1
|
Kirubakaran P, Kothapalli R, Singh KD, Nagamani S, Arjunan S, Muthusamy K. In silico studies on marine actinomycetes as potential inhibitors for Glioblastoma multiforme. Bioinformation 2011; 6:100-6. [PMID: 21584184 PMCID: PMC3089882 DOI: 10.6026/97320630006100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/21/2011] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is considered to be the most common and often deadly disorder which affects the brain. It is caused by the over expression of proteins such as ephrin type-A receptor 2 (EphA2), epidermal growth factor receptor (EGFR) and EGFRvIII. These 3 proteins are considered to be the potential therapeutic targets for GBM. Among these, EphA2 is reported to be over-expressed in ˜90% of GBM. Herein we selected 35 compounds from marine actinomycetes, 5 in vitro and in vivo studied drug candidates and 4 commercially available drugs for GBM which were identified from literature and analysed by using comparative docking studies. Based on the glide scores and other in silico parameters available in Schrödinger, two selected marine actinomycetes compounds which include Tetracenomycin D and Chartreusin exhibited better binding energy among all the compounds studied in comparative docking. In this study we have demonstrated the inhibition of the 3 selected targets by the two bioactive compounds from marine actinomycetes through in-silico docking studies. Furthermore molecular dynamics simulation were also been performed to check the stability and the amino acids interacted with the 3 molecular targets (EphA2 receptor, EGFR, EGFRvIII) for GBM. Our results suggest that Tetracinomycin D and Chartreusin are the novel and potential inhibitor for the treatment of GBM.
Collapse
Affiliation(s)
- Palani Kirubakaran
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Roopa Kothapalli
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Selvaraman Nagamani
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Subramanian Arjunan
- Human embryonic stem cell Laboratory, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
2
|
Brain Tumors. Neurosurgery 2010. [DOI: 10.1007/978-3-540-79565-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ, Jallo GI. Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. J Neurosurg Pediatr 2009; 3:259-69. [PMID: 19338403 DOI: 10.3171/2008.11.peds08281] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diffuse intrinsic pontine gliomas constitute ~ 60-75% of tumors found within the pediatric brainstem. These malignant lesions present with rapidly progressive symptoms such as cranial nerve, long tract, or cerebellar dysfunctions. Magnetic resonance imaging is usually sufficient to establish the diagnosis and obviates the need for surgical biopsy in most cases. The prognosis of the disease is dismal, and the median survival is < 12 months. Resection is not a viable option. Standard therapy involves radiotherapy, which produces transient neurological improvement with a progression-free survival benefit, but provides no improvement in overall survival. Clinical trials have been conducted to assess the efficacy of chemotherapeutic and biological agents in the treatment of diffuse pontine gliomas. In this review, the authors discuss recent studies in which systemic therapy was administered prior to, concomitantly with, or after radiotherapy. For future perspective, the discussion includes a rationale for stereotactic biopsies as well as possible therapeutic options of local chemotherapy in these lesions.
Collapse
Affiliation(s)
- James L Frazier
- Departments of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
4
|
Vähä-Koskela MJ, Heikkilä JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216. [PMID: 17383089 PMCID: PMC7126325 DOI: 10.1016/j.canlet.2007.02.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 12/26/2022]
Abstract
Oncolytic virotherapy is a promising form of gene therapy for cancer, employing nature’s own agents to find and destroy malignant cells. The purpose of this review is to provide an introduction to this very topical field of research and to point out some of the current observations, insights and ideas circulating in the literature. We have strived to acknowledge as many different oncolytic viruses as possible to give a broader picture of targeting cancer using viruses. Some of the newest additions to the panel of oncolytic viruses include the avian adenovirus, foamy virus, myxoma virus, yaba-like disease virus, echovirus type 1, bovine herpesvirus 4, Saimiri virus, feline panleukopenia virus, Sendai virus and the non-human coronaviruses. Although promising, virotherapy still faces many obstacles that need to be addressed, including the emergence of virus-resistant tumor cells.
