countries of India, China, and Russia with 27%, 14%, and 8% of the global burden of TB, respectively. It has been reported that resistance to TB drugs, particularly by the pncA gene to the pyrazinamide drug due to mutations, significantly affects the effective treatment of TB. Understanding the mechanism of drug resistance using computational methods is of great interest to design effective TB treatment, exploring the structural features with these tools. Thus, keeping in view the importance of these methods, we employed state-of-the-art computational methods to study the mechanism of resistance caused by the W68L, L85P, and T87A mutations recently reported in 2021. We employed a molecular docking approach to predict the binding conformation and studied the dynamic properties of each complex using molecular dynamics simulation approaches. Our analysis revealed that compared to the wildtype, these three mutations altered the binding pattern and reduced the binding affinity. Moreover, the structural dynamic features also showed that these mutations significantly reduced the structural stability and packing, particularly by the W68L and L85P mutations. Moreover, principal component analysis, free energy landscape, and the binding free energy results revealed variation in the protein's motion and the binding energy. The total binding free energy was for the wildtype -9.61 kcal/mol, W68L -7.57 kcal/mol, L85P -6.99 kcal/mol, and T87A -7.77 kcal/mol. Our findings can help to design a structure-based drug against the MDR (multiple drug-resistant) TB.
Collapse
Affiliation(s)
- Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
38
|
Novak J, Potemkin VA. A new glimpse on the active site of SARS-CoV-2 3CLpro, coupled with drug repurposing study. Mol Divers 2022; 26:2631-2645. [PMID: 35001230 PMCID: PMC8743077 DOI: 10.1007/s11030-021-10355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/21/2021] [Indexed: 11/03/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). Its main protease, 3C-like protease (3CLpro), is an attractive target for drug design, due to its importance in virus replication. The analysis of the radial distribution function of 159 3CLpro structures reveals a high similarity index. A study of the catalytic pocket of 3CLpro with bound inhibitors reveals that the influence of the inhibitors is local, perturbing dominantly only residues in the active pocket. A machine learning based model with high predictive ability against SARS-CoV-2 3CLpro is designed and validated. The model is used to perform a drug-repurposing study, with the main aim to identify existing drugs with the highest 3CLpro inhibition power. Among antiviral agents, lopinavir, idoxuridine, paritaprevir, and favipiravir showed the highest inhibition potential. Enzyme - ligand interactions as a key ingredient for successful drug design.
Collapse
Affiliation(s)
- Jurica Novak
- Higher Medical and Biological School, Laboratory of Computational Modeling of Drugs, South Ural State University, Tchaikovsky Str. 20-A, Chelyabinsk, 454080, Russia.
| | - Vladimir A Potemkin
- Higher Medical and Biological School, Laboratory of Computational Modeling of Drugs, South Ural State University, Tchaikovsky Str. 20-A, Chelyabinsk, 454080, Russia
| |
Collapse
|
39
|
Zia SR. Identification of Potential Ligands of the Main Protease of Coronavirus SARS-CoV-2 (2019-nCoV) Using Multimodal Generative Neural-Networks. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2022. [DOI: 10.17721/fujcv10i1p30-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) is posing a global threat to human population. The pandemic caused by novel coronavirus (2019-nCoV), also called as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); first emerged in Wuhan city, Hubei province of China in December 2019. The rapid human to human transmission has caused the contagion to spread world-wide affecting 244,385,444 (244.4 million) people globally causing 4,961,489 (5 million) fatalities dated by 27 October 2021. At present, 6,697,607,393 (6.7 billion) vaccine doses have been administered dated by 27 October 2021, for the prevention of COVID-19 infections. Even so, this critical and threatening situation of pandemic and due to various variants’ emergence, the pandemic control has become challenging; this calls for gigantic efforts to find new potent drug candidates and effective therapeutic approaches against the virulent respiratory disease of COVID-19. In the respiratory morbidities of COVID-19, the functionally crucial drug target for the antiviral treatment could be the main protease/3-chymotrypsin protease (Mpro/3CLpro) enzyme that is primarily involved in viral maturation and replication. In view of this, in the current study I have designed a library of small molecules against the main protease (Mpro) of coronavirus SARS-CoV-2 (2019-nCoV) by using multimodal generative neural-networks. The scaffold-based molecular docking of the series of compounds at the active site of the protein was performed; binding poses of the molecules were evaluated and protein-ligand interaction studies followed by the binding affinity calculations validated the findings. I have identified a number of small promising lead compounds that could serve as potential inhibitors of the main protease (Mpro) enzyme of coronavirus SARS-CoV-2 (2019-nCoV). This study would serve as a step forward in the development of effective antiviral therapeutic agents against the COVID-19.
