1
|
Sun Q, Hong S. Glycoscience in Advancing PD-1/PD-L1-Axis-Targeted Tumor Immunotherapy. Int J Mol Sci 2025; 26:1238. [PMID: 39941004 PMCID: PMC11818636 DOI: 10.3390/ijms26031238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Immune checkpoint blockade therapy, represented by anti-PD-1/PD-L1 monoclonal antibodies, has significantly changed the immunotherapy landscape. However, the treatment is still limited by unsatisfactory response rates, immune-related adverse effects, and drug resistance. Current studies have established that glycosylation, a common post-translational modification, is crucial in promoting cancer progression and immune invasion. Targeting aberrant glycosylation in cancers presents precision medicine regimens for monitoring cancer progression and developing personalized medicine. Notably, the immune checkpoints PD-1 and PD-L1 are highly glycosylated, which affects PD-1/PD-L1 interaction and the binding of anti-PD-1/PD-L1 monoclonal antibodies. Recent achievements in glycoscience to enhance patient outcomes, referred to as glycotherapy, have underscored their high potency in advancing PD-1/PD-L1 blockade therapies, i.e., glycoengineered antibodies with improved binding toward PD-1/PD-L1, pharmaceutic inhibitors for core fucosylation and sialylation, and synergistic treatment with the antibody-sialidase conjugate. This review briefly introduces the PD-1/PD-L1 axis and glycosylation and highlights the fundamental and applied advances in glycoscience that improve PD-1/PD-L1 immunoblockade therapies.
Collapse
Affiliation(s)
| | - Senlian Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| |
Collapse
|
2
|
Wang Y, Qin Y, Wu C, Chen J, Zhang Y, Chen Y, Xie X, Gao X, Sun C, Liu S. OSU-T315 overcomes immunosuppression in triple-negative breast cancer by targeting the ILK/NF-κB signaling pathway to enhance immunotherapeutic efficacy. Int Immunopharmacol 2024; 143:113530. [PMID: 39515039 DOI: 10.1016/j.intimp.2024.113530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Triple negative breast cancer (TNBC) is an aggressive and immunogenic subtype of breast cancer. The absence of biomarker has given immune checkpoint inhibitors (ICIs) a broad prospect in this type of breast cancer. The infiltration of regulatory T cells (Tregs) expressing transcription factor forkhead box P3 (Foxp3) in the tumor microenvironment (TME) is the key factor leading to ICIs resistance. Therefore, elimination of tumor antigen-specific Tregs may be an important aspect of improving ICIs efficacy. In this study, it based on the Gene Expression Omnibus and The Cancer Genome Atlas database, along with in vivo and in vitro experimental models, to verified that the high expression of integrin-linked kinase (ILK) in TNBC is the key differential factor leading to the high infiltration of Foxp3+-Tregs in the TME. Then, we selected ILK-specific inhibitor, OSU-T315, to intervene in vitro and vivo. Importantly, we found that OSU-T315 blocked the secretion of CCL17/CCL22 in tumor cells by inhibiting the ILK/NF-κB pathway, resulting in the apoptosis of Foxp3+-Tregs and decreased programmed cell death-1 (PD-1) expression. Therefore, our findings indicate a novel mechanism of OSU-T315 with potential therapeutic application in TNBC.
