1
|
N S, Kandi V, G SR, Ca J, A H, As A, Kapil C, Palacholla PS. Kyasanur Forest Disease: A Comprehensive Review. Cureus 2024; 16:e65228. [PMID: 39184677 PMCID: PMC11343324 DOI: 10.7759/cureus.65228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Vector-borne microbial diseases are ubiquitous, and their management remains elusive. Such diseases with zoonotic potential result in public health challenges requiring additional control and preventive measures. Despite their cosmopolitan presence, vector-borne infections are neglected due to their endemicity in specified geographical regions. The Kyasanur forest disease (KFD) caused by the Kyasanur forest disease virus (KFDV) is among such diseases transmitted through ticks and localized to India. Despite its prevalence, high transmissibility, and potential to cause fatalities, KFDV has not been given the deserved attention by the governments. Further, KFDV circulates in the rural and wild geographical areas threatening infections to people living in these areas with limited access to medical and healthcare. Therefore, physicians, healthcare workers, and the general population need to understand the KFDV and its ecology, epidemiology, transmission, pathogenesis, laboratory diagnosis, and control and prevention as described comprehensively in this review.
Collapse
Affiliation(s)
- Srilekha N
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Sri Ram G
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Harshitha A
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Akshay As
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Challa Kapil
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Pratyusha S Palacholla
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
2
|
Ram T, Singh AK, Pathak P, Kumar A, Singh H, Grishina M, Novak J, Kumar P. Design, one-pot synthesis, computational and biological evaluation of diaryl benzimidazole derivatives as MEK inhibitors. J Biomol Struct Dyn 2023; 42:11812-11827. [PMID: 37807916 DOI: 10.1080/07391102.2023.2265486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
MEK mutations are more common in various human malignancies, such as pancreatic cancer (70-90%), mock melanoma (50%), liver cancer (20-40%), colorectal cancer (25-35%), melanoma (15-20%), non-small cell lung cancer (10-20%) and basal breast cancer (1-5%). Considering the significance of MEK mutations in diverse cancer types, the rational design of the proposed compounds relies on the structural resemblance to FDA-approved MEK inhibitors like selumetinib and binimetinib. The compound under design features distinct substitutions at the benzimidazole moiety, specifically at positions 2 and 3, akin to the FDA-approved drugs, albeit differing in positions 5 and 6. Subsequent structural refinement was guided by key elements including the DFG motif, hydrophobic pocket and catalytic loop of the MEK protein. A set of 15 diverse diaryl benzimidazole derivatives (S1-S15) were synthesized via a one-pot approach and characterized through spectroscopic techniques, including MASS, IR, 1H NMR and 13C NMR. In vitro anticancer activities of all the synthesized compounds were evaluated against four cancer cell lines, A375, HT -29, A431 and HFF, along with the standard drug trametinib. Molecular docking was performed for all synthesized compounds (S1-15), followed by 950 ns molecular dynamics simulation studies for the promising compounds S1, S5 and S15. The stability of these complexes was assessed by calculating the root-mean-square deviation, solvent accessible surface area and gyration radius relative to their parent structures. Additionally, free energy of binding calculations were performed. Based on the biological and computational results, S15 was the most potent compound and S1 and S5 are comparable to the standard drug trametinib.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Teja Ram
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| | - Prateek Pathak
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus," GITAM (Deemed to be University), India
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| | - Maria Grishina
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus," GITAM (Deemed to be University), India
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| |
Collapse
|
3
|
Otuechere CA, Neupane NP, Adewuyi A, Pathak P, Novak J, Grishina M, Khalilullah H, Jaremko M, Verma A. Green Synthesis of Genistein-Fortified Zinc Ferrite Nanoparticles as a Potent Hepatic Cancer Inhibitor: Validation through Experimental and Computational Studies. Chem Biodivers 2023; 20:e202300719. [PMID: 37312449 DOI: 10.1002/cbdv.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In hepatic cancer, precancerous nodules account for damage and inflammation in liver cells. Studies have proved that phyto-compounds based on biosynthetic metallic nanoparticles display superior action against hepatic tumors. This study targeted the synthesis of genistein-fortified zinc ferrite nanoparticles (GENP) trailed by anticancer activity assessment against diethylnitrosamine and N-acetyl-2-aminofluorene induced hepatic cancer. The process of nucleation was confirmed by UV/VIS spectrophotometry, X-ray beam diffraction, field-emission scanning electron microscopy, and FT-IR. An in vitro antioxidant assay illustrated that the leaves of Pterocarpus mildbraedii have strong tendency as a reductant and, in the nanoformulation synthesis, as a natural capping agent. A MTT assay confirmed that GENP have a strong selective cytotoxic potential against HepG2 cancer cells. In silico studies of genistein exemplified the binding tendency towards human matrix metalloproteinase comparative to the standard drug marimastat. An in vivo anticancer evaluation showed that GENP effectively inhibit the growth of hepatic cancer by interfering with hepatic and non-hepatic biochemical markers.