Collapse
|
40
|
Albutti A. Rescuing the Host Immune System by Targeting the Immune Evasion Complex ORF8-IRF3 in SARS-CoV-2 Infection with Natural Products Using Molecular Modeling Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:112. [PMID: 35010372 PMCID: PMC8750414 DOI: 10.3390/ijerph19010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
The perennial emergence of SARS-CoV-2 and its new variants causing upper respiratory complexities since December 2019 has aggravated the pandemic situation around the world. SARS-CoV-2 encodes several proteins among which ORF8 is a novel factor that is unique to SARS-CoV-2 only and is reported to help the virus in disease severity and immune evasion. ORF8-IRF3 complex induces endoplasmic reticulum stress, thus helps in the evasion of immune response. Consequently, targeting the ORF8-IRF3 complex is considered as a prime target for the discovery of novel drugs against SARS-CoV-2. In this regard, computational methods are of great interest to fast track the identification and development of novel drugs. Virtual screening of South African Natural Compounds Database (SANCDB), followed by docking and molecular dynamics (MD) simulation analysis, were performed to determine novel natural compounds. Computational molecular search and rescoring of the SANCDB database followed by induced-fit docking (IFD) protocol identified Quercetin 3-O-(6″-galloyl)-beta-D-galactopyranoside (SANC00850), Tribuloside (SANC01050), and Rutin (SANC00867) are the best scoring compounds. Structural-dynamic properties assessment revealed that these three compounds have stable dynamics, compactness, and a higher number of hydrogen bonds. For validation, we used MM/GBSA, in silico bioactivity estimation and dissociation constant (KD) approaches, which revealed that these compounds are the more potent inhibitors of the ORF8-IRF3 complex and would rescue the host immune system potentially. These compounds need further in vitro and in vivo validations to be used as therapeutics against SARS-CoV-2 to rescue the host immune system during COVID-19 infection.
Collapse
Affiliation(s)
- Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
41
|
Chen KY, Krischuns T, Ortega Varga L, Harigua-Souiai E, Paisant S, Zettor A, Chiaravalli J, Courtney D, O’Brien A, Baker SC, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.18.473303. [PMID: 34981051 PMCID: PMC8722588 DOI: 10.1101/2021.12.18.473303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Effective drugs against SARS-CoV-2 are urgently needed to treat severe cases of infection and for prophylactic use. The main viral protease (nsp5 or 3CLpro) represents an attractive and possibly broad-spectrum target for drug development as it is essential to the virus life cycle and highly conserved among betacoronaviruses. Sensitive and efficient high-throughput screening methods are key for drug discovery. Here we report the development of a gain-of-signal, highly sensitive cell-based luciferase assay to monitor SARS-CoV-2 nsp5 activity and show that it is suitable for high-throughput screening of compounds in a 384-well format. A benefit of miniaturisation and automation is that screening can be performed in parallel on a wild-type and a catalytically inactive nsp5, which improves the selectivity of the assay. We performed molecular docking-based screening on a set of 14,468 compounds from an in-house chemical database, selected 359 candidate nsp5 inhibitors and tested them experimentally. We identified four molecules, including the broad-spectrum antiviral merimepodib/VX-497, which show anti-nsp5 activity and inhibit SARS-CoV-2 replication in A549-ACE2 cells with IC 50 values in the 4-21 µM range. The here described assay will allow the screening of large-scale compound libraries for SARS-CoV-2 nsp5 inhibitors. Moreover, we provide evidence that this assay can be adapted to other coronaviruses and viruses which rely on a viral protease.
