1
|
Singh R, Sindhu J, Singh D, Kumar P. Key molecular scaffolds in the development of clinically viable α-amylase inhibitors. Future Med Chem 2025; 17:347-362. [PMID: 39835704 PMCID: PMC11792802 DOI: 10.1080/17568919.2025.2453421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The escalating cases of type II diabetes combined with adverse side effects of current antidiabetic drugs spurred the advancement of innovative approaches for the management of postprandial glucose levels. α-Amylase is an endoamylase responsible for the breakdown of internal α-1,4-glycosidic linkages in dietary starch, producing oligosaccharides. Subsequently, α-glucosidase degraded these oligosaccharides to monosaccharides, which are absorbed into the bloodstream and become available to the body. The inhibitors of α-amylase reduced the digestibility of carbohydrates accompanied by delayed glucose absorption, leading to decreased blood glucose levels after meals and thus, inhibition of the enzyme seems to be a crucial strategy for diabetes management and improving overall glycemic control in diabetic patients. The present review article emphasizes the therapeutic promise of recently discovered potential α-amylase inhibitors, highlighting their in vitro, in silico and in vivo profiles. Ultimately, we addressed the contemporary challenges and potential routes ahead in the search for safe and reliable α-amylase inhibitors for clinical use, summarizing the most recent research in the field.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- School of Chemistry, Indian Institutes of Science Education and Research, Thiruvananthapuram, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
2
|
Dadou S, Altay A, Baydere C, Anouar EH, Türkmenoğlu B, Koudad M, Dege N, Oussaid A, Benchat N, Karrouchi K. Chalcone-based imidazo[2,1- b]thiazole derivatives: synthesis, crystal structure, potent anticancer activity, and computational studies. J Biomol Struct Dyn 2025; 43:261-276. [PMID: 38009853 DOI: 10.1080/07391102.2023.2280756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
In this work, two novel chalcone-based imidazothiazole derivatives ITC-1 and ITC-2 were synthesized and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry with electrospray ionization, and chemical structure of ITC-1 was confirmed by single-crystal X-ray diffraction. Also, the anticancer activity of ITC-1 and ITC-2 was evaluated. First, antiproliferative activity tests were performed against cancer cells namely, human-derived breast adenocarcinoma (MCF-7), lung carcinoma (A-549), and colorectal adenocarcinoma (HT-29) cell lines, and mouse fibroblast healthy cell line (3T3-L1) by XTT assay. Afterward, mitochondrial membrane disruption (MMP), caspase activity, and apoptosis tests were performed on MCF-7 cells to elucidate the anticancer mechanism of action of the test compounds by flow cytometry analysis. XTT results revealed that both compounds exhibited a very high degree of antiproliferative effects on each tested cancer cell line with very low IC50 values while showing much lower antiproliferation on 3T3-L1 normal cells with much higher IC50 values. Besides, ITC-2 was determined to have a striking cytotoxic power competing with the chemotherapeutic drug carboplatin. Flow cytometry results demonstrated the mitochondrial-mediated apoptotic effects of both compounds through membrane disruption and multi-caspase activation in MCF-7 cells. Finally, molecular docking studies were performed to determine the structural understanding of the test compounds by their interactions on caspase-3 and DNA dodecamer enzymes, respectively. The interactions between the compound and the crystal structure were determined according to parameters such as free binding energies (ΔGBind), Glide score values, and determination of the active binding site. The obtained data suggest that ITC-1 and ITC-2 may be considered remarkable anticancer drug candidates. In addition to molecular docking via in silico approaches, the pharmacokinetic properties of compounds ITC-1 and ITC-2 were calculated using the Schrödinger 2021-2 Qikprop wizard.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Said Dadou
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cemile Baydere
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mohammed Koudad
