1
|
da Rocha YM, Marques LDS, do Nascimento GA, de Oliveira MRC, Moura LFWG, de Sousa DB, de Oliveira KA, Magalhães SC, Pinheiro SDO, Bezerra FS, Ishiki HM, de Sousa KKO, Santos SAAR, Vieira NCG, Vieira-Neto AE, Alves DR, da Silva WMB, Frota LS, de Morais SM, da Silva LMR, Coutinho HDM, Farias-Pereira R, Campos AR, Magalhães FEA. Phytoceutical isoquercitrin and ethanolic extracts from pequi (Caryocar coriaceum Wittm) reverse alcohol withdrawal-induced anxiety in adult zebrafish (Danio rerio). Behav Brain Res 2025; 482:115439. [PMID: 39828088 DOI: 10.1016/j.bbr.2025.115439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/08/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Pharmacotherapy in Alcohol Withdrawal Syndrome (AWS), which is a mental disorder, generally involves benzodiazepines due to their action via GABA, but their side effects, such as excessive sedation, mental confusion and risk of dependence, are considerable. It is important to investigate the anxiolytic potential of plants such as Caryocar coriaceum, due to the presence of secondary metabolic compounds, such as isoquercitrin, capable of promoting the reduction of anxiety during AWS. We evaluated the anxiolytic-like potential of ethanolic extracts from the leaves (EEPL) and pulp (EEPP) of C. coriaceum, and its major compound, isoquercitrin (IsoQuer), in adult zebrafish (Danio rerio) during alcohol withdrawal. Adult zebrafish (n = 8 per group) were treated (20 µL; p.o) with EEPL, or EEPP or IsoQuer (0.01 or 0.05 or 0.1 or 0.5 or 1.0 mg/mL) and submitted to the 96-hour acute toxicity test. Flumazenil in adult zebrafish and molecular Docking of IsoQuer were used to investigate the GABAergic involvement. Finally, the anxiolytic-like activity was evaluated during alcohol withdrawal in adult zebrafish. The results indicated that EEPL, EEPP and IsoQuer are safe and have no sedative effect on adult zebrafish. Furthermore, they demonstrated a pharmacological potential in the treatment of alcohol withdrawal-induced anxiety, mediated by the GABAergic system, evidenced in the in-silico study by the stable isoquercitrin-GABAA complex, the main constituent of the extracts. These findings suggest an anxiolytic herbal potential of C. coriaceum and isoquercitrin, providing an alternative for the treatment of anxiety associated with AWS.
Collapse
Affiliation(s)
- Yatagan M da Rocha
- Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Luzia Débora S Marques
- Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Gabriela A do Nascimento
- Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Maria Rayane C de Oliveira
- Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Luiz F Wemmenson G Moura
- Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Daniela Braga de Sousa
- Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Keciany A de Oliveira
- Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Saulo C Magalhães
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Solange de O Pinheiro
- Laboratório de Química Inorgânica (LQUIN), Campus do ItaperiUniversidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil
| | - Franciglauber S Bezerra
- Universidade Estadual do Ceará, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Campus CECITEC, Tauá, Ceará, CEP 60.660-000, Brazil
| | - Hamilton M Ishiki
- Universidade Estadual do Ceará, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Campus CECITEC, Tauá, Ceará, CEP 60.660-000, Brazil
| | - Kalina Kelma O de Sousa
- Universidade Estadual do Ceará, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Campus CECITEC, Tauá, Ceará, CEP 60.660-000, Brazil
| | - Sacha A A R Santos
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Núcleo de Biologia Experimental (NUBEX), Fortaleza, Ceará CEP 60.811-650, Brazil
| | - Natália C G Vieira
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Núcleo de Biologia Experimental (NUBEX), Fortaleza, Ceará CEP 60.811-650, Brazil
| | - Antonio E Vieira-Neto
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Núcleo de Biologia Experimental (NUBEX), Fortaleza, Ceará CEP 60.811-650, Brazil
| | - Daniela R Alves
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, Fortaleza, CE CEP 60714-903, Brazil
| | - Wildson Max B da Silva
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, Fortaleza, CE CEP 60714-903, Brazil
| | - Lucas S Frota
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, Fortaleza, CE CEP 60714-903, Brazil
| | - Selene M de Morais
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, Fortaleza, CE CEP 60714-903, Brazil
| | - Larissa M R da Silva
- Universidade Federal do Ceará, Programa de Pós-Graduação em Ciências e Tecnologia de Alimentos (PPGCTA), Laboratório de Microbiologia de Alimentos, Campos do Pici, Fortaleza, Ceará CEP 60.356.000, Brazil.