Collapse
Affiliation(s)
- Markus J.V. Vähä-Koskela
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
- Corresponding author. Address: Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland. Tel.: +358 2 215 4018; fax: +358 2 215 4745.
| | - Jari E. Heikkilä
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| | - Ari E. Hinkkanen
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| |
Collapse
|
5
|
Wagner S, Csatary CM, Gosztonyi G, Koch HC, Hartmann C, Peters O, Hernáiz-Driever P, Théallier-Janko A, Zintl F, Längler A, Wolff JEA, Csatary LK. Combined treatment of pediatric high-grade glioma with the oncolytic viral strain MTH-68/H and oral valproic acid. APMIS 2006; 114:731-43. [PMID: 17004977 DOI: 10.1111/j.1600-0463.2006.apm_516.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The case of a 12-year-old boy with anaplastic astrocytoma of the left thalamus is reported. Postoperative irradiation and chemotherapy could not repress tumor progression; therefore, treatment was undertaken with an oncolytic virus, MTH-68/H, an attenuated strain of Newcastle disease virus (NDV), and valproic acid (VPA), an antiepileptic drug, which also has antineoplastic properties. This treatment resulted in a far-reaching regression of the thalamic glioma, but 4 months later a new tumor manifestation, an extension of the thalamic tumor, appeared in the wall of the IVth ventricle, which required a second neurosurgical intervention. Under continuous MTH-68/H - VPA administration the thalamic tumor remained under control, but the rhombencephalic one progressed relentlessly and led to the fatal outcome. In the final stage, a third tumor manifestation appeared in the left temporal lobe. The possible reasons for the antagonistic behavior of the three manifestations of the same type of glioma to the initially most successful therapy are discussed. The comparative histological study of the thalamic and rhombencephalic tumor manifestations revealed that MTH-68/H treatment induces, similar to in vitro observations, a massive apoptotic tumor cell decline. In the rhombencephalic tumor, in and around the declining tumor cells, NDV antigen could be demonstrated immunohistochemically, and virus particles have been found in the cytoplasm of tumor cells at electron microscopic investigation. These findings document that the oncolytic effect of MTH-68/H treatment is the direct consequence of virus presence and replication in the neoplastic cells. This is the first demonstration of NDV constituents in an MTH-68/H -treated glioma.
Collapse
Affiliation(s)
- Sabine Wagner
- Dept. of Pediatric Oncology, Krankenhaus der Barmherzigen Brüder, Klinik St. Hedwig, University of Regensburg
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Van Houdt WJ, Haviv YS, Lu B, Wang M, Rivera AA, Ulasov IV, Lamfers MLM, Rein D, Lesniak MS, Siegal GP, Dirven CMF, Curiel DT, Zhu ZB. The human survivin promoter: a novel transcriptional targeting strategy for treatment of glioma. J Neurosurg 2006; 104:583-92. [PMID: 16619663 DOI: 10.3171/jns.2006.104.4.583] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Malignant brain tumors have been proved to be resistant to standard treatments and therefore require new therapeutic strategies. Survivin, a recently described member of the inhibitor of apoptosis protein family, is overexpressed in several human brain tumors, primarily gliomas, but is downregulated in normal tissues. The authors hypothesized that the expression of tumor-specific survivin could be exploited for treatment of gliomas by targeting the tumors with gene therapy vectors.
Methods
Following confirmation of survivin expression in glioma cell lines, an adenoviral vector containing the survivin promoter and the reporter gene luciferase was tested in established and primary glioma cells, normal astrocytic cells, and normal human brain tissues. High levels of reporter gene expression were observed in established tumor and primary tumor cell lines and low levels of expression in astrocytes and normal human brain tissue. To test oncolytic potency, the authors constructed survivin promoter–based conditionally replicative adenoviruses (CRAds), composed of survivin promoter–regulated E1 gene expression and an RGD-4C capsid modification. These CRAds could efficiently replicate within and kill a variety of established glioma tumor cells, but were inactive in a normal human liver organ culture. Finally, survivin promoter–based CRAds significantly inhibited the growth of glioma xenografts in vivo.
Conclusions
Together these data indicate that the survivin promoter is a promising tumor-specific promoter for transcriptional targeting of adenovirus-based vectors and CRAds for malignant gliomas. The strategy of using survivin–CRAds may thus translate into an experimental therapeutic approach that can be used in human clinical trials.
Collapse
Affiliation(s)
- Winan J Van Houdt
- Department of Neurosurgery, VU Universiteit Medische Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.