Collapse
Affiliation(s)
- Yi Wang
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China; Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Postgraduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuenong Qin
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Chunyu Wu
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jiajing Chen
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yang Zhang
- Thyroid and Breast Surgery Department, Affiliated Hospital to Shandong University of Traditional Chinese Medicine, Shandong 250000, China
| | - Yueqiang Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaohong Xie
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China
| | - Xiufei Gao
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China
| | - Chenping Sun
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| | - Sheng Liu
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Postgraduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
4
|
Chen B, Liu Y, He Y, Shen C. Pan-cancer analysis of prognostic and immunological role of IL4I1 in human tumors: a bulk omics research and single cell sequencing validation. Discov Oncol 2024; 15:139. [PMID: 38691253 PMCID: PMC11063023 DOI: 10.1007/s12672-024-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Interleukin-4 inducible gene 1 (IL4I1) regulates tumor progression in numerous tumor types. However, its correlation with immune infiltration and prognosis of patients in a pan-cancer setting remains unclear. METHODS Data from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), UALCAN, Clinical Proteomic Tumor Analysis Consortium (CPTAC), Gene Expression Omnibus (GEO), cBioPortal, Cancer Single-cell State Atlas (CancerSEA), and Tumor IMmune Estimation Resource(TIMER) databases were used to evaluate IL4I1 expression, clinical features and prognostic effects, gene set enrichment, and correlation with immune cell infiltration, as well as the relationship between IL4I1 methylation and expression and survival prognosis. Correlations with 192 anticancer drugs were also analyzed. RESULTS IL4I1 was significantly overexpressed in the majority of tumors, and the imbalance of IL4I1 was significantly correlated with overall survival and pathological stage. Moreover, total IL4I1 protein was increased in cancer. Therefore, IL4I1 may be used as a prognostic biomarker or protective factor in numerous types of cancer. The methylation level of IL4I1 may also be used as a prognostic marker. The functional enrichment of IL4I1 was closely related to the immunomodulatory pathway. In addition, the level of tumor-associated macrophage infiltration was positively correlated with the expression of IL4I1 in pan-cancerous tissues. scRNA-seq analysis suggested that IL4I1 differ significantly among different cells in the tumor microenvironment and was most enriched in macrophages. Various immune checkpoint genes were positively correlated with IL4I1 expression in most tumors. In addition, patients with high IL4I1 expression may be resistant to BMS-754807 and docetaxel, but sensitive to temozolomide. CONCLUSION IL4I1 may play a role as promoter of cancer and prognostic indicator in patients. High expression of IL4I1 is associated with the state of tumor immunosuppression and may contribute to tumor-associated macrophage invasion. Therefore, IL4I1 may be a new therapeutic target for the treatment and prognosis of patients with cancer.
Collapse
Affiliation(s)
- Bin Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Liu
- Emergency Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuping He
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Wang Y, Wang J, Jiang J, Zhang W, Sun L, Ge Q, Li C, Li X, Li X, Shi S. Identification of cuproptosis-related miRNAs in triple-negative breast cancer and analysis of the miRNA-mRNA regulatory network. Heliyon 2024; 10:e28242. [PMID: 38601669 PMCID: PMC11004712 DOI: 10.1016/j.heliyon.2024.e28242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The close association between cuproptosis and tumor immunity in triple-negative breast cancer (TNBC) allows its monitoring for predicting the prognosis of patients with TNBC. Nevertheless, the biological function and prognostic value of cuproptosis-related miRNAs and their target genes have not been reported. Purpose To construct the miRNA and mRNA-based risk models associated with cuproptosis for patients with TNBC. Methods Comparison of expression levels for genes associated with cuproptosis was executed between patients in the normal individuals and the TCGA-TNBC cohort. Conducting differential analysis resulted in the identification of differentially expressed miRNA (DE-miRNAs) and differentially expressed genes (DEGs) between the TNBC and Control samples. Screening for prognostic miRNAs and biomarkers involved employing univariate Cox analysis and least absolute shrinkage and selection operator regression analyses. These methods were utilized to construct risk models aimed at predicting the survival of patients with TNBC. Based on the median value of risk scores, patients were then stratified into low- and high-risk groups. Functional enrichment analysis was employed to explore the potential function and pathways of prognostic genes. Additionally, independent prognostic analysis was performed through univariate and multivariate Cox regression. Immune infiltration analysis was performed to examine disparities in the infiltration of immune cells between the two risk groups. Finally, the prognostic gene expression was mined in key cell types of TNBC. Results We obtained 5213 DEGs and 204 DE-miRNAs related to cuproptosis between TNBC and Control samples. Five prognostic miRNAs (miR-203a-3p, miR-1277-3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were closely associated with TNBC. Significant differences in the functions of prognostic genes between the two risk groups were observed, encompassing adipogenesis, inflammatory response, and hormone metabolic process. The prognostic gene regulatory network revealed that miR200C-3p regulated ZFPM2 and CFL2, and miR-1277-3p regulated BMP2 and RORA. A nomogram was created based on riskScore, cancer status, and pathologic stage to predict 1/3/5-year survival of patients with TNBC. Immune infiltration analysis indicated that the immune microenvironment may be associated with the progression of TNBC. Interestingly, prognostic genes exhibited higher expression levels in T cells, fibroblasts, endothelial cells, and monocytes compared to other cells. Conclusions Five prognostic miRNA (miR-203a-3p, miR-1277-3p, miR-135b-5p, miR-200c-3p, and miR-592) and three biomarkers (DENND5B, IGF1R, and MEF2C) were significantly associated with TNBC, it provides new therapeutic targets for the treatment and prognosis of TNBC.