| | - Henrique D Melo Coutinho
- Universidade Regional do Carriri - URCA, Programa de Pós-Graduação em Química Biológica (PPGQB), Laboratório de Microbiologia e Biologia Molecular (LMBM), Crato, Ceará CEP 63105-000, Brazil.
| | | | - Adriana R Campos
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Núcleo de Biologia Experimental (NUBEX), Fortaleza, Ceará CEP 60.811-650, Brazil.
| | - Francisco Ernani A Magalhães
- Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Universidade Estadual do Ceará, Fortaleza, CE CEP 60.741-000, Brazil; Universidade Estadual do Ceará, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Campus CECITEC, Tauá, Ceará, CEP 60.660-000, Brazil.
| |
Collapse
|
2
|
Feitosa de Araújo JI, Alves do Nascimento G, Vieira-Neto AE, Alves Magalhães FE, Rolim Campos A. Neuropharmacological potential of Mimosa tenuiflora in adult zebrafish: An integrated approach to GABAergic and serotonergic neuromodulation. Behav Brain Res 2025; 481:115415. [PMID: 39761753 DOI: 10.1016/j.bbr.2025.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Mimosa tenuiflora ("jurema-preta") is traditionally used in folk medicine for various diseases. The study investigated the neuropharmacological potential of Mimosa tenuiflora bark fraction (FATEM) in adult zebrafish. This included the acute toxicity (LC50) of FATEM (0.01; 0.05; 0.1; 0.5; 1.0 and 5.0 mg/mL; i.p.) and the effects on behavioral tests, such as open field, light & dark and zebrafish tail immobilization test (ZTI). The anxiolytic response induced by alcohol withdrawal and the seizure induced by pentylenetetrazole were also tested. The possible mechanisms of anxiolytic and antidepressant actions of FATEM were evaluated through the administration of specific antagonists (Flumazenil, Cyproheptadine, Pizotifen or Granisetron). Furthermore, the study investigated the ADME profile and molecular docking simulations of the major FATEM compound, Benzyloxyamine, with GABAergic and serotonergic receptors. FATEM did not present acute toxicity and caused a reduction in locomotor activity (p < 0.0001 vs. Control) similar (p< 0.0001) to Diazepam, indicating a sedative/anxiolytic effect. The anxiolytic activity in the light & dark test was similar to Diazepam (p < 0.0001), prevented by GABA and serotonergic antagonists. FATEM also prevented anxious behaviors induced by alcohol withdrawal and exhibited an antidepressant effect in the ZTI (p < 0.0001 vs. Control) similar (p < 0.0001) to the effect of Fluoxetine, which was reversed by serotonergic antagonists. In silico evaluations indicated favorable pharmacokinetic properties and affinity of FATEM with GABAergic and serotonergic receptors. The study reveals that FATEM has adequate physicochemical characteristics to act on the CNS with specific affinity for GABAA and serotonergic receptors, indicating its potential as a treatment for anxiety and depression.
Collapse
Affiliation(s)
| | - Gabriela Alves do Nascimento
- Graduate Program in Nutrition and Health, State University of Ceará, Av. Dr. Silas Munguba, 1700 - Fortaleza, Ceará, Brazil
| | | | - Francisco Ernani Alves Magalhães
- Graduate Program in Nutrition and Health, State University of Ceará, Av. Dr. Silas Munguba, 1700 - Fortaleza, Ceará, Brazil; Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, R. Seis, 15, Tauá, Ceará, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321 - Fortaleza, Ceará, Brazil.