Collapse
Affiliation(s)
- KY Chen
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| | - T Krischuns
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| | - L Ortega Varga
- Structural Bioinformatics Unit, Institut Pasteur, Université de Paris, Paris, France
| | - E Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - S Paisant
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| | - A Zettor
- Chemogenomic and Biological Screening Platform, Institut Pasteur, Université de Paris, Paris, France
| | - J Chiaravalli
- Chemogenomic and Biological Screening Platform, Institut Pasteur, Université de Paris, Paris, France
| | - D Courtney
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| | - A O’Brien
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - SC Baker
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - C Isel
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| | - F Agou
- Chemogenomic and Biological Screening Platform, Institut Pasteur, Université de Paris, Paris, France
| | - Y Jacob
- Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| | - A Blondel
- Structural Bioinformatics Unit, Institut Pasteur, Université de Paris, Paris, France
| | - N Naffakh
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| |
Collapse
|
42
|
Haq AU, Khan A, Khan J, Irum S, Waheed Y, Ahmad S, Nizam-Uddin N, Albutti A, Zaman N, Hussain Z, Ali SS, Waseem M, Kanwal F, Wei DQ, Wang Q. Annotation of Potential Vaccine Targets and Design of a Multi-Epitope Subunit Vaccine against Yersinia pestis through Reverse Vaccinology and Validation through an Agent-Based Modeling Approach. Vaccines (Basel) 2021; 9:1327. [PMID: 34835260 PMCID: PMC8625334 DOI: 10.3390/vaccines9111327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Yersinia pestis is responsible for plague and major pandemics in Asia and Europe. This bacterium has shown resistance to an array of drugs commonly used for the treatment of plague. Therefore, effective therapeutics measurements, such as designing a vaccine that can effectively and safely prevent Y. pestis infection, are of high interest. To fast-track vaccine development against Yersinia pestis, herein, proteome-wide vaccine target annotation was performed, and structural vaccinology-assisted epitopes were predicted. Among the total 3909 proteins, only 5 (rstB, YPO2385, hmuR, flaA1a, and psaB) were shortlisted as essential vaccine targets. These targets were then subjected to multi-epitope vaccine design using different linkers. EAAK, AAY, and GPGPG as linkers were used to link CTL, HTL, and B-cell epitopes, and an adjuvant (beta defensin) was also added at the N-terminal of the MEVC. Physiochemical characterization, such as determination of the instability index, theoretical pI, half-life, aliphatic index, stability profiling, antigenicity, allergenicity, and hydropathy of the ensemble, showed that the vaccine is highly stable, antigenic, and non-allergenic and produces multiple interactions with immune receptors upon docking. In addition, molecular dynamics simulation confirmed the stable binding and good dynamic properties of the vaccine-TLR complex. Furthermore, in silico and immune simulation of the developed MEVC for Y. pestis showed that the vaccine triggered strong immune response after several doses at different intervals. Neutralization of the antigen was observed at the third day of injection. Conclusively, the vaccine designed here for Y. pestis produces an immune response; however, further immunological testing is needed to unveil its real efficacy.