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdelouahad Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Gharge S, Alegaon SG, Ranade SD, Kavalapure RS, Prashantha Kumar BR, Mhaske PC. Expression of PPAR-γ TF by newly synthesized thiazolidine-2,4-diones to manage glycemic control: Insights from in silico, in vitro and experimental pharmacology in wistar rats. Bioorg Chem 2024; 153:107966. [PMID: 39579552 DOI: 10.1016/j.bioorg.2024.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
In pursuit of novel antidiabetic agents to combat type II diabetes mellitus, our study focused on identifying pharmacophoric features responsible for PPAR-γ expression, a key regulator of glucose homeostasis and lipid metabolism. This goal was achieved through pharmacophore model generation and screening of rationally designed library of thiazolidine-2,4-dione hybrids (7a-7f). The top hits were synthesized, characterized, and evaluated for their in vitro and in vivo antidiabetic activities. Among these, compounds 7b and 7c emerged as promising candidates, exhibiting significant in vitro inhibitory activity against human pancreatic α-amylase (HPA) and human liver α-glucosidase (HLAG) enzymes, along with enhanced glucose uptake in L6 myotube cell lines. Specifically, compound 7b showed 29.04 ± 1.13 µM HPA inhibition, 34.21 ± 1.16 µg/mL HLAG inhibition, and 77.12 ± 1.02 % glucose uptake, while compound 7c displayed 28.35 ± 1.01 µM HPA inhibition, 26.21 ± 1.17 µM HLAG inhibition, and 78.54 ± 0.54 % glucose uptake. Mechanistic studies revealed a dose-dependent increase in PPAR-γ transcription factor expression, supported by molecular docking that showed favorable interactions with key residues TYR473, SER289, and HIE323. Molecular dynamics simulations confirmed the stability of these interactions, and MM/GBSA binding free energy calculations indicated potential for further optimization. In vivo studies in STZ-induced diabetic Wistar rats demonstrated significant improvements in glucose homeostasis, insulin sensitivity, and lipid metabolism, with a notable decrease in triglycerides and VLDL levels. Compound 7c also showed an improved pharmacokinetic profile with a half-life of 4.01 h and an elimination rate constant of 0.325, compared to compound 7b. Both compounds enhanced glycogen content and antioxidant biomarkers, with a high safety profile (LD50 of 500 mg/kg). Overall, compound 7c stands out as a promising lead for further development, with compound 7b also showing strong potential, providing valuable insights for future antidiabetic drug development efforts.
Collapse
Affiliation(s)
- Shankar Gharge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research, Belagavi 590 010, Karnataka, India
| | - Shankar G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research, Belagavi 590 010, Karnataka, India.
| | - Shriram D Ranade
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research, Belagavi 590 010, Karnataka, India
| | - Rohini S Kavalapure
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research, Belagavi 590 010, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Pravin C Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, affiliated to Savitribai Phule Pune University, Pune 411 030, India
| |
Collapse
|
4
|
Rouzi K, Mortada S, Hassan M, Alsalme A, Kloczkowski A, Karbane ME, Bouatia M, Faouzi MEA, Karrouchi K. Novel 3,5‐Dimethylpyrazole‐Linked 1,2,4‐Triazole‐3‐thiols as Potent Antihyperglycemic Agents: Synthesis, Biological Evaluation, and In Silico Molecular Modelling Investigations. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202403661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 01/04/2025]
Abstract
AbstractIn this work, a series of pyrazole‐linked 1,2,4‐triazole‐3‐thiol derivatives (3a–i) were prepared and identified by 13C NMR, 1H NMR, and mass spectrometry (ESI‐MS) data. The newly synthesized molecules were also evaluated in vitro for their α‐amylase and α‐glucosidase inhibitory potential. All newly synthesized compounds exhibited potent α‐glucosidase inhibition activity with IC50 in the range of 1.016 ± 0.70 to 24.40 ± 0.02 µM and good α‐amylase inhibitory with IC50 in the range of 49.91 ± 0.32 to 500 µM, as compared to acarbose. The most potent compound among this series is derivative 3e, with IC50 value of 1.016 ± 0.70 µM, which is many folds more than that of acarbose. In addition, in docking studies, both compounds exhibited good interactions at the active region of target proteins. Therefore, this study may lead via structural modifications to the discovery of new potent α‐amylase and α‐glucosidase inhibitors useful in the diabetes treatment.