| |
Collapse
|
3
|
Waris A, Ullah A, Asim M, Ullah R, Rajdoula MR, Bello ST, Alhumaydhi FA. Phytotherapeutic options for the treatment of epilepsy: pharmacology, targets, and mechanism of action. Front Pharmacol 2024; 15:1403232. [PMID: 38855752 PMCID: PMC11160429 DOI: 10.3389/fphar.2024.1403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Epilepsy is one of the most common, severe, chronic, potentially life-shortening neurological disorders, characterized by a persisting predisposition to generate seizures. It affects more than 60 million individuals globally, which is one of the major burdens in seizure-related mortality, comorbidities, disabilities, and cost. Different treatment options have been used for the management of epilepsy. More than 30 drugs have been approved by the US FDA against epilepsy. However, one-quarter of epileptic individuals still show resistance to the current medications. About 90% of individuals in low and middle-income countries do not have access to the current medication. In these countries, plant extracts have been used to treat various diseases, including epilepsy. These medicinal plants have high therapeutic value and contain valuable phytochemicals with diverse biomedical applications. Epilepsy is a multifactorial disease, and therefore, multitarget approaches such as plant extracts or extracted phytochemicals are needed, which can target multiple pathways. Numerous plant extracts and phytochemicals have been shown to treat epilepsy in various animal models by targeting various receptors, enzymes, and metabolic pathways. These extracts and phytochemicals could be used for the treatment of epilepsy in humans in the future; however, further research is needed to study the exact mechanism of action, toxicity, and dosage to reduce their side effects. In this narrative review, we comprehensively summarized the extracts of various plant species and purified phytochemicals isolated from plants, their targets and mechanism of action, and dosage used in various animal models against epilepsy.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ata Ullah
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Asim
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Rafi Ullah
- Department of Botany, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Md. Rafe Rajdoula
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Stephen Temitayo Bello
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Marques LDS, Rocha YMD, Nascimento GAD, Santos SAAR, Vieira NCG, Moura LFWG, Alves DR, Silva WMBD, de Morais SM, de Oliveira KA, da Silva LMR, Sousa KKOD, Vieira-Neto AE, Coutinho HDM, Campos AR, Magalhães FEA. Potential of the Blue Calm® food supplement in the treatment of alcohol withdrawal-induced anxiety in adult zebrafish (Danio rerio). Neurochem Int 2024; 175:105706. [PMID: 38423391 DOI: 10.1016/j.neuint.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Alcohol use disorder (AUD) is characterized by a set of behavioral, cognitive, nutritional, and physiological phenomena derived from the uncontrolled use of alcoholic beverages. There are cases in which AUD is associated with anxiety disorder, and when untreated, it requires careful pharmacotherapy. Blue Calm® (BC) is a food supplement indicated to aid restorative sleep, which has traces of medicinal plant extracts, as well as myo-inositol, magnesium bisglycinate, taurine, and L-tryptophan as its main chemical constituents. In this context, this study aimed to evaluate the potential of the BC in the treatment alcohol withdrawal-induced anxiety in adult zebrafish (aZF). Initially, BC was submitted to antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl radical. Subsequently, the aZF (n = 6/group) were treated with BC (0.1 or 1 or 10 mg/mL; 20 μL; p.o.), and the sedative effect and acute toxicity (96 h) were evaluated. Then, the anxiolytic-like effect and the possible GABAergic mechanism were analyzed through the Light & Dark Test. Finally, BC action was evaluated for treating alcohol withdrawal-induced anxiety in aZF. Molecular docking was performed to evaluate the interaction of the major chemical constituents of BC with the GABAA receptor. BC showed antioxidant potential, a sedative effect, was not toxic, and all doses of BC had an anxiolytic-like effect and showed potential for the treatment of alcohol withdrawal-induced anxiety in aZF. In addition to the anxiolytic action, the main chemical constituents of BC were confirmed in the molecular docking, thus suggesting that BC is an anxiolytic that modulates the GABAergic system and has pharmacological potential for the treatment of alcohol withdrawal-induced anxiety.
