1
|
Sheng N, Wang YQ, Wang CF, Jia MQ, Niu HM, Lu QQ, Wang YN, Feng D, Zheng XX, Yuan HQ. AGR2-induced cholesterol synthesis drives lovastatin resistance that is overcome by combination therapy with allicin. Acta Pharmacol Sin 2022; 43:2905-2916. [PMID: 35459869 PMCID: PMC9622889 DOI: 10.1038/s41401-022-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/02/2022] [Indexed: 11/09/2022]
Abstract
Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a multifunctional protein under physiological and pathological conditions. In this study we investigated the roles of AGR2 in regulating cholesterol biogenesis, lipid-lowering efficiency of lovastatin as well as in protection against hypercholesterolemia/statin-induced liver injury. We showed that AGR2 knockout significantly decreased hepatic and serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in mice with whole-body or hepatocyte-specific Agr2-null mutant, compared with the levels in their wild-type littermates fed a normal chow diet (NCD) or high-fat diet (HFD). In contrast, mice with AGR2 overexpression (Agr2/Tg) exhibited an increased cholesterol level. Mechanistic studies revealed that AGR2 affected cholesterol biogenesis via activation of AKT/sterol regulatory element-binding protein-2 (SREBP2), to some extent, in a PDI motif-dependent manner. Moreover, elevated AGR2 led to a significant decrease in the lipid-lowering efficacy of lovastatin (10 mg· kg-1· d-1, ip, for 2 weeks) in mice with hypercholesterolemia (hyperCho), which was validated by results obtained from clinical samples in statin-treated patients. We showed that lovastatin had limited effect on AGR2 expression, but AGR2 was inducible in Agr2/Tg mice fed a HFD. Further investigations demonstrated that drug-induced liver toxicity and inflammatory reactions were alleviated in hypercholesterolemic Agr2/Tg mice, suggesting the dual functions of AGR2 in lipid management and hyperCho/statin-induced liver injury. Importantly, the AGR2-reduced lipid-lowering efficacy of lovastatin was attenuated, at least partially, by co-administration of a sulfhydryl-reactive compound allicin (20 mg· kg-1· d-1, ip, for 2 weeks). These results demonstrate a novel role of AGR2 in cholesterol metabolism, drug resistance and liver protection, suggesting AGR2 as a potential predictor for selection of lipid-lowering drugs in clinic.
Collapse
Affiliation(s)
- Nan Sheng
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
| | - Yun-Qiu Wang
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
| | - Cun-Fu Wang
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
| | - Meng-Qi Jia
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
| | - Huan-Min Niu
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
| | - Qi-Qi Lu
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
| | - Ya-Nan Wang
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
| | - Dan Feng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Xiao-Xue Zheng
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
| | - Hui-Qing Yuan
- Key Laboratory of Experimental Teratology of Ministry of Education, Institute of Medical Sciences/Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
| |
Collapse
|
2
|
Pak VV, Khojimatov OK, Pak AV, Sagdullaev SS, Yun L. Design of Tetrapeptides as a Competitive Inhibitor for HMG-CoA Reductase and Modeling Recognized Sequence as a β-Turn Structure. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Pak VV, Khojimatov OK, Pak AV, Sh. Sagdullaev S. Design of competitive inhibitory peptides for HMG-CoA reductase and modeling structural preference for short linear peptides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Keshavarz Alikhani H, Pourhamzeh M, Seydi H, Shokoohian B, Hossein-khannazer N, Jamshidi-adegani F, Al-Hashmi S, Hassan M, Vosough M. Regulatory Non-Coding RNAs in Familial Hypercholesterolemia, Theranostic Applications. Front Cell Dev Biol 2022; 10:894800. [PMID: 35813199 PMCID: PMC9260315 DOI: 10.3389/fcell.2022.894800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jamshidi-adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Massoud Vosough,
| |
Collapse
|
5
|
Hoti G, Matencio A, Rubin Pedrazzo A, Cecone C, Appleton SL, Khazaei Monfared Y, Caldera F, Trotta F. Nutraceutical Concepts and Dextrin-Based Delivery Systems. Int J Mol Sci 2022; 23:4102. [PMID: 35456919 PMCID: PMC9031143 DOI: 10.3390/ijms23084102] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (G.H.); (A.M.); (A.R.P.); (C.C.); (S.L.A.); (Y.K.M.); (F.C.)