Collapse
Affiliation(s)
- Khouloud Rouzi
- Laboratory of Analytical Chemistry and Bromatology Team of Formulation and Quality Control of Health Products Faculty of Medicine and Pharmacy Mohammed V University in Rabat Rabat Morocco
| | - Salma Mortada
- Laboratory of Pharmacology and Toxicology Faculty of Medicine and Pharmacy University Mohammed V in Rabat Rabat Morocco
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital Columbus Ohio 43205 USA
| | - Ali Alsalme
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | | | - Miloud El Karbane
- Laboratory of Analytical Chemistry and Bromatology Team of Formulation and Quality Control of Health Products Faculty of Medicine and Pharmacy Mohammed V University in Rabat Rabat Morocco
| | - Mustapha Bouatia
- Laboratory of Analytical Chemistry and Bromatology Team of Formulation and Quality Control of Health Products Faculty of Medicine and Pharmacy Mohammed V University in Rabat Rabat Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology Faculty of Medicine and Pharmacy University Mohammed V in Rabat Rabat Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology Team of Formulation and Quality Control of Health Products Faculty of Medicine and Pharmacy Mohammed V University in Rabat Rabat Morocco
| |
Collapse
|
5
|
Aghahosseini F, Bayat M, Sadeghian Z, Gheidari D, Safari F. Synthesis, molecular docking study, MD simulation, ADMET, and drug likeness of new thiazolo[3,2-a]pyridine-6,8-dicarbonitrile derivatives as potential anti-diabetic agents. PLoS One 2024; 19:e0306973. [PMID: 39264974 PMCID: PMC11392235 DOI: 10.1371/journal.pone.0306973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 09/14/2024] Open
Abstract
There are numerous uses for the pharmacological effects of thiazolo-pyridine and its derivatives. The main objective of the study was to synthesis 10 novel derivatives of thiazolo[3,2-a] pyridine-6,8-dicarbonitrile with a 22-78% yield, with a focus on their potential anti-diabetic properties. We investigated the interactions between these compounds and the enzyme α-amylase through an in silico study involving molecular docking. According to the docking analysis results, the resulting compounds had advantageous inhibitory properties. With a docking score of -7.43 kcal/mol against the target protein, compound 4e performed best. The stability root-mean-square deviation (RMSD) showed that the complex stabilizes after 25 ns and with minor perturbation at 80. The RMSF values of the ligand-protein complex indicate that the following residues have interacted with compound 4e during the MD simulation: Trp58, Trp59, Tyr62, Gln63, His101, Val107, lle148, Asn152, Leu162, Thr163, Gly164, Leu165, Asp197, Ala198, Asp 236, Leu237, His299, Asp300, and His305. Moreover, the pharmacokinetic and drug-like properties of the synthesized derivatives of 2-arylamino-dihydroindeno[1,2-b] pyrrol-4(1H)-one suggest that they have the potential to be effective inhibitors of α-amylase and should be considered for further research. Nevertheless, it is crucial to ascertain the in vivo and in vitro effectiveness of these compounds through biochemical and structural investigations.