Collapse
Affiliation(s)
- Luzia Débora S Marques
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil
| | - Yatagan M da Rocha
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil
| | - Gabriela A do Nascimento
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil
| | - Sacha Aubrey A R Santos
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil
| | - Natália Chaves G Vieira
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil
| | - Luiz Francisco Wemmenson G Moura
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil
| | - Daniela R Alves
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Centro de Ciências e Tecnologia (CCT), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, CEP 60714-903, Fortaleza, Ceará, Brazil
| | - Wildson Max B da Silva
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Centro de Ciências e Tecnologia (CCT), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, CEP 60714-903, Fortaleza, Ceará, Brazil
| | - Selene Maia de Morais
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais (PPGCS), Centro de Ciências e Tecnologia (CCT), Laboratório de Análises Cromatográficas e Espectroscópicas (LACES), Campus do Itaperi, CEP 60714-903, Fortaleza, Ceará, Brazil.
| | - Keciany A de Oliveira
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil
| | - Larissa Morais R da Silva
- Universidade Federal do Ceará, Programa de Pós-Graduação em Ciências e Tecnologia de Alimentos (PPGCTA), Laboratório de Microbiologia de Alimentos (LMA), Campos do Pici, CEP 60.356.000, Fortaleza, Ceará, Brazil.
| | - Kalina Kelma O de Sousa
- Universidade Estadual do Ceará, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Campus CECITEC, CEP 60.660-000, Tauá, Ceará, Brazil
| | - Antonio Eufrásio Vieira-Neto
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Universidade Regional do Cariri - URCA, Programa de Pós-Graduação em Química Biológica (PPGQB), Laboratório de Microbiologia e Biologia Molecular (LMBM), CEP 63105-000, Crato, Ceará, Brazil.
| | - Adriana Rolim Campos
- Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil.
| | - Francisco Ernani Alves Magalhães
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Nutrição e Saúde (PPGNS), Centro de Ciências da Saúde (CCS), Campus Do Itaperi, CEP 60.741-000, Fortaleza, CE, Brazil; Universidade de Fortaleza, Rede Nordeste de Biotecnologia (RENORBIO), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Núcleo de Biologia Experimental (NUBEX), CEP 60.811-650, Fortaleza, Ceará, Brazil; Universidade Estadual do Ceará, Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Campus CECITEC, CEP 60.660-000, Tauá, Ceará, Brazil.
| |
Collapse
|
5
|
Salaria P, Subrahmanyeswara Rao NN, Dhameliya TM, Amarendar Reddy M. In silico investigation of potential phytoconstituents against ligand- and voltage-gated ion channels as antiepileptic agents. 3 Biotech 2024; 14:99. [PMID: 38456083 PMCID: PMC10914661 DOI: 10.1007/s13205-024-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
The most promising anticonvulsant phytocompounds were explored in this work using docking, molecular dynamic (MD) simulation, and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) approaches. A total of 70 phytochemicals were screened against α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA), N-methyl-d-aspartate (NMDA), voltage-gated sodium ion channels (VGSC), and carbonic anhydrase enzyme II (CA II) receptors, and the docking results were compared to the reference drug phenytoin. Amentoflavone displayed the highest affinity for AMPA and VGSC receptors, with docking scores of - 10.4 and - 10.1 kcal/mol, respectively. Oliganthin H-NMDA and epigallocatechin-3-gallate-CA II complexes showed docking scores of - 10.9 and - 6.9 kcal/mol, respectively. All four complexes depicted a high dock score compared to the phenytoin complex at the binding site of the corresponding proteins. The MD simulation investigated the stabilities and favorable conformation of apoproteins and ligand/reference-bound complexes. The results revealed that proteins AMPA, VGSC, and CA II were more efficiently stabilized by lead phytochemicals than phenytoin binding. Additionally, principal component analysis and MM-PBSA results suggested that these lead phytocompounds have good compactness and strong binding free energy. Further, physicochemical and pharmacokinetic studies revealed that these final lead phytochemicals would be suitable for oral intake, have sufficient intestinal permeability, and have the ability to cross the blood-brain barrier (BBB). Comprehensively, this study predicted amentoflavone as the best lead phytochemical out of the 70 anticonvulsant phytocompounds that can be used to treat epilepsy. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03948-1.