Collapse
Affiliation(s)
- Chiagoziem A Otuechere
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, 232101, Ede, Nigeria
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Netra P Neupane
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, 232101, Ede, Nigeria
| | - Prateek Pathak
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008, Chelyabinsk, Russia
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000, Rijeka, Croatia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008, Chelyabinsk, Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911, Unayzah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| |
Collapse
|
4
|
Kandagalla S, Kumbar B, Novak J. Structural Modifications Introduced by NS2B Cofactor Binding to the NS3 Protease of the Kyasanur Forest Disease Virus. Int J Mol Sci 2023; 24:10907. [PMID: 37446083 DOI: 10.3390/ijms241310907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. The recent expansion of the endemic area of KFDV is of concern and requires the development of new preventive measures against KFDV. Currently, there is no antiviral therapy against KFDV, and the existing vaccine has limited efficacy. To develop a new antiviral therapy against KFDV, we focused on the nonstructural proteins NS2B and NS3 of KFDV, which are responsible for serine protease activity. Viral proteases have shown to be suitable therapeutic targets in the development of antiviral drugs against many diseases. However, success has been limited in flaviviruses, mainly because of the important features of the active site, which is flat and highly charged. In this context, the present study focuses on the dynamics of NS2B and NS3 to identify potential allosteric sites in the NS2B/NS3 protease of KDFV. To our knowledge, there are no reports on the dynamics of NS2B and NS3 in KFDV, and the crystal structure of the NS2B/NS3 protease of KFDV has not yet been solved. Overall, we created the structure of the NS2B/NS3 protease of KFDV using AlphaFold and performed molecular dynamics simulations with and without NS2B cofactor to investigate structural rearrangements due to cofactor binding and to identify alternative allosteric sites. The identified allosteric site is promising due to its geometric and physicochemical properties and druggability and can be used for new drug development. The applicability of the proposed allosteric binding sites was verified for the best-hit molecules from the virtual screening and MD simulations.
Collapse
Affiliation(s)
- Shivananda Kandagalla
- Laboratory of Computational Modeling of Drugs, Higher Medical & Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Bhimanagoud Kumbar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, Karnataka, India
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Tseilikman VE, Fedotova JO, Tseilikman OB, Novak J, Karpenko MN, Maistrenko VA, Lazuko SS, Belyeva LE, Kamel M, Buhler AV, Kovaleva EG. Resistance to Resveratrol Treatment in Experimental PTSD Is Associated with Abnormalities in Hepatic Metabolism of Glucocorticoids. Int J Mol Sci 2023; 24:ijms24119333. [PMID: 37298287 DOI: 10.3390/ijms24119333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Glucocorticoids are metabolized by the CYP3A isoform of cytochrome P450 and by 11-β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1). Experimental data suggest that post-traumatic stress disorder (PTSD) is associated with an increase in hepatic 11β-HSD-1 activity and a concomitant decrease in hepatic CYP3A activity. Trans-resveratrol, a natural polyphenol, has been extensively studied for its antipsychiatric properties. Recently, protective effects of trans-resveratrol were found in relation to PTSD. Treatment of PTSD rats with trans-resveratrol allowed the rats to be divided into two phenotypes. The first phenotype is treatment-sensitive rats (TSR), and the second phenotype is treatment-resistant rats (TRRs). In TSR rats, trans-resveratrol ameliorated anxiety-like behavior and reversed plasma corticosterone concentration abnormalities. In contrast, in TRR rats, trans-resveratrol aggravated anxiety-like behavior and decreased plasma corticosterone concentration. In TSR rats, hepatic 11β-HSD-1 activity was suppressed, with a concomitant increase in CYP3A activity. In TRR rats, the activities of both enzymes were suppressed. Thus, the resistance of PTSD rats to trans-resveratrol treatment is associated with abnormalities in hepatic metabolism of glucocorticoids. The free energy of binding of resveratrol, cortisol, and corticosterone to the human CYP3A protein was determined using the molecular mechanics Poisson-Boltzmann surface area approach, indicating that resveratrol could affect CYP3A activity.