| |
Collapse
|
6
|
Pak VV, Kwon DY, Khojimatov OK, Pak AV, Sagdullaev SS. Design of Tripeptides as a Competitive Inhibitor for HMG-CoA Reductase. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10221-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Ren Z, Yang Z, Lu Y, Zhang R, Yang H. Anti‑glycolipid disorder effect of epigallocatechin‑3‑gallate on high‑fat diet and STZ‑induced T2DM in mice. Mol Med Rep 2020; 21:2475-2483. [PMID: 32236613 PMCID: PMC7185284 DOI: 10.3892/mmr.2020.11041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is beneficial for inhibiting dyslipidemia and reducing hyperlipidemic risk. The purpose of the present study was to investigate the glycolipid regulatory effects and potential mechanisms of EGCG in a high-fat diet and streptozotocin-induced type 2 diabetes mellitus (T2DM) mouse model. The results demonstrated that EGCG can decrease blood glucose levels and increase insulin resistance in T2DM mice. In addition, EGCG can regulate serum lipid levels, including those of total cholesterol, triglyceride and low-density lipoprotein receptor (LDL-r), and reduce lipid deposition in vascular endothelial cells in a dose-dependent manner. In addition, the gene and protein expression of related scavenger receptors, including cluster of differentiation 36, sterol regulatory element binding protein 2 (SREBP), SREBP cleavage-activating protein and LDL-r, were downregulated in a dose-dependent manner. The present study noted that EGCG possesses potential as a natural product for preventing and treating metabolic hyperlipidemia syndrome, probably by reducing the blood lipid levels, alleviating vascular endothelial cell damage, maintaining normal lipid metabolism in blood vessels and ameliorating glycolipid disorders.
Collapse
Affiliation(s)
- Zhongkun Ren
- Department of Medical Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhiyong Yang
- Department of Medical Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rongping Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hui Yang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
8
|
LongShengZhi Capsule Reduces Established Atherosclerotic Lesions in apoE-Deficient Mice by Ameliorating Hepatic Lipid Metabolism and Inhibiting Inflammation. J Cardiovasc Pharmacol 2020; 73:105-117. [PMID: 30540683 DOI: 10.1097/fjc.0000000000000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disorders of lipid metabolism and inflammation play an important role in atherosclerosis. LongShengZhi (LSZ) capsule, a Chinese herbal medicine, has been used for treatment of patients with vascular diseases for many years. In this article, we determined the effect of LSZ on the progression of established atherosclerotic lesions in apoE-deficient (apoE) mice. ApoE mice were prefed high-fat diet (HFD) for 8 weeks to induce atherosclerosis, then started with LSZ treatment contained in HFD for 10 weeks. Although LSZ had little effect on HFD-induced hypercholesterolemia, it substantially reduced en face and sinus aortic lesions. The reduction of lesions was associated with reduced macrophage/foam cell accumulation by activating ABCA1/ABCG1 expression. LSZ maintained the integrity of arterial wall by increasing collagen or smooth muscle cell content and inhibiting cell apoptosis. LSZ also attenuated HFD-induced fatty liver by down-regulating expression of lipogenic and cholesterol synthetic genes while activating expression of triglyceride catabolism genes. Moreover, LSZ demonstrated potent anti-inflammatory effects. In vivo, LSZ reduced serum TNF-α levels, infiltration of neutrophils, Kupffer cells, and expression of inflammatory cytokines in the liver. In vitro, it inhibited lipopolysaccharide or palmitate-induced expression of inflammatory cytokines in macrophages. Therefore, LSZ reduces atherosclerosis by ameliorating hepatic lipid metabolism and inhibiting inflammation.
Collapse
|
9
|
Pastores GM, Hughes DA. Lysosomal Acid Lipase Deficiency: Therapeutic Options. Drug Des Devel Ther 2020; 14:591-601. [PMID: 32103901 PMCID: PMC7023879 DOI: 10.2147/dddt.s149264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Lysosomal acid lipase (LAL) deficiency is a metabolic (storage) disorder, encompassing a severe (Wolman disease) and attenuated (Cholesterol ester storage disease) subtype; both inherited as autosomal recessive traits. Cardinal clinical features include the combination of hepatic dysfunction and dyslipidemia, as a consequence of cholesteryl esters and triglyceride accumulation, predominately in the liver and vascular and reticuloendothelial system. Significant morbidity can arise, due to liver failure and/or atherosclerosis; in part related to the severity of the underlying gene defect and corresponding enzyme deficiency. Diagnosis is based on demonstration of decreased LAL enzyme activity, complemented by analysis of the cognate gene defects. Therapeutic options include dietary manipulation and the use of lipid-lowering drugs. Sebelipase alfa, a recombinant enzyme replacement therapy, has garnered regulatory approval, following demonstration of improvements in disease-relevant markers and clinical benefit in clinical trials, which included increased survival in the most severe cases.