Collapse
Affiliation(s)
- Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101 India
| | - N. N. Subrahmanyeswara Rao
- Department of Chemical Engineering, Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh India
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - M. Amarendar Reddy
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101 India
| |
Collapse
|
6
|
Claro RO, Rivero-Wendt CLG, Miranda-Vilela AL, Grisolia CK, Facco GG, Moreira DDL, Matias R, Guilhermino JDF. Toxicological effects of aqueous extract of Genipa americana L. leaves on adult zebrafish (Danio rerio): Chemical profile, histopathological effects and lack of genotoxicity. Toxicon 2023; 235:107305. [PMID: 37839738 DOI: 10.1016/j.toxicon.2023.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Genipa americana is a native plant of Brazil with potential applications in folk medicine. Whereas most of the phytochemical and pharmacological studies on this plant have focused on its fruits, the crude extracts of its leaves contain chemical metabolites that may have toxicity to organisms, which have yet to be investigated. This study aimed to determine the main groups of secondary metabolites in the aqueous extract of the leaves of G. americana by phytochemistry and qualitative HPLC, and to evaluate the possible toxicological effects and histopathological changes caused by this extract in zebrafish (Danio rerio) adults, through micronucleus test, nuclear abnormalities and histopathological analyses of gills and liver. While three metabolites of high intensity (phenolic compounds, flavonoids and triterpenes) were found in the phytochemical evaluation, the HPLC showed results compatible with flavonoids and iridoids, all belonging to common classes for this species and the Rubiaceae family. The acute toxicity test did not induce mortality or genotoxicity in zebrafish, but after exposure for 96 h, it was possible to observe injuries to the fish gill tissue, such as lamellar fusion, vasodilation and telangiectasia; in the liver, necrosis was visualized at 40 mg/L, and at higher concentrations (80 and 100 mg/L) induced sinusoidal widening was identified. In conclusion, the results demonstrated the toxic potential of this plant for aquatic species.
Collapse
Affiliation(s)
- Raquel Oliveira Claro
- Graduate Program in Environment and Regional Development, Universidade Anhanguera -Uniderp. Rua Alexandre Herculano, 1400, Jardim Veraneio, 79037-280, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Carla Letícia Gediel Rivero-Wendt
- Graduate Program in Animal Biology, Federal University of Mato Grosso do Sul. Av. Costa e Silva, Pioneiros, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil.
| | | | - Cesar Koppe Grisolia
- Biological Sciences Institute, University of Brasília. Campus Universitário Darcy Ribeiro, Bloco E, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil.
| | - Gilberto Golçalves Facco
- Graduate Program in Environment and Regional Development, Universidade Anhanguera -Uniderp. Rua Alexandre Herculano, 1400, Jardim Veraneio, 79037-280, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Davyson de Lima Moreira
- Natural Products Department, Far-Manguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, 21041-250, Rio de Janeiro, RJ, Brazil.
| | - Rosemary Matias
- Graduate Program in Environment and Regional Development, Universidade Anhanguera -Uniderp. Rua Alexandre Herculano, 1400, Jardim Veraneio, 79037-280, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Jislaine de Fátima Guilhermino
- Natural Products Department, Far-Manguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Camilo CJ, Leite DOD, da S Mendes JW, Dantas AR, de Carvalho NKG, Castro JWG, Salazar GJT, Ferreira MKA, de Meneses JEA, da Silva AW, Dos Santos HS, Tavares JF, Silva JPRE, Rodrigues FFG, Cheon C, Kim B, da Costa JGM. Analysis toxicity by different methods and anxiolytic effect of the aqueous extract Lippia sidoides Cham. Sci Rep 2022; 12:20626. [PMID: 36450779 PMCID: PMC9712538 DOI: 10.1038/s41598-022-23999-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Lippia sidoides Cham. (Verbenaceae) is a species often mentioned in traditional medicine due to the medicinal properties attributed to its leaves, which include antibacterial, antifungal, acaricidal and antioxidant. Several of these actions have been scientifically proven, according to reports in the literature; however, little is known about toxicological aspects of this plant. This work included studies to determine the chemical composition and toxicity tests, using several methods aiming to evaluate the safety for use of the aqueous extract of L. sidoides leaves, in addition, the anxiolytic effect on adult zebrafish was investigated, thus contributing to the pharmacological knowledge and traditional medicine concerning the specie under study. The chemical profile was determined by liquid chromatography coupled to mass spectrometry-HPLC/MS with electrospray ionization. Toxicity was evaluated by zebrafish, Drosophila melanogaster, blood cells, and Artemia salina models. 12 compounds belonging to the flavonoid class were identified. In the toxicity assays, the observed results showed low toxicity of the aqueous extract in all tests performed. In the analysis with zebrafish, the highest doses of the extract were anxiolytic, neuromodulating the GABAa receptor. The obtained results support the safe use of the aqueous extract of L. sidoides leaves for the development of new drugs and for the use by populations in traditional medicine.