Collapse
Affiliation(s)
- Azaz Ul Haq
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jafar Khan
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Shamaila Irum
- Department of Zoology, University of Gujrat, Punjab 50700, Pakistan;
| | - Yasir Waheed
- Multidisciplinary Department, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - N. Nizam-Uddin
- Biomedical Engineering Department, HITEC University, Taxila 47080, Pakistan;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad 46000, Pakistan;
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Wang
- Department of Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing 210029, China
| |
Collapse
|
43
|
Khan A, Ahsan O, Wei DQ, Ansari JK, Najmi MH, Muhammad K, Waheed Y. Computational Evaluation of Abrogation of HBx-Bcl-xL Complex with High-Affinity Carbon Nanotubes (Fullerene) to Halt the Hepatitis B Virus Replication. Molecules 2021; 26:6433. [PMID: 34770842 PMCID: PMC8587554 DOI: 10.3390/molecules26216433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is the world's most prevalent chronic viral infection. More than 350 million individuals are chronic carriers of the virus, with an estimated 2 billion infected persons. For instance, the role of HBx protein in attachment and infection is very obvious and consequently deemed as an important druggable target. Targeting the interface and discovering novel drugs greatly advanced the field of therapeutics development. Therefore, in the current study, HBx to Bcl-xL is abrogated on high-affinity carbon nanotubes using computational structural biology tools. Our analysis revealed that among the total 62 carbon fullerenes, only 13 compounds exhibited inhibitory activity against HBx, which was further confirmed through IFD-based rescoring. Structural dynamics investigation revealed stable binding, compactness, and hydrogen bonds reprogramming. Moreover, the binding free energy calculation results revealed that the top hits1-4 possess the total binding energy of -54.36 kcal/mol (hit1), -50.81 kcal/mol (hit2), -47.09 kcal/mol (hit3), and -45.59 kcal/mol for hit4. In addition, the predicted KD values and bioactivity scores further validated the inhibitory potential of these top hits. The identified compounds need further in vitro and in vivo validation to aid the treatment process of HBV.
Collapse
Affiliation(s)
- Abbas Khan
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan; (A.K.); (O.A.); (J.K.A.); (M.H.N.)
| | - Omar Ahsan
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan; (A.K.); (O.A.); (J.K.A.); (M.H.N.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Centre on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| | - Jawad Khaliq Ansari
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan; (A.K.); (O.A.); (J.K.A.); (M.H.N.)
| | - Muzammil Hasan Najmi
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan; (A.K.); (O.A.); (J.K.A.); (M.H.N.)
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan; (A.K.); (O.A.); (J.K.A.); (M.H.N.)
| |
Collapse
|
44
|
Khan T, Khan A, Wei DQ. MMV-db: vaccinomics and RNA-based therapeutics database for infectious hemorrhagic fever-causing mammarenaviruses. Database (Oxford) 2021; 2021:baab063. [PMID: 34679165 PMCID: PMC8533362 DOI: 10.1093/database/baab063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
The recent viral outbreaks and the current pandemic situation urges us to timely address any emerging viral infections by designing therapeutic strategies. Multi-omics and therapeutic data are of great interest to develop early remedial interventions. This work provides a therapeutic data platform (Mammarenavirus (MMV)-db) for pathogenic mammarenaviruses with potential catastrophic effects on human health around the world. The database integrates vaccinomics and RNA-based therapeutics data for seven human pathogenic MMVs associated with severe viral hemorrhagic fever and lethality in humans. Protein-specific cytotoxic T lymphocytes, B lymphocytes, helper T-cell and interferon-inducing epitopes were mapped using a cluster of immune-omics-based algorithms and tools for the seven human pathogenic viral species. Furthermore, the physiochemical and antigenic properties were also explored to guide protein-specific multi-epitope subunit vaccine for each species. Moreover, highly efficacious RNAs (small Interfering RNA (siRNA), microRNA and single guide RNA (sgRNA)) after extensive genome-based analysis with therapeutic relevance were explored. All the therapeutic RNAs were further classified and listed on the basis of predicted higher efficacy. The online platform (http://www.mmvdb.dqweilab-sjtu.com/index.php) contains easily accessible data sets and vaccine designs with potential utility in further computational and experimental work. Conclusively, the current study provides a baseline data platform to secure better future therapeutic interventions against the hemorrhagic fever causing mammarenaviruses. Database URL: http://www.mmvdb.dqweilab-sjtu.com/index.php.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, P.R. China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, P.R China