Collapse
Affiliation(s)
- Yitao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jundan Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jing Jiang
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Wei Zhang
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Long Sun
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Qidong Ge
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Chao Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xinlin Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xujun Li
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Shenghong Shi
- Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Oncology, Ningbo No.2 Hospital, Ningbo, 315010, China
- Department of Breast Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| |
Collapse
|
6
|
Festari MF, Jara E, Costa M, Iriarte A, Freire T. Truncated O-glycosylation in metastatic triple-negative breast cancer reveals a gene expression signature associated with extracellular matrix and proteolysis. Sci Rep 2024; 14:1809. [PMID: 38245559 PMCID: PMC10799929 DOI: 10.1038/s41598-024-52204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
Breast cancer (BC) is the leading cause of death by cancer in women worldwide. Triple-negative (TN) BC constitutes aggressive and highly metastatic tumors associated with shorter overall survival of patients compared to other BC subtypes. The Tn antigen, a glycoconjugated structure resulting from an incomplete O-glycosylation process, is highly expressed in different adenocarcinomas, including BC. It also favors cancer growth, immunoregulation, and metastasis in TNBC. This work describes the differentially expressed genes (DEGs) associated with BC aggressiveness and metastasis in an incomplete O-glycosylated TNBC cell model. We studied the transcriptome of a TNBC model constituted by the metastatic murine 4T1 cell line that overexpresses the Tn antigen due to a mutation in one of the steps of the O-glycosylation pathway. We analyzed and compared the results with the parental wild-type cell line and with a Tn-negative cell clone that was poorly metastatic and less aggressive than the 4T1 parental cell line. To gain insight into the generated expression data, we performed a gene set analysis. Biological processes associated with cancer development and metastasis, immune evasion, and leukocyte recruitment were highly enriched among functional terms of DEGs. Furthermore, different highly O-glycosylated protein-coding genes, such as mmp9, ecm1 and ankyrin-2, were upregulated in 4T1/Tn+ tumor cells. The altered biological processes and DEGs that promote tumor growth, invasion and immunomodulation might explain the aggressive properties of 4T1/Tn+ tumor cells. These results support the hypothesis that incomplete O-glycosylation that leads to the expression of the Tn antigen, which might regulate activity or interaction of different molecules, promotes cancer development and immunoregulation.
Collapse
Affiliation(s)
- María Florencia Festari
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Monique Costa
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Dr. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay.
| |
Collapse
|
7
|
Lin L, Chen X, Lin G, Chen L, Xu Y, Zeng Y. FUT3 facilitates glucose metabolism of lung adenocarcinoma via activation of NF-κB pathway. BMC Pulm Med 2023; 23:436. [PMID: 37946130 PMCID: PMC10636925 DOI: 10.1186/s12890-023-02688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Fucosyltransferases (FUTs) molecules have been identified to be involved in carcinogenesis of malignant tumors. Nevertheless, the biological function of fucosyltransferases-3 (FUT3) in lung adenocarcinoma (LUAD) malignant phenotype remains unclear. Herein, we investigated the association between FUT3 and LUAD pathological process. METHODS Immunochemistry, RT-qPCR and western blot assays were conducted to evaluate the expression of FUT3 in LUAD and corresponding adjacent tissues. The prognostic value of FUT3 was assessed via Kaplan‑Meier plotter database. The biological process and potential mechanism of FUT3 in LUAD were conducted via GSEA. Additionally, immunofluorescence and metabolite activity detection were performed to determine the potential role of FUT3 in LUAD glucose metabolism. The active biomarkers associated with NF-κB signaling pathway were detected via western blot. Subcutaneous tumor model was conducted to analyze the effect of FUT3 on tumorigenesis of LUAD. RESULTS FUT3 was remarkably upregulated in LUAD tissues compared with adjacent tissues from individuals. FUT3 overexpression may predict poor prognosis of LUAD patients. Knockdown of FUT3 significantly inhibited tumor proliferation, migration and glucometabolic alteration in LUAD cells. Moreover, GSEA demonstrated that elevated FUT3 was positively related to NF-κB signaling pathway. Additionally, in vitro and in vivo assays also indicated that downregulation of FUT3 resulted in the suppression of oncogenesis and glucose metabolism via inactivation of NF-κB pathway. CONCLUSION Our findings demonstrated that FUT3 was involved in glucometabolic process and tumorigenesis of LUAD via NF-κB signaling pathway. FUT3 may be an optimal target for diagnosis and treatment of LUAD patients.