Collapse
Affiliation(s)
- Fatemeh Aghahosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Zahra Sadeghian
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Davood Gheidari
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
6
|
Singh G, Singh R, Monga V, Mehan S. Thiazolidine-2,4-dione hybrids as dual alpha-amylase and alpha-glucosidase inhibitors: design, synthesis, in vitro and in vivo anti-diabetic evaluation. RSC Med Chem 2024; 15:2826-2854. [PMID: 39149094 PMCID: PMC11324062 DOI: 10.1039/d4md00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Twelve 3,5-disubstituted-thiazolidine-2,4-dione (TZD) hybrids were synthesized using solution phase chemistry. Continuing our previous work, nine O-modified ethyl vanillin (8a-i) derivatives were synthesized and reacted with the TZD core via Knoevenagel condensation under primary reaction conditions to obtain final derivatives 9a-i. Additionally, three isatin-TZD hybrids (11a-c) were synthesized. The intermediates and final derivatives were characterized using 1H and 13C NMR spectroscopy, and the observed chemical shifts agreed with the proposed structures. The in vitro alpha-amylase and alpha-glucosidase inhibitory evaluation of newly synthesized derivatives revealed compounds 9F and 9G as the best dual inhibitors, with IC50 values of 9.8 ± 0.047 μM for alpha-glucosidase (9F) and 5.15 ± 0.0017 μM for alpha-glucosidase (9G), 17.10 ± 0.015 μM for alpha-amylase (9F), and 9.2 ± 0.092 μM for alpha-amylase (9G). The docking analysis of synthesized compounds indicated that compounds have a higher binding affinity for alpha-glucosidase as compared to alpha-amylase, as seen from docking scores ranging from -1.202 to -5.467 (for alpha-amylase) and -4.373 to -7.300 (for alpha-glucosidase). Further, the molecules possess a high LD50 value, typically ranging from 1000 to 1600 mg kg-1 of body weight, and exhibit non-toxic properties. The in vitro cytotoxicity assay results on PANC-1 and INS-1 cells demonstrated that the compounds were devoid of significant toxicity against the tested cells. Compounds 9F and 9G showed high oral absorption, i.e., oral absorption >96%, and their molecular dynamics simulation yielded results closely aligned with the observed docking outcomes. Finally, compounds 9F and 9G were evaluated for in vivo antidiabetic assessment by the induction of diabetes in Wistar rats using streptozotocin. Molecule 9G has been identified as the most effective anti-diabetic molecule due to its ability to modulate several biochemical markers in blood plasma and tissue homogenates. The results were further confirmed by histology investigations conducted on isolated pancreas, liver, and kidney.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga-142001 Punjab India
- Research Scholar, IK Gujral Punjab Technical University Kapurthala Punjab India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy GT Road, Ghal Kalan Moga Punjab India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab VPO-Ghudda Bathinda Punjab India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga Punjab India
| |
Collapse
|
7
|
Fettach S, Thari FZ, Karrouchi K, Benbacer L, Lee LH, Bouyahya A, Cherrah Y, Sefrioui H, Bougrin K, Faouzy MEA. Assessment of anti-hyperglycemic and anti-hyperlipidemic effects of thiazolidine-2,4-dione derivatives in HFD-STZ diabetic animal model. Chem Biol Interact 2024; 391:110902. [PMID: 38367680 DOI: 10.1016/j.cbi.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic endocrine/metabolic disorder characterized by elevated postprandial and fasting glycemic levels that result in disturbances in primary metabolism. In this study, we evaluated the metabolic effects of thiazolidine-2,4-dione derivatives in Wistar rats and Swiss mice that were fed a high-fat diet (HFD) for 4 weeks and received 90 mg/kg of streptozotocin (STZ) intraperitoneally as a T2DM model. The HFD consisted of 17% carbohydrate, 58% fat, and 25% protein, as a percentage of total kcal. The thiazolidine-2,4-dione derivatives treatments reduced fasting blood glucose (FBG) levels by an average of 23.98%-50.84%, which were also improved during the oral starch tolerance test (OSTT). Treatment with thiazolidine-2,4-dione derivatives also improved triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and total cholesterol levels (P < 0.05). The treatment intake has also shown a significant effect to modulate the altered hepatic and renal biomarkers. Further treatment with thiazolidine-2,4-dione derivatives for 28 days significantly ameliorated changes in appearance and metabolic risk factors, including favorable changes in histopathology of the liver, kidney, and pancreas compared with the HFD/STZ-treated group, suggesting its potential role in the management of diabetes. Thiazolidine-2,4-dione derivatives are a class of drugs that act as insulin sensitizers by activating peroxisome proliferator-activated receptor-gamma (PPAR-γ), a nuclear receptor that regulates glucose and lipid metabolism. The results of this study suggest that thiazolidine-2,4-dione derivatives may be a promising treatment option for T2DM by improving glycemic control, lipid metabolism, and renal and hepatic function.