Collapse
Affiliation(s)
- Vadim E Tseilikman
- Scientific and Educational Center 'Biomedical Technologies', School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Julia O Fedotova
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology RAS, 6 Emb. Makarova, 199034 Saint Petersburg, Russia
| | - Olga B Tseilikman
- Scientific and Educational Center 'Biomedical Technologies', School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Center for Artificial Intelligence and Cyber Security, University of Rijeka, 51000 Rijeka, Croatia
| | - Marina N Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Victoria A Maistrenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Svetlana S Lazuko
- Department of Physiology, Vitebsk State Medical University, Frunze Av. 27, 210023 Vitebsk, Belarus
| | - Lyudmila E Belyeva
- Department of Pathophysiology, Vitebsk State Medical University, Frunze Av. 27, 210023 Vitebsk, Belarus
| | - Mustapha Kamel
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Alexey V Buhler
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Elena G Kovaleva
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Ekaterinburg, Russia
| |
Collapse
|
6
|
Kumar A, Novak J, Singh AK, Singh H, Thareja S, Pathak P, Grishina M, Verma A, Kumar P. Virtual screening, structure based pharmacophore mapping, and molecular simulation studies of pyrido[2,3-d]pyrimidines as selective thymidylate synthase inhibitors. J Biomol Struct Dyn 2023; 41:14197-14211. [PMID: 37154748 DOI: 10.1080/07391102.2023.2208205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 05/10/2023]
Abstract
Human thymidylate synthase is the rate-limiting enzyme in the de novo synthesis of 2'-deoxythymidine-5'-monophosphate. dUMP (pyrimidine) and folate binding site hTS inhibitors showed resistance in colorectal cancer (CRC). In the present study, we have performed virtual screening of the pyrido[2,3-d]pyrimidine database, followed by binding free energy calculations, and pharmacophore mapping to design novel pyrido[2,3-d]pyrimidine derivatives to stabilize inactive confirmation of hTS. A library of 42 molecules was designed. Based on the molecular docking studies, four ligands (T36, T39, T40, and T13) were identified to have better interactions and docking scores with the catalytic sites [dUMP (pyrimidine) and folate binding sites] of hTS protein than standard drug, raltitrexed. To validate efficacy of the designed molecules, we performed molecular dynamics simulation studies at 1000 ns with principal component analysis and binding free energy calculations on the hTS protein, also drug likeness properties of all hits were in acceptable range. Compounds T36, T39, T40, and T13 interacted with the catalytic amino acid (Cys195), an essential amino acid for anticancer activity. The designed molecules stabilized the inactive conformation of hTS, resulting in the inhibition of hTS. The designed compounds will undergo synthesis and biological evaluation, which may yield selective, less toxic, and highly potent hTS inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cyber security, University of Rijeka, Rijeka, Croatia
- Scientific and Educational Center 'Biomedical Technologies' School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
7
|
Singh AK, Novak J, Kumar A, Singh H, Thareja S, Pathak P, Grishina M, Verma A, Yadav JP, Khalilullah H, Pathania V, Nandanwar H, Jaremko M, Emwas AH, Kumar P. Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine-sulfonamide hybrids as selective BRAF V600E inhibitors. RSC Adv 2022; 12:30181-30200. [PMID: 36329938 PMCID: PMC9585928 DOI: 10.1039/d2ra05751d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
The "RAS-RAF-MEK-ERK" pathway is an important signaling pathway in melanoma. BRAFV600E (70-90%) is the most common mutation in this pathway. BRAF inhibitors have four types of conformers: type I (αC-IN/DFG-IN), type II (αC-IN/DFG-OUT), type I1/2 (αC-OUT/DFG-IN), and type I/II (αC-OUT/DFG-OUT). First- and second-generation BRAF inhibitors show resistance to BRAFV600E and are ineffective against malignancies induced by dimer BRAF mutants causing 'paradoxical' activation. In the present study, we performed molecular modeling of pyrimidine-sulfonamide hybrids inhibitors using 3D-QSAR, molecular docking, and molecular dynamics simulations. Previous reports reveal the importance of pyrimidine and sulfonamide moieties in the development of BRAFV600E inhibitors. Analysis of 3D-QSAR models provided novel pyrimidine sulfonamide hybrid BRAFV600E inhibitors. The designed compounds share similarities with several structural moieties present in first- and second-generation BRAF inhibitors. A total library of 88 designed compounds was generated and molecular docking studies were performed with them. Four molecules (T109, T183, T160, and T126) were identified as hits and selected for detailed studies. Molecular dynamics simulations were performed at 900 ns and binding was calculated. Based on molecular docking and simulation studies, it was found that the designed compounds have better interactions with the core active site [the nucleotide (ADP or ATP) binding site, DFG motif, and the phospho-acceptor site (activation segment) of BRAFV600E protein than previous inhibitors. Similar to the FDA-approved BRAFV600E inhibitors the developed compounds have [αC-OUT/DFG-IN] conformation. Compounds T126, T160 and T183 interacted with DIF (Leu505), making them potentially useful against BRAFV600E resistance and malignancies induced by dimer BRAF mutants. The synthesis and biological evaluation of the designed molecules is in progress, which may lead to some potent BRAFV600E selective inhibitors.
Collapse
Affiliation(s)
- Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka Rijeka 51000 Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka Rijeka 51000 Croatia
- Scientific and Educational Center 'Biomedical Technologies' School of Medical Biology, South Ural State University Chelyabinsk RU-454080 Russia
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Amita Verma
- Department of Pharmaceutical Sciences, Bioorganic and Medicinal Chemistry Research Laboratory, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Bioorganic and Medicinal Chemistry Research Laboratory, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Pharmacology, Kamla Nehru Institute of Management and Technology Faridipur Sultanpur 228118 India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Vikas Pathania
- Clinical Microbiology & Bioactive Screening Laboratory, Council of Scientifc & Industrial Research -Institute of Microbial Technology Sector-39A Chandigarh 160036 India
| | - Hemraj Nandanwar
- Clinical Microbiology & Bioactive Screening Laboratory, Council of Scientifc & Industrial Research -Institute of Microbial Technology Sector-39A Chandigarh 160036 India
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|