Collapse
Affiliation(s)
- Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, Quanzhou, Fujian Province, 362000, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, 350000, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
8
|
Li T, Shi J, Wang L, Qin X, Zhou R, Dong M, Ren F, Li X, Zhang Z, Chen Y, Liu Y, Piao Y, Shi Y, Xu S, Chen J, Li J. Thymol targeting interleukin 4 induced 1 expression reshapes the immune microenvironment to sensitize the immunotherapy in lung adenocarcinoma. MedComm (Beijing) 2023; 4:e355. [PMID: 37655051 PMCID: PMC10466095 DOI: 10.1002/mco2.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Immune checkpoint blockades are the most promising therapy in lung adenocarcinoma (LUAD). However, the response rate remains limited, underscoring the urgent need for effective sensitizers. Interleukin 4 induced 1 (IL4I1) is reported to have immunoinhibitory and tumor-promoting effects in several cancers. However, the targetable value of IL4I1 in sensitizing the immunotherapy is not clear, and there is a lack of effective small molecules that specifically target IL4I1. Here, we show that silencing IL4I1 significantly remodels the immune microenvironment via inhibiting aryl hydrocarbon receptor (AHR) signaling, thereby enhancing the efficacy of anti-PD-1 antibody in LUAD, which suggests that IL4I1 is a potential drug target for the combination immunotherapy. We then identify thymol as the first small molecule targeting IL4I1 transcription through a drug screening. Thymol inhibits the IL4I1 expression and blocks AHR signaling in LUAD cells. Thymol treatment restores the antitumor immune response and suppresses the progression of LUAD in an orthotopic mouse model. Strikingly, the combination treatment of thymol with anti-PD-1 antibody shows significant tumor regression in LUAD mice. Thus, we demonstrate that thymol is an effective small molecule to sensitize the PD-1 blockade in LUAD via targeting IL4I1, which provides a novel strategy for the immunotherapy of LUAD.
Collapse
Affiliation(s)
- Tong Li
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jie Shi
- School of MedicineNankai UniversityTianjinChina
| | | | - Xuan Qin
- Department of Thyroid and Neck TumorTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Rui Zhou
- School of MedicineNankai UniversityTianjinChina
| | - Ming Dong
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Fan Ren
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Xin Li
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Zihe Zhang
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Yanan Chen
- School of MedicineNankai UniversityTianjinChina
| | - Yanhua Liu
- School of MedicineNankai UniversityTianjinChina
| | | | - Yi Shi
- School of MedicineNankai UniversityTianjinChina
| | - Song Xu
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jun Chen
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor MicroenvironmentLung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jia Li
- School of MedicineNankai UniversityTianjinChina
| |
Collapse
|
9
|
Xie H, Qin C, Zhou X, Liu J, Yang K, Nong J, Luo J, Peng T. Prognostic value and potential molecular mechanism of ITGB superfamily members in hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e34765. [PMID: 37603520 PMCID: PMC10443747 DOI: 10.1097/md.0000000000034765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
We analyzed the prognostic value and potential molecular mechanisms of the members of integrin β (ITGB)superfamily in hepatocellular carcinoma (HCC) using data from The Cancer Genome Atlas (TCGA), cBioPortal, Gene Expression Profiling Interactive Analysis (GEPIA), Human Protein Atlas (HPA) HPA, Search Tool for the Retrieval of Interacting Genes/Proteins, GeneMANIA, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), TIMER and Gene set enrichment analysis (GSEA) databases. ITGB4/5 mRNA was upregulated in HCC tissues in contrast to the normal liver tissues, whereas ITGB2/3/8 levels were lower in the former. ITGB4 was the most frequently mutated ITGB gene in HCC. Receiver operating characteristic curve (ROC) analysis showed that the expression levels of ITGB2/3/4/5/7/8 had significant diagnostic value in distinguishing HCC tissues from healthy liver tissues, ITGB8 had the highest diagnostic efficacy. The ITGB1/3/6/8 were also upregulated in the HCC tissues in contrast to healthy liver tissues. The expression of ITGB8 was verified by immunohistochemistry (IHC). Furthermore, ITGB6 and ITGB7 expression levels were strongly associated with the overall survival (OS) of HCC patients. The ITGB superfamily members exhibited homology and interactions in protein structure. In addition, ITGB6 together with ITGB7 were negatively related to the infiltration of multiple immune cell populations. GSEA results showed that ITGB6 was enriched in HCC migration and recurrence, whereas ITGB7 was significantly enriched in HIPPO, TOLL and JAK-STAT signaling pathways. In conclusion, ITGB6 and ITGB7 genes are possible to be prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chongjiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Kejian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jusen Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jianzhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