Collapse
Affiliation(s)
- Gregory M Pastores
- Department of Medicine (Genetics)/National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital and University College Dublin, Dublin, Ireland
| | - Derralynn A Hughes
- Royal Free London NHS Foundation Trust, University College London, LondonNW3 2QG, UK
| |
Collapse
|
10
|
Zhou H, Gong Y, Wu Q, Ye X, Yu B, Lu C, Jiang W, Ye J, Fu Z. Rare Diseases Related with Lipoprotein Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:171-188. [PMID: 32705600 DOI: 10.1007/978-981-15-6082-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rare diseases are gathering increasing attention in last few years, not only for its effects on innovation scientific research, but also for its propounding influence on common diseases. One of the most famous milestones made by Michael Brown and Joseph Goldstein in metabolism field is the discovery of the defective gene in familial hypercholesterolemia, a rare human genetic disease manifested with extreme high level of serum cholesterol (Goldstein JL, Brown MS, Proc Natl Acad Sci USA 70:2804-2808, 1973; Brown MS, Dana SE, Goldstein JL, J Biol Chem 249:789-796, 1974). Follow-up work including decoding the gene function, mapping-related pathways, and screening therapeutic targets are all based on the primary finding (Goldstein JL, Brown MS Arterioscler Thromb Vasc Biol 29:431-438, 2009). A series of succession win the two brilliant scientists the 1985 Nobel Prize, and bring about statins widely used for lipid management and decreasing cardiovascular disease risks. Translating the clinical extreme phenotypes into laboratory bench work has turned out to be the first important step in the paradigm conducting translational and precise medical research. Here we review the main categories of rare disorders related with lipoprotein metabolism, aiming to strengthen the notion that human rare inheritable genetic diseases would be the window to know ourselves better, to treat someone more efficiently, and to lead a healthy life longer. Few rare diseases related with lipoprotein metabolism were clustered into six sections based on changes in lipid profile, namely, hyper- or hypocholesterolemia, hypo- or hyperalphalipoproteinemia, abetalipoproteinemia, hypobetalipoproteinemia, and sphingolipid metabolism diseases. Each section consists of a brief introduction, followed by a summary of well-known disease-causing genes in one table, and supplemented with one or two diseases as example for detailed description. Here we aimed to raise more attention on rare lipoprotein metabolism diseases, calling for more work from basic research and clinical trials.
Collapse
Affiliation(s)
- Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinyi Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Baowen Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenyan Lu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanzi Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingya Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Yin J, Wang J, Li F, Yang Z, Yang X, Sun W, Xia B, Li T, Song W, Guo S. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice. Food Funct 2019; 10:5124-5139. [PMID: 31364648 DOI: 10.1039/c9fo00619b] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Hyperlipidemia is a major cause of atherosclerosis. Reverse cholesterol transport (RCT) is believed to attenuate hyperlipidemia and the progression of atherosclerosis. Although fucoidans are reported to have hypolipidemic effects, the underlying mechanisms are unclear. Furthermore, few reports have revealed the anti-atherosclerotic effects and the underlying mechanisms of fucoidans. This study was designed to investigate the anti-atherosclerotic effect and mechanisms of the fucoidan from seaweed A. nodosum. Our results demonstrated that the fucoidan administration ameliorated atherosclerotic lesion and lipid profiles in a dose-dependent manner in the apolipoprotein E-deficient (apoE-/-) mice fed a high-fat diet. In the apoE-/- mice liver, the fucoidan treatment significantly increased the expression of scavenger receptor B type 1 (SR-B1), peroxisome proliferator-activated receptor (PPAR) α and β, liver X receptor (LXR) α, ATP-binding cassette transporter (ABC) A1 and ABCG8; and markedly decreased the expression of PPARγ and sterol regulatory element-binding protein (SREBP) 1c, but not low-density lipoprotein receptor, proprotein convertase subtilisin/kexin type 9, cholesterol 7 alpha-hydroxylase A1, LXRβ and ABCG1. In the small intestine of the apoE-/- mice, the fucoidan treatment significantly reduced the expression of Niemann-Pick C1-like 1 (NPC1L1) and dramatically improved ABCG8 levels. These results demonstrated for the first time that the fucoidan from A. nodosum attenuated atherosclerosis by regulating RCT-related genes and proteins expression in apoE-/- mice. In summary, this fucoidan from A. nodosum may be explored as a potential compound for prevention or treatment of hyperlipidemia-induced atherosclerosis.