| |
Collapse
|
45
|
Suleman M, ul Qamar MT, Kiran, Rasool S, Rasool A, Albutti A, Alsowayeh N, Alwashmi ASS, Aljasir MA, Ahmad S, Hussain Z, Rizwan M, Ali SS, Khan A, Wei DQ. Immunoinformatics and Immunogenetics-Based Design of Immunogenic Peptides Vaccine against the Emerging Tick-Borne Encephalitis Virus (TBEV) and Its Validation through In Silico Cloning and Immune Simulation. Vaccines (Basel) 2021; 9:1210. [PMID: 34835141 PMCID: PMC8624571 DOI: 10.3390/vaccines9111210] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), belonging to the Flaviviridae family, is transmitted to humans via infected tick bites, leading to serious neurological complications and, in some cases, death. The available vaccines against the TBEV are reported to have low immunogenicity and are associated with adverse effects like swelling, redness and fever. Moreover, these vaccines are whole-organism-based, carry a risk of reactivation and potential for significant mortality. Consequently, to design a potential antigenic and non-allergenic multi-epitope subunit vaccine against the TBEV, we used an immunoinformatic approach to screen the Tick-borne virus proteome for highly antigenic CTL, HTL and B cell epitopes. The proper folding of the constructed vaccine was validated by a molecular dynamic simulation. Additionally, the molecular docking and binding free energy (−87.50 kcal/mol) further confirmed the strong binding affinity of the constructed vaccine with TLR-4. The vaccine exhibited a CAI value of 0.93 and a GC content of 49%, showing a high expression capability in E coli. Moreover, the analysis of immune simulation demonstrated robust immune responses against the injected vaccine and clearance of the antigen with time. In conclusion, our vaccine candidate shows promise for both in vitro and in vivo analyses due to its high immunogenicity, non-allergenicity and stable interaction with the human TLR-4 receptor.
Collapse
Affiliation(s)
- Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan; (M.S.); (Z.H.); (M.R.); (S.S.A.)
| | | | - Kiran
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Samreen Rasool
- Department of Biochemistry, Government College University, Lahore 54000, Pakistan;
| | - Aneela Rasool
- Department of Botany, University of Okara, Okara 56300, Pakistan;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Noorah Alsowayeh
- Department of Biology, College of Education, Majmaah University, Al Majma’ah 15341, Saudi Arabia;
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25120, Pakistan;
| | - Zahid Hussain
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan; (M.S.); (Z.H.); (M.R.); (S.S.A.)
| | - Muhammad Rizwan
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan; (M.S.); (Z.H.); (M.R.); (S.S.A.)
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan; (M.S.); (Z.H.); (M.R.); (S.S.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
46
|
Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. J Mol Graph Model 2021; 110:108042. [PMID: 34653812 PMCID: PMC8491126 DOI: 10.1016/j.jmgm.2021.108042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
We have studied the non-covalent interaction between PF-07321332 and SARS-CoV-2 main protease at the atomic level using a computational approach based on extensive molecular dynamics simulations with explicit solvent. PF-07321332, whose chemical structure has been recently disclosed, is a promising oral antiviral clinical candidate with well-established anti-SARS-CoV-2 activity in vitro. The drug, currently in phase III clinical trials in combination with ritonavir, relies on the electrophilic attack of a nitrile warhead to the catalytic cysteine of the protease. Nonbonded interaction between the inhibitor and the residues of the binding pocket, as well as with water molecules on the protein surface, have been characterized using two different force fields and the two possible protonation states of the main protease catalytic dyad HIS41-CYS145. When the catalytic dyad is in the neutral state, the non-covalent binding is likely to be stronger. Molecular dynamics simulations seems to lend support for an inhibitory mechanism in two steps: a first non-covalent addition with the dyad in neutral form and then the formation of the thiolate-imidazolium ion pair and the ligand relocation for finalising the electrophilic attack.