10
|
Qiao R, Di F, Wang J, Wei Y, Xu T, Dai L, Gu W, Han B, Yang R. Identification of FUT7 hypomethylation as the blood biomarker in the prediction of early-stage lung cancer. J Genet Genomics 2023; 50:573-581. [PMID: 36898609 DOI: 10.1016/j.jgg.2023.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023]
Abstract
Early detection of lung cancer (LC) is vital for reducing LC-related mortality. However, noninvasive diagnostic tools remain a great challenge. We aim to identify blood-based biomarkers for the early detection of LC. Here, LC-associated hypomethylation in alpha-1,3-fucosyltransferase VII (FUT7) is identified via the Illumina 850K array in a discovery study and validated by mass spectrometry in two independent case-control studies with blood samples from 1720 LC patients (86.8% LC at stage I, blood is collected before surgery and treatment) and 3143 healthy controls. Compared to the controls, blood-based FUT7 hypomethylation is identified in LC patients at stage I, and even in LC patients with malignant nodules ≤ 1 cm and in patients with adenocarcinoma in situ. Gender plays a role in the LC-associated FUT7 hypomethylation in blood, which is more significant in males than in females. We also reveal that FUT7 hypomethylation in LC could be enhanced by the advanced stage of cancer, involvement of lymph nodes, and larger tumor size. Based on a large sample size and semi-quantitative methods, our study reveals a strong association between blood-based FUT7 hypomethylation and LC, suggesting that methylation signatures in blood may be a group of potential biomarkers for detection of early-stage LC.
Collapse
Affiliation(s)
- Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Feifei Di
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, Jiangsu 210061, China
| | - Jun Wang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, Jiangsu 210061, China
| | - Yujie Wei
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, Jiangsu 210061, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| | - Rongxi Yang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, Jiangsu 210061, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
11
|
Patient-specific identification of genome-wide DNA-methylation differences between intracranial and extracranial melanoma metastases. Sci Rep 2023; 13:444. [PMID: 36624125 PMCID: PMC9829750 DOI: 10.1038/s41598-022-24940-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Melanomas frequently metastasize to distant organs and especially intracranial metastases still represent a major clinical challenge. Epigenetic reprogramming of intracranial metastases is thought to be involved in therapy failure, but so far only little is known about patient-specific DNA-methylation differences between intra- and extracranial melanoma metastases. Hierarchical clustering of the methylomes of 24 patient-matched intra- and extracranial melanoma metastases pairs revealed that intra- and extracranial metastases of individual patients were more similar to each other than to metastases in the same tissue from other patients. Therefore, a personalized analysis of each metastases pair was done by a Hidden Markov Model to classify methylation levels of individual CpGs as decreased, unchanged or increased in the intra- compared to the extracranial metastasis. The predicted DNA-methylation alterations were highly patient-specific differing in the number and methylation states of altered CpGs. Nevertheless, four important general observations were made: (i) intracranial metastases of most patients mainly showed a reduction of DNA-methylation, (ii) cytokine signaling was most frequently affected by differential methylation in individual metastases pairs, but also MAPK, PI3K/Akt and ECM signaling were often altered, (iii) frequently affected genes were mainly involved in signaling, growth, adhesion or apoptosis, and (iv) an enrichment of functional terms related to channel and transporter activities supports previous findings for a brain-like phenotype. In addition, the derived set of 17 signaling pathway genes that distinguished intra- from extracranial metastases in more than 50% of patients included well-known oncogenes (e.g. PRKCA, DUSP6, BMP4) and several other genes known from neuronal disorders (e.g. EIF4B, SGK1, CACNG8). Moreover, associations of gene body methylation alterations with corresponding gene expression changes revealed that especially the three signaling pathway genes JAK3, MECOM, and TNXB differ strongly in their expression between patient-matched intra- and extracranial metastases. Our analysis contributes to an in-depth characterization of DNA-methylation differences between patient-matched intra- and extracranial melanoma metastases and may provide a basis for future experimental studies to identify targets for new therapeutic approaches.