Collapse
Affiliation(s)
- Jiayu Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Brown M, Ahmed S. Emerging role of proprotein convertase subtilisin/kexin type-9 (PCSK-9) in inflammation and diseases. Toxicol Appl Pharmacol 2019; 370:170-177. [PMID: 30914377 DOI: 10.1016/j.taap.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is most recognized serine protease for its role in cardiovascular diseases (CVD). PCSK9 regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by selectively targeting hepatic LDL receptors (LDLR) for degradation, thereby serving as a potential therapeutic target for CVD. New pharmacological agents under development aim to lower the risk of CVD by inhibiting PCSK9 extracellularly, although secondary effects of this approach are not yet studied. Here we review the history of PCSK9 and rationale behind developing inhibitors for CVD. Importantly, we summarized the studies investigating the role and impact of modulated PCSK9 levels in inflammation, specifically in sepsis, rheumatoid arthritis and other chronic inflammatory conditions. Furthermore, we summarized studies that investigated the interactions of PCSK9 with pro-inflammatory pathways, such as scavenger receptor CD36 and thrombospondin 1 (TSP-1) in inflammatory diseases. This review highlights the conflicting role that PCSK9 plays in different inflammatory disease states and postulates that any unwanted effects of PCSK9 inhibition in early clinical testing should critically be examined.
Collapse
Affiliation(s)
- Madalyn Brown
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA; Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
13
|
Yang D, Hu C, Deng X, Bai Y, Cao H, Guo J, Su Z. Therapeutic Effect of Chitooligosaccharide Tablets on Lipids in High-Fat Diets Induced Hyperlipidemic Rats. Molecules 2019; 24:molecules24030514. [PMID: 30709014 PMCID: PMC6385166 DOI: 10.3390/molecules24030514] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 01/14/2023] Open
Abstract
Chitooligosaccharide is beneficial for inhibiting dyslipidemia and reducing atherosclerotic and hyperlipidemic risk. The purpose of this study was to investigate the cholesterol-regulating effects and potential mechanisms of Chitooligosaccharide tablets (CFTs) in high-fat diet-induced hyperlipidemic rats. The results revealed that CFTs can regulate serum lipid levels in hyperlipidemic rats in a dosage-dependent manner. Synchronously, gene expressions related to cholesterol excretion were upregulated in a dosage-dependent manner, including cholesterol 7α-hydroxylase (CYP7A1), liver X receptor α (LXRA), peroxisome proliferation-activated receptor-α (PPARα) and low-density lipoprotein receptor (LDLR), whereas cholesterol synthetic gene expressions including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and sterol-responsive element binding protein-2 (SREBP2) were reduced. This work highlights that CFTs have potential as natural products to prevent and treat metabolic hyperlipidemia syndrome, probably due to the reduction of cholesterol biosynthesis and through cholesterol elimination; they also improve the pathological changes of liver tissue in rats, alleviate liver damage, maintain normal lipid metabolism in the liver, ameliorate hepatic glycolipid disorders and accelerate TC operation, and reduce blood lipid levels.
Collapse
Affiliation(s)
- Di Yang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Canji Hu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yan Bai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Li X, Wang H, Wang T, Zheng F, Wang H, Wang C. Dietary wood pulp-derived sterols modulation of cholesterol metabolism and gut microbiota in high-fat-diet-fed hamsters. Food Funct 2019; 10:775-785. [DOI: 10.1039/c8fo02271b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wood pulp-derived sterols (WS) supplementation ameliorated HFD-associated metabolic disorder; WS supplementation increased the amounts of fecal sterols excretion and SCFAs content; WS supplementation modulated gut microbiota composition.
Collapse
Affiliation(s)
- Xiang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
- Beijing Laboratory of Food Quality and Safety
| | - Huali Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology (TUST)
- Tianjin 300457
- China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology (TUST)
- Tianjin 300457
- China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Hao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
- State Key Laboratory of Food Nutrition and Safety
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| |
Collapse
|