Collapse
Affiliation(s)
- Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Laila Benbacer
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), B.P. 1382 R.P, 10001, Rabat, Morocco
| | - Learn-Han Lee
- Research Center for Life Science and Healthcare, China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Zhejiang, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hassan Sefrioui
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco; Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - My El Abbes Faouzy
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
8
|
Singh G, Singh R, Monga V, Mehan S. 3,5-Disubstituted-thiazolidine-2,4-dione hybrids as antidiabetic agents: Design, synthesis, in-vitro and In vivo evaluation. Eur J Med Chem 2024; 266:116139. [PMID: 38252989 DOI: 10.1016/j.ejmech.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Diabetes is one of the fastest-growing metabolic disorders, nearly doubling the number of patients each year. There are different treatment approaches available for the management of diabetes, which lacks due to their side effects. The inhibition of enzymes involved in the metabolism of complex polysaccharides to monosaccharides has proven beneficial in patients with type 2 diabetes mellitus. Two enzymes, α-amylase and α-glucosidase, have emerged as potential drug targets and are widely explored for drug development against type 2 diabetes mellitus. In this context, thiazolidine-2,4-diones (TZDs) have emerged as potential drug candidates for developing newer molecules against α-amylase and α-glucosidase. Nineteen TZD-hybrids were synthesized and evaluated in vitro α-amylase and α-glucosidase inhibitory activity. The compounds 7i, 7k, and 7p have emerged as the best dual inhibitors with IC50 of 10.33 ± 0.11-20.94 ± 0.76 μM and 10.19 ± 0.25-24.07 ± 1.56 μM against α-glucosidase and α-amylase, respectively. The derivatives had good anti-oxidant activity, displaying IC50 = 14.95 ± 0.65-23.27 ± 0.99 μM. The compounds 7k and 7p showed the best inhibition of reactive oxygen species in the PNAC-1 cells. The molecules exhibit good binding within the active site of α-amylase (PDB id: 1B2Y) and α-glucosidase (PDB id: 3W37), displaying binding energies of -7.5 to -10.7 kcal/mol and -7.4 to -10.3 kcal/mol, respectively. Further, the compounds were nontoxic (LD50 = 500-1311 mg/kg) and possessed good GI absorption. The compounds 7i, 7k, and 7p were evaluated in vivo antidiabetic activity in an STZ-induced diabetic model in Wistar rats. The compound 7p emerged as the best compound in the in vivo studies; however, the activity was lesser than that of the standard drug pioglitazone.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, Punjab, India; Research Scholar, IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, Punjab, India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, Punjab, India.
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, Punjab, India, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India).
| |
Collapse
|
9
|
Hu C, Liang B, Sun J, Li J, Xiong Z, Wang SH, Xuetao X. Synthesis and biological evaluation of indole derivatives containing thiazolidine-2,4-dione as α-glucosidase inhibitors with antidiabetic activity. Eur J Med Chem 2024; 264:115957. [PMID: 38029465 DOI: 10.1016/j.ejmech.2023.115957] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
In order to develop potential α-glucosidase inhibitors with antidiabetic activity, twenty-six indole derivatives containing thiazolidine-2,4-dione were synthesized. All compounds presented potential α-glucosidase inhibitory activities with IC50 values ranging from 2.35 ± 0.11 to 24.36 ± 0.79 μM, respectively compared to acarbose (IC50 = 575.02 ± 10.11 μM). Especially, compound IT4 displayed the strongest α-glucosidase inhibitory activity (IC50 = 2.35 ± 0.11 μM). The inhibition mechanism of compound IT4 on α-glucosidase was clarified by the investigation of kinetics studies, fluorescence quenching, CD spectra, 3D fluorescence spectra, and molecular docking. In vivo antidiabetic experiments demonstrated that oral administration of compound IT4 would suppress fasting blood glucose level and ameliorate their glucose tolerance and dyslipidemia in diabetic mice.