Collapse
|
12
|
Yang L, Wang M, Hu X, Yuan L, Chen S, Peng S, Yang P, Yang Z, Bao G, He X. EccDNA-oriented ITGB7 expression in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1344. [PMID: 36660685 PMCID: PMC9843317 DOI: 10.21037/atm-22-5716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Background Extrachromosomal circular DNA (eccDNA) is omnipresent in cancers and related to the progression of tumors and oncogene amplification. However, its function in breast cancer (BC) is unclear. Methods After constructing the DNA library, CLeavage Effects by Circularization for In vitro Reporting of sequencing was performed for eccDNA detection using 1 BC tissue sample. Fastqc was used to evaluate the quality of the original data. Burrows-Wheeler-Alignment Tool was used to compare the original data to the reference genome. A Circle-MAP was subsequently performed to detect eccDNA, and Bedtools was used to annotate the eccDNA genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted by ClusterProfiler. The Genotype-Tissue Expression and the Cancer Genome Atlas databases were used to collect the ribonucleic acid-sequencing data of the BC and normal samples. A Gene Expression Profiling Interactive Analysis, the University of Alabama at Birmingham CANcer data analysis Portal, and Kaplan-Meier survival curves were used to analyze the Cancer Genome Atlas data. Results A total of 200 eccDNA genes, including IGTB7, were obtained. About the biological processes (BPs), these 200 genes were mainly enriched in actin cytoskeleton reorganization and axon guidance. Concerning the molecular functions (MFs), these 200 genes were mainly enriched in sodium ion transmembrane transporter activity and metal ion transmembrane transporter activity. As for cellular components (CCs), these 200 genes were mainly enriched in the transcription regulator complex and focal adhesion. ITGB7 was significantly enriched in cell-matrix adhesion and localization within the membrane in the BPs, integrin binding in the MFs, and cell-substrate junction and focal adhesion in the CCs. The 200 eccDNA genes were mainly enriched in the PI3K-Akt signaling pathway and focal adhesion. Notably, ITGB7 was enriched in focal adhesion, ECM-receptor interaction, the PI3K-Akt signaling pathway, and human papillomavirus infection. Besides, ITGB7 was significantly upregulated in BC patients and was associated with the menopause status of the BC patients. Conclusions ITGB7 might serve as a prognostic marker for BC patients. ITGB7 has important implications for the individualized clinical treatment of BC patients.