Collapse
|
47
|
El Khatabi K, El-Mernissi R, Aanouz I, Ajana MA, Lakhlifi T, Khan A, Wei DQ, Bouachrine M. Identification of novel acetylcholinesterase inhibitors through 3D-QSAR, molecular docking, and molecular dynamics simulation targeting Alzheimer's disease. J Mol Model 2021; 27:302. [PMID: 34581863 DOI: 10.1007/s00894-021-04928-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Acetylcholinesterase (AChE) is a potential target for the development of small molecules as inhibitors for the therapy of Alzheimer's disease (AD). To design highly active acetylcholinesterase inhibitors, a three-dimensional quantitative structure-activity relationship (3D-QSAR) approach was performed on a series of N-benzylpyrrolidine derivatives previously evaluated for acetylcholinesterase inhibitory activity. The developed two models, CoMFA and CoMSIA, were statistically validated, and good predictability was achieved for both models. The information generated from 3D-QSAR contour maps may provide a better understanding of the structural features required for acetylcholinesterase inhibition and help to design new potential anti-acetylcholinesterase molecules. Consequently, six novel acetylcholinesterase inhibitors were designed, among which compound A1 with the highest predicted activity was subjected to detailed molecular docking and compared to the most active compound. Extra-precision molecular dynamics (MD) simulation of 50 ns and binding free energy calculations using MM-GBSA were performed for the selected compounds to validate the stability. These results may afford important structural insights needed to identify novel acetylcholinesterase inhibitors and other promising strategies in drug discovery.
Collapse
Affiliation(s)
- Khalil El Khatabi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco.
| | - Reda El-Mernissi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Ilham Aanouz
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center On Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.,Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University of Moulay Ismail, Meknes, Morocco.,EST Khenifra, Sultan Moulay Sliman University, Beni Mellal, Morocco
| |
Collapse
|
48
|
Ahmad N, Ali SS, Ahmad S, Hussain Z, Qasim M, Suleman M, Ali S, Nizam-Uddin N, Khan A, Wei DQ. Computational Modeling of Immune Response Triggering Immunogenic Peptide Vaccine Against the Human Papillomaviruses to Induce Immunity Against Cervical Cancer. Viral Immunol 2021; 34:457-469. [PMID: 33973819 DOI: 10.1089/vim.2020.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Papillomaviruses are placed within the family Papillomaviride, and the members of this family have a double-stranded circular DNA genome. Every year, ∼30% of cancers are reported to be human papillomavirus (HPV) related, which represents 63,000 cancers of all infectious agent-induced cancers. HPV16 and HPV18 are reported to be associated with 70% of cervical cancers. The quest for an effective drug or vaccine candidate still continues. In this study, we aim to design B cell and T cell epitope-based vaccine using the two structural major capsid protein L1 and L2 as well as other three important proteins (E1, E2, and E6) against HPV strain 16 (HPV16). We used a computational pipeline to design a multiepitope subunit vaccine and tested its efficacy using in silico computational modeling approaches. Our analysis revealed that the multiepitope subunit vaccine possesses antigenic properties, and using in silico cloning method revealed proper expression and downstream processing of the vaccine construct. Besides this, we also performed in silico immune simulation to check the immune response upon the injection. Our results strongly suggest that this vaccine candidate should be tested immediately for the immune response against the cervical cancer-causing agent. The safety, efficacy, expression, and immune response profiling makes it the first choice for experimental and in vivo setup.