Collapse
Affiliation(s)
- Chunmei Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Bingwen Liang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jinping Sun
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jiangyi Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Zhuang Xiong
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Xu Xuetao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
10
|
Kanjariya DC, Naik HN, Sherashiya MJ, Naliapara YT, Ahmad I, Patel H, Rajani D, Jauhari S. α-Amylase and mycobacterium-TB H37Rv antagonistic efficacy of novel pyrazole-coumarin hybrids: an in vitro and in silico investigation. J Biomol Struct Dyn 2023; 42:12788-12805. [PMID: 37904535 DOI: 10.1080/07391102.2023.2273436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
The present investigation of minutiae to acquire structural information of the novel pyrazole-coumarin hybrids (PC1-PC10) synthesized using ultrasound methods and characterized using different spectroscopic techniques: mass, 1H-NMR, 13 C-NMR and IR spectroscopy, and theoretically explored using the DFT approach with a B3LYP/6-311G (d, p) basis set, and there in vitro, antagonistic efficacy against α-amylase and mycobacterium-TB H37Rv are described in this article. Pyrazole-coumarin hybrids (PC1-PC10) showed α-amylase inhibition ranging from IC50 (0.32-0.58 mM) when compared with acarbose (IC50 = 0.34 mM). Similarly, Mycobacterium-TB H37Rv strain inhibition screening showed MIC values ranging from 62.5 to 1000 µg/mL when compared with rifampicin and isoniazid MIC = 0.25 and 0.20 µg/mL, respectively. Molecular docking and MD simulation studies were performed to determine the active sites and rationalize the activities of the active compounds. To investigate the binding conformation and dynamics responsible for their activity, the three most active compounds (PC1, PC3 and PC6) were docked into the porcine pancreatic α-amylase active site (PDB ID:1OSE), and mycobacterium-TB H37Rv active site (PDB ID: 4TZK). The binding interactions between PC1, PC3, and PC6 with α-amylase were like those responsible for inhibiting α-amylase by acarbose. Also, the mycobacterium-TB H37Rv inhibiting responsible residues were compared with standard isoniazid and rifampicin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dilip C Kanjariya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Hem N Naik
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | | | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Dhanji Rajani
- Microcare Laboratory and Tuberculosis Research Center, Surat, India
| | - Smita Jauhari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| |
Collapse
|
11
|
Saddik R, Brandán SA, Mortada S, Baydere C, Roby O, Dege N, Tighadouini S, Tahiri M, Faouzi MA, Karrouchi K. Synthesis, crystal structure, Hirshfeld surface analysis, DFT and antihyperglycemic activity of 9-allyl-2,3,9,10a-tetrahydrobenzo[b]cyclopenta[e][1,4]diazepin-10(1H)-one. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
12
|
Fettach S, Thari FZ, Hafidi Z, Karrouchi K, Bouathmany K, Cherrah Y, El Achouri M, Benbacer L, El Mzibri M, Sefrioui H, Bougrin K, Faouzi MEA. Biological, toxicological and molecular docking evaluations of isoxazoline-thiazolidine-2,4-dione analogues as new class of anti-hyperglycemic agents. J Biomol Struct Dyn 2023; 41:1072-1084. [PMID: 34957934 DOI: 10.1080/07391102.2021.2017348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, three isoxazoline-thiazolidine-2,4-dione derivatives were synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR and ESI-MS spectrometry. All compounds have been investigated for their α-amylase and α-glucosidase inhibitory activities. In vitro enzymatic evaluation revealed that all compounds were inhibitory potent against α-glucosidase with IC50 values varied from 40.67 ± 1.81 to 92.54 ± 0.43 µM, and α-amylase with IC50 in the range of 07.01 ± 0.02 to 75.10 ± 1.06 µM. One of the tested compounds were found to be more potent inhibitor compared to other compounds and standard drug Acarbose (IC50 glucosidase= 97.12 ± 0.35 µM and IC50 amylase= 2.97 ± 0.01 μM). All compounds were then evaluated for their acute toxicity in vivo and shown their safety at a high dose with LD > 2000mg/kg BW. A cell-based toxicity evaluation was performed to determine the safety of compounds on liver cells, using the MTT assay against HepG2 cells, and the results shown that all compounds have non-toxic impact against cell viability and proliferation compared to reference drug (Pioglitazone). Furthermore, the molecular homology analysis, SAR and the molecular binding properties of compound with the active site of α-amylase and α-glucosidase were confirmed through computational analysis. This study has identified the inhibitory potential of a new class of synthesized isoxazoline-thiazolidine-2,4-dione derivatives in controlling both hyperglycemia and type 2 diabetes mellitus without any hepatic toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Rabat, Morocco
| | - Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, IQAC-CSIC, c/Jordi Girona, Barcelona, Spain
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Kaoutar Bouathmany
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammed El Achouri
- Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure-Rabat, Mohammed V University, Rabat, Morocco
| | - Laila Benbacer
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Mohammed El Mzibri
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Hassan Sefrioui
- Moroccan Foundation for Science, Innovation & Research (MAScIR), Centre de Biotechnologie Médicale, Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Rabat, Morocco.,Chemical and Biochemical Sciences Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
13
|
Synthesis, Spectroscopic Characterization, Antibacterial Activity, and Computational Studies of Novel Pyridazinone Derivatives. Molecules 2023; 28:molecules28020678. [PMID: 36677736 PMCID: PMC9861222 DOI: 10.3390/molecules28020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel series of pyridazinone derivatives (3-17) were synthesized and characterized by NMR (1H and 13C), FT-IR spectroscopies, and ESI-MS methods. All synthesized compounds were screened for their antibacterial activities against Staphylococcus aureus (Methicillin-resistant), Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii. Among the series, compounds 7 and 13 were found to be active against S. aureus (MRSA), P. aeruginosa, and A. baumannii with the lowest MIC value range of 3.74-8.92 µM. Afterwards, DFT calculations of B3LYP/6-31++G(d,p) level were carried out to investigate geometry structures, frontier molecular orbital, molecular electrostatic potential maps, and gap energies of the synthesized compounds. In addition, the activities of these compounds against various bacterial proteins were compared with molecular-docking calculations. Finally, ADMET studies were performed to investigate the possibility of using of the target compounds as drugs.
Collapse
|
14
|
Ahmed S, Ali MC, Ruma RA, Mahmud S, Paul GK, Saleh MA, Alshahrani MM, Obaidullah AJ, Biswas SK, Rahman MM, Rahman MM, Islam MR. Molecular Docking and Dynamics Simulation of Natural Compounds from Betel Leaves ( Piper betle L.) for Investigating the Potential Inhibition of Alpha-Amylase and Alpha-Glucosidase of Type 2 Diabetes. Molecules 2022; 27:molecules27144526. [PMID: 35889399 PMCID: PMC9316265 DOI: 10.3390/molecules27144526] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Piper betle L. is widely distributed and commonly used medicinally important herb. It can also be used as a medication for type 2 diabetes patients. In this study, compounds of P. betle were screened to investigate the inhibitory action of alpha-amylase and alpha-glucosidase against type 2 diabetes through molecular docking, molecular dynamics simulation, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The molecule apigenin-7-O-glucoside showed the highest binding affinity among 123 (one hundred twenty-three) tested compounds. This compound simultaneously bound with the two-target proteins alpha-amylase and alpha-glucosidase, with high molecular mechanics-generalized born surface area (MM/GBSA) values (ΔG Bind = -45.02 kcal mol-1 for alpha-amylase and -38.288 for alpha-glucosidase) compared with control inhibitor acarbose, which had binding affinities of -36.796 kcal mol-1 for alpha-amylase and -29.622 kcal mol-1 for alpha-glucosidase. The apigenin-7-O-glucoside was revealed to be the most stable molecule with the highest binding free energy through molecular dynamics simulation, indicating that it could compete with the inhibitors' native ligand. Based on ADMET analysis, this phytochemical exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities and had no significant side effects, making them prospective drug candidates for type 2 diabetes. Additional in vitro, in vivo, and clinical investigations are needed to determine the precise efficacy of drugs.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.A.); (M.C.A.); (R.A.R.); (S.K.B.); (M.M.R.); (M.R.I.)
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.A.); (M.C.A.); (R.A.R.); (S.K.B.); (M.M.R.); (M.R.I.)
| | - Rumana Akter Ruma
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.A.); (M.C.A.); (R.A.R.); (S.K.B.); (M.M.R.); (M.R.I.)
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia;
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (G.K.P.); (M.A.S.)
| | - Md Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (G.K.P.); (M.A.S.)