Collapse
Affiliation(s)
- Lin Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Meixue Wang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xi'e Hu
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lijuan Yuan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Songhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shujia Peng
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Ping Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xianli He
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
13
|
Shen Y, Han Z, Wang L, Liang Y, Zhang X, Li W, Li S, Tian J, Han H. Guangsangon E triggers mitochondria dysfunction and mitophagy in triple-negative breast cancer and leads to non-apoptotic cell death. Mol Carcinog 2022; 61:1128-1142. [PMID: 36121321 DOI: 10.1002/mc.23463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/04/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Guangsangon E (GSE) is a natural product separated from Morus alba L. It has been reported to treat lung cancer through autophagy. However, whether GSE is effective in repressing triple-negative breast cancer (TNBC) cells is yet to be elucidated. In the present study, GSE inhibited cell growth of MDA-MB-231, MDA-MB-453, and MDA-MB-468 cells. Moreover, GSE induced mitochondrial dysfunction, including membrane potential loss, mitochondria fission, and reactive oxygen species accumulation, and finally led to mitophagy-related non-apoptotic cell death. In the xenograft tumor nude mice, GSE treatment significantly reduced the size and weight of MDA-MB-231 tumors. The tumor inhibition rates of GSE treatment were 49.68% (low-dose) and 48.73% (high-dose). In summary, GSE is a potential anticancer drug available for treating TNBC with apoptosis resistance.
Collapse
Affiliation(s)
- Yuhang Shen
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China.,Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhuo Han
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China
| | - Luping Wang
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China.,Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yan Liang
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China.,Department of Nephrology, Urology & Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyong Zhang
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China.,Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Wei Li
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China.,Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Shouxin Li
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China
| | - Haote Han
- The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Rao D, Yu C, Wang T, Sheng J, Lv E, Liang H, Huang W, Dong H. Pan-cancer analysis combined with experimental validation revealed IL4I1 as an immunological and prognostic biomarker. Int Immunopharmacol 2022; 111:109091. [PMID: 35952516 DOI: 10.1016/j.intimp.2022.109091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022]
Abstract
Interleukin-4-induced gene 1 (IL4I1) is a secreted l-phenylalanine oxidase that deaminates phenylalanine to phenylpyruvate, releasing H2O2 and NH3 in the process. IL4I1 is mainly secreted by inflammatory antigen presenting cells and is involved in the regulation of adaptive immune responses. Furthermore, it has been reported that IL4I1 is overexpressed in a variety of tumor tissues and affects tumor development. We explored the expression patterns, correlation with clinical traits and prognostic value of IL4I1 using public databases and microarray data from sample banks. Subsequently, we used the downloaded data to score tumor stromal cells and immune cell infiltration and analyzed the correlation between IL4I1 and immune cells or immune-related molecules in combination with TIMER2.0 and GEPIA databases. The analysis showed that IL4I1 was associated with the infiltration status of various immune cells. Finally, stable IL4I1-overexpressing hepatocellular carcinoma (HCC) cell lines were established to investigate the effect of IL4I1 on cell proliferation and motor capacity. All of these results suggest that IL4I1 is a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Sheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Enjun Lv
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Köhnke T, Liu X, Haubner S, Bücklein V, Hänel G, Krupka C, Solis-Mezarino V, Herzog F, Subklewe M. Integrated multiomic approach for identification of novel immunotherapeutic targets in AML. Biomark Res 2022; 10:43. [PMID: 35681175 PMCID: PMC9185890 DOI: 10.1186/s40364-022-00390-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/01/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immunotherapy of acute myeloid leukemia has experienced considerable advances, however novel target antigens continue to be sought after. To this end, unbiased approaches for surface protein detection are limited and integration with other data types, such as gene expression and somatic mutational burden, are poorly utilized. The Cell Surface Capture technology provides an unbiased, discovery-driven approach to map the surface proteins on cells of interest. Yet, direct utilization of primary patient samples has been limited by the considerable number of viable cells needed. METHODS Here, we optimized the Cell Surface Capture protocol to enable direct interrogation of primary patient samples and applied our optimized protocol to a set of samples from patients with acute myeloid leukemia (AML) to generate the AML surfaceome. We then further curated this AML surfaceome to exclude antigens expressed on healthy tissues and integrated mutational burden data from hematologic cancers to further enrich for targets which are likely to be essential to leukemia biology. Finally, we validated our findings in a separate cohort of AML patient samples. RESULTS Our protocol modifications allowed us to double the yield in identified proteins and increased the specificity from 54 to 80.4% compared to previous approaches. Using primary AML patient samples, we were able to identify a total of 621 surface proteins comprising the AML surfaceome. We integrated this data with gene expression and mutational burden data to curate a set of robust putative target antigens. Seventy-six proteins were selected as potential candidates for further investigation of which we validated the most promising novel candidate markers, and identified CD148, ITGA4 and Integrin beta-7 as promising targets in AML. Integrin beta-7 showed the most promising combination of expression in patient AML samples, and low or absent expression on healthy hematopoietic tissue. CONCLUSION Taken together, we demonstrate the feasibility of a highly optimized surfaceome detection method to interrogate the entire AML surfaceome directly from primary patient samples and integrate this data with gene expression and mutational burden data to achieve a robust, multiomic target identification platform. This approach has the potential to accelerate the unbiased target identification for immunotherapy of AML.