Collapse
Affiliation(s)
- Cicera J Camilo
- Postgraduate Program in Ethnobiology and Nature Conservation, Federal Rural University of Pernambuco, R. Dr. Miguel, Parnamirim, PE, 56163-000, Brazil
| | - Débora O D Leite
- Northeast Biotechnology Network-RENORBIO, Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil
| | - Johnatan W da S Mendes
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil
| | - Alexandro R Dantas
- Natural Products Research Laboratory, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil
| | - Natália K G de Carvalho
- Natural Products Research Laboratory, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil
| | - José W G Castro
- Graduate Program in Biological Diversity and Natural Resources, Regional University of Cariri, Crato, Brazil
| | - Gerson J T Salazar
- Postgraduate Program in Ethnobiology and Nature Conservation, Federal Rural University of Pernambuco, R. Dr. Miguel, Parnamirim, PE, 56163-000, Brazil
| | | | | | - Antonio Wlisses da Silva
- Northeast Biotechnology Network-RENORBIO, Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil
| | - Helcio S Dos Santos
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil
| | - Josean F Tavares
- Multiuser Laboratory of Characterization and Analysis, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Joanda P R E Silva
- Multiuser Laboratory of Characterization and Analysis, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Fabiola F G Rodrigues
- Graduate Program in Biological Diversity and Natural Resources, Regional University of Cariri, Crato, Brazil
| | - Chunhoo Cheon
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Kyungheedae-Ro 26 Dongdaemun-Gu, Seoul, 05254, South Korea
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Kyungheedae-Ro 26 Dongdaemun-Gu, Seoul, 05254, South Korea.
| | - José Galberto Martins da Costa
- Northeast Biotechnology Network-RENORBIO, Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil.
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil.
- Natural Products Research Laboratory, Regional University of Cariri, Crato, Ceará, 63105-00, Brazil.
| |
Collapse
|
9
|
Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med 2022:10.1007/s12017-022-08724-z. [PMID: 35951285 DOI: 10.1007/s12017-022-08724-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyam Sunder Rabidas
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Lacerda JWF, Siqueira KA, Vasconcelos LG, Bellete BS, Dall'Oglio EL, Sousa Junior PT, Faraggi TM, Vieira LCC, Soares MA, Sampaio OM. Metabolomic Analysis of Combretum lanceolatum Plants Interaction with Diaporthe phaseolorum and Trichoderma spirale Endophytic Fungi through 1 H-NMR. Chem Biodivers 2021; 18:e2100350. [PMID: 34399029 DOI: 10.1002/cbdv.202100350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 01/19/2023]
Abstract
Endophytic fungi are an important class of microorganisms, able to interact with a host plant via a mutualistic mechanism without visible symptoms of the fungal colonization. The synergy between endophytic fungi and their host plant can promote morphological, physiological and biochemical changes through the expression of bioactive metabolites. This work aims to correlate metabolic changes in the Combretum lanceolatum plant metabolome with its endophytic fungi Diaporthe phaseolorum (Dp) and Trichoderma spirale (Ts), and to discover corresponding metabolite-biomarkers, with the principal focus being on its primary metabolism. The 1 H-NMR metabolomic analysis of qualitative and quantitative changes was performed through multivariate statistical analysis and the identification of primary metabolites was achieved on the Madison Metabolomics Consortium Database. The presence of Dp significantly impacted the plant's metabolic pathways, improving the biosynthesis of primary metabolites such as threonine, malic acid and N-acetyl-mannosamine, which are precursors of special metabolites involved in plant self-defence. This work represents a valuable contribution to advanced studies on the metabolic profiles of the interaction of plants with endophytes.
Collapse
Affiliation(s)
- Jhuly W F Lacerda
- Chemistry Department, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| | - Katia A Siqueira
- Institute of Biosciences, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| | | | - Barbara S Bellete
- Chemistry Department, Federal University of Lavras, Lavras-MG, Brazil
| | | | | | - Tomer M Faraggi
- Product Metabolism Analytical Sciences, Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - Lucas C C Vieira
- Chemistry Department, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| | - Marcos A Soares
- Institute of Biosciences, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| | - Olívia M Sampaio
- Chemistry Department, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| |
Collapse
|