Collapse
Affiliation(s)
- Namra Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Sajjad Ahmad
- Department of Biological and Health Sciences, Abasyn University, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Muhammad Qasim
- Department of Environmental and Conservation Sciences, University of Swat, Swat, Pakistan
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - N Nizam-Uddin
- Department of Biomedical Engineering, HITEC University, Taxila, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Peng Cheng Laboratory, Shenzhen, P.R China
| |
Collapse
|
49
|
Khan A, Umbreen S, Hameed A, Fatima R, Zahoor U, Babar Z, Waseem M, Hussain Z, Rizwan M, Zaman N, Ali S, Suleman M, Shah A, Ali L, Ali SS, Wei DQ. In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations. Interdiscip Sci 2021; 13:521-534. [PMID: 34324157 PMCID: PMC8319699 DOI: 10.1007/s12539-021-00447-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
The prolific spread of COVID-19 caused by a novel coronavirus (SARS-CoV-2) from its epicenter in Wuhan, China, to every nook and cranny of the world after December 2019, jeopardize the prevailing health system in the world and has raised serious concerns about human safety. Multi-directional efforts are made to design small molecule inhibitors, and vaccines and many other therapeutic options are practiced, but their final therapeutic potential is still to be tested. Using the old drug or vaccine or peptides could aid this process to avoid such long experimental procedures. Hence, here, we have repurposed a small peptide (ATLQAIAS) from the previous study, which reported the inhibitory effects of this peptide. We used in silico mutagenesis approach to design more peptides from the native wild peptide, which revealed that substitutions (T2W, T2Y, L3R, and A5W) could increase the binding affinity of the peptide towards the 3CLpro. Furthermore, using MD simulation and free energy calculation confirmed its dynamics stability and stronger binding affinities. Per-residue energy decomposition analysis revealed that the specified substitution significantly increased the binding affinity at the residue level. Our wide-ranging analyses of binding affinities disclosed that our designed peptide owns the potential to hinder the SARS-CoV-2 and will reduce the progression of SARS-CoV-2-borne pneumonia. Our research strongly suggests the experimental and clinical validation of these peptides to curtail the recent corona outbreak.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shaheena Umbreen
- Department of Botany, University of Okara, Okara, Punjab, Pakistan
| | - Asma Hameed
- Department of Botany, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Jammu & Kashmir, Pakistan
| | - Rida Fatima
- Department of Chemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Ujala Zahoor
- Department of Botany, Women University, Bagh, Azad Jammu & Kashmir, Pakistan
| | - Zainib Babar
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center On Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, People's Republic of China.
| |
Collapse
|
50
|
Manandhar A, Srinivasulu V, Hamad M, Tarazi H, Omar H, Colussi DJ, Gordon J, Childers W, Klein ML, Al-Tel TH, Abou-Gharbia M, Elokely KM. Discovery of Novel Small-Molecule Inhibitors of SARS-CoV-2 Main Protease as Potential Leads for COVID-19 Treatment. J Chem Inf Model 2021; 61:4745-4757. [PMID: 34403259 DOI: 10.1021/acs.jcim.1c00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main protease of SARS-CoV-2 virus, Mpro, is an essential element for viral replication, and inhibitors targeting Mpro are currently being investigated in many drug development programs as a possible treatment for COVID-19. An in vitro pilot screen of a highly focused collection of compounds was initiated to identify new lead scaffolds for Mpro. These efforts identified a number of hits. The most effective of these was compound SIMR-2418 having an inhibitory IC50 value of 20.7 μM. Molecular modeling studies were performed to understand the binding characteristics of the identified compounds. The presence of a cyclohexenone warhead group facilitated covalent binding with the Cys145 residue of Mpro. Our results highlight the challenges of targeting Mpro protease and pave the way toward the discovery of potent lead molecules.
Collapse
Affiliation(s)
- Anjela Manandhar
- Institute for Computational Molecular Science, and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamad Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dennis J Colussi
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - John Gordon
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L Klein
- Institute for Computational Molecular Science, and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Khaled M Elokely
- Institute for Computational Molecular Science, and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.,Department of Pharmaceutical Chemistry, Tanta University, Tanta 31527, Egypt
| |
Collapse
|