Collapse
Affiliation(s)
- Thomas Köhnke
- Department of Medicine III, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, LMU Munich, Munich, Germany
| | - Xilong Liu
- Laboratory for Translational Cancer Immunology, Gene Center Munich, LMU Munich, Munich, Germany
| | - Sascha Haubner
- Department of Medicine III, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, LMU Munich, Munich, Germany
| | - Veit Bücklein
- Department of Medicine III, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, LMU Munich, Munich, Germany
| | - Gerulf Hänel
- Department of Medicine III, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, LMU Munich, Munich, Germany
| | - Christina Krupka
- Laboratory for Translational Cancer Immunology, Gene Center Munich, LMU Munich, Munich, Germany
| | | | - Franz Herzog
- Department of Biochemistry, Gene Center, LMU Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.
- Laboratory for Translational Cancer Immunology, Gene Center Munich, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers (Basel) 2022; 14:cancers14092128. [PMID: 35565254 PMCID: PMC9100214 DOI: 10.3390/cancers14092128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Glycosylation changes are a main feature of cancer. Some carbohydrate epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic markers, while many experimental works have investigated the role of glycosyltransferases in malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website, we determined the Kaplan−Meier survival curves for the patients falling in the 15% upper or lower percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5 and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.
Collapse
|
17
|
Lv W, Yu H, Han M, Tan Y, Wu M, Zhang J, Wu Y, Zhang Q. Analysis of Tumor Glycosylation Characteristics and Implications for Immune Checkpoint Inhibitor’s Efficacy for Breast Cancer. Front Immunol 2022; 13:830158. [PMID: 35444644 PMCID: PMC9013822 DOI: 10.3389/fimmu.2022.830158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The alterations of glycosylation, which is a common post-translational modification of proteins, have been acknowledged as key events in breast cancer (BC) oncogenesis and progression. The aberrant expression of glycosyltransferases leads to aberrant glycosylation patterns, posing the diagnostic potential in BC outcomes. The present study aims to establish a glycosyltransferase-based signature to predict BC prognosis and response to immune checkpoint inhibitors. We firstly screened 9 glycosyltransferase genes from The Cancer Genome Atlas (TCGA) database and accordingly established a glyco-signature for predicting the prognosis in BC patients. Patients with BC were successfully divided into high-risk and low-risk groups based on the median cutoff point for risk scores in this signature. Next, the combinational analyses of univariate and multivariate Cox regression, Kaplan–Meier, and receiver operating characteristic (ROC) curves were used to prove that this glyco-signature possessed excellent predictive performance for prognosis of BC patients, as the high-risk group possessed worse outcomes, in comparison to the low-risk group. Additionally, the Gene Set Enrichment Analysis (GSEA) and immunologic infiltration analysis were adopted and indicated that there was a more immunosuppressive state in the high-risk group than that in the low-risk group. The clinical sample validation verified that glycosyltransferase genes were differentially expressed in patients in the low- and high-risk groups, while the biomarkers of antitumor M1 macrophages were increased and N-glycosyltransferase STT3A decreased in the low-risk group. The final in vitro assay showed that the silencing of STT3A suppressed the proliferation and migration of BC cells. Collectively, our well-constructed glyco-signature is able to distinguish the high- and low-risk groups and accordingly predict BC prognosis, which will synergistically promote the prognosis evaluation and provide new immunotherapeutic targets for combating BC.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Han
- Department of Anesthesiology, The People’s Hospital of China Three Gorges, China Three Gorges University, Yichang, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhang, ; Yiping Wu, ; Qi Zhang,
| |
Collapse
|