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sudhangshu Kumar Biswas
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.A.); (M.C.A.); (R.A.R.); (S.K.B.); (M.M.R.); (M.R.I.)
| | - Md Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.A.); (M.C.A.); (R.A.R.); (S.K.B.); (M.M.R.); (M.R.I.)
- Correspondence:
| | - Md Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.A.); (M.C.A.); (R.A.R.); (S.K.B.); (M.M.R.); (M.R.I.)
| | - Md Rezuanul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.A.); (M.C.A.); (R.A.R.); (S.K.B.); (M.M.R.); (M.R.I.)
| |
Collapse
|
15
|
Synthesis, crystal structure, spectroscopic characterization, α-glucosidase inhibition and computational studies of (E)-5-methyl-N′-(pyridin-2-ylmethylene)-1H-pyrazole-3-carbohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|
17
|
Toumi A, Boudriga S, Hamden K, Daoud I, Askri M, Soldera A, Lohier JF, Strohmann C, Brieger L, Knorr M. Diversity-Oriented Synthesis of Spiropyrrolo[1,2- a]isoquinoline Derivatives via Diastereoselective and Regiodivergent Three-Component 1,3-Dipolar Cycloaddition Reactions: In Vitro and in Vivo Evaluation of the Antidiabetic Activity of Rhodanine Analogues. J Org Chem 2021; 86:13420-13445. [PMID: 34546053 DOI: 10.1021/acs.joc.1c01544] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient diastereoselective route is developed to get access to novel spiropyrrolo[1,2-a]isoquinoline-oxindole skeletons by a one-pot three-component [3 + 2] cycloaddition reaction of (Z)-5-arylidene-1,3-thiazolidine-2,4-diones, isatin derivatives, and 1,2,3,4-tetrahydroisoquinoline (THIQ). Interestingly, the regioselectivity of the reaction is both temperature- and solvent-dependent, allowing the synthesis of two regioisomeric endo-dispiropyrrolo[2,1-a]isoquinolineoxindoles in excellent yield. Unprecedentedly, each isomeric dispiropyrrolo[2,1-a]isoquinolineoxindole endured retro-1,3-dipolar cycloaddition/recycloaddition reactions under thermal or catalytic conditions to regenerate the corresponding regioisomeric counterpart. In addition, DFT calculations were performed at the M062X/6-31++g(d,p) level of theory to unravel the origin of the reversal of regioselectivity and endo-stereoselectivity of the title 1,3-dipolar cycloaddition reactions. Upon treatment of Isatin, THIQ with (Z)-4-arylidene-5-thioxo-thiazolidin-2-ones as dipolarophiles, unusual rhodanine analogues were formed, along with smaller amounts of a dispirooxindole-piperazine. The structure and the relative configuration of these N-heterocycles were unambiguously assigned by spectroscopic techniques and confirmed by four single-crystal structures. In vitro and in vivo studies reveal that the novel rhodanine derivatives exert antidiabetic activity. The binding affinity with the active site of the enzyme α-amylase was studied by molecular docking. Furthermore, the bioavailability assessed through virtual ADME parameters (Absorption, Distribution, Metabolism, Elimination pharmacokinetics) and the excellent fit with the Lipinski and Veber rules predict good drug-likeness properties for a bromo-substituted 2-sulfanylidene-1,3-thiazolidin-4-one.
Collapse
Affiliation(s)
- Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - Ismail Daoud
- University of Mohamed Khider, Department of Matter Sciences, BP 145 RP, (07000) Biskra, Algeria.,Laboratory of Natural and bio-actives Substances, Tlemcen University - Faculty of Science, P.O. Box 119, Tlemcen, Algeria
| | - Moheddine Askri
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Armand Soldera
- Department of Chemistry, Laboratory of Physical Chemistry of Matter, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Jean-Francois Lohier
- Laboratory of Molecular and Thio-organic Chemistry, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN and University of Caen Basse-Normandie, 14050 Caen, France
| | - Carsten Strohmann
- Technische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Lukas Brieger
- Technische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Michael Knorr
- Institut UTINAM - UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| |
Collapse
|