Collapse
Affiliation(s)
- T Wirth
- A I Virtanen Institute, University of Kuopio, Finland
| | | |
Collapse
|
8
|
Lamfers MLM, Gianni D, Tung CH, Idema S, Schagen FHE, Carette JE, Quax PHA, Van Beusechem VW, Vandertop WP, Dirven CMF, Chiocca EA, Gerritsen WR. Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. Cancer Res 2005; 65:9398-405. [PMID: 16230403 DOI: 10.1158/0008-5472.can-04-4264] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic adenoviruses exhibiting tumor-selective replication are promising anticancer agents. Insertion and expression of a transgene encoding tissue inhibitor of metalloproteinase-3 (TIMP-3), which has been reported to inhibit angiogenesis and tumor cell infiltration and induce apoptosis, may improve the antitumor activity of these agents. To assess the effects of TIMP-3 gene transfer to glioma cells, a replication-defective adenovirus encoding TIMP-3 (Ad.TIMP-3) was employed. Ad.TIMP-3 infection of a panel of glioma cell cultures decreased the proliferative capacity of these cells and induced morphologic changes characteristic for apoptosis. Next, a conditionally replicating adenovirus encoding TIMP-3 was constructed by inserting the TIMP-3 expression cassette into the E3 region of the adenoviral backbone containing a 24-bp deletion in E1A. This novel oncolytic adenovirus, AdDelta24TIMP-3, showed enhanced oncolytic activity on a panel of primary cell cultures and two glioma cell lines compared with the control oncolytic virus AdDelta24Luc. In vivo inhibition of matrix metalloproteinase (MMP) activity by AdDelta24TIMP-3 was shown in s.c. glioma xenografts. The functional activity of TIMP-3 was imaged noninvasively using a near-IR fluorescent MMP-2-activated probe. Tumoral MMP-2 activity was significantly reduced by 58% in the AdDelta24TIMP-3-treated tumors 24 hours after infection. A study into the therapeutic effects of combined oncolytic and antiproteolytic therapy was done in both a s.c. and an intracranial model for malignant glioma. Treatment of s.c. (U-87MG) or intracranial (U-87deltaEGFR) tumors with AdDelta24TIMP-3 and AdDelta24Luc both significantly inhibited tumor growth and prolonged survival compared with PBS-treated controls. However, expression of TIMP-3 in the context of AdDelta24 did not significantly affect the antitumor efficacy of this oncolytic agent.
Collapse
Affiliation(s)
- Martine L M Lamfers
- Department of Neurosurgery, Division of Gene Therapy, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gu B, DeAngelis LM. Enhanced cytotoxicity of bioreductive antitumor agents with dimethyl fumarate in human glioblastoma cells. Anticancer Drugs 2005; 16:167-74. [PMID: 15655414 DOI: 10.1097/00001813-200502000-00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We compared the cytotoxicity of the bioreductive antitumor agents mitomycin C (MMC) and streptonigrin (SN) with or without the DT-diaphorase (DTD) inducer dimethyl fumarate (DMF) in four human glioblastoma cell lines with the conventional chemotherapeutic agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). We also examined four other types of cancer cells to compare with glioblastoma cells. Cytotoxicity was measured with the sulforhodamine B (SRB) assay and was represented by 50% inhibition concentration (IC50). Enzymatic activities of DTD, cytochrome b5 reductase and glutathione-S-transferase (GST) in cells were measured spectrophotometrically. IC50 for BCNU was in a range of 28-300 microM in the glioblastoma cell lines. Glioblastoma cells were more sensitive to MMC or SN than to BCNU. Pretreatment with DMF significantly increased cytotoxicity of MMC and SN in glioblastoma cell lines and the NCI-H1299 lung cancer cell line, but had no effect on BCNU cytotoxicity. DMF significantly increased DTD and cytochrome b5 reductase activity, and decreased GST in three of four glioblastoma cell lines. Addition of the DTD inhibitor, dicumarol, significantly inhibited cytotoxicity of MMC and SN, and reversed the increased cytotoxicity seen when DMF was combined with either MMC or SN in all glioblastoma cell lines. Combining inducers of DTD and cytochrome b5 reductase with bioreductive agents may be a potential therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Bin Gu
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
10
|
Abstract
Several new approaches to illness, inspired by recent advances in molecular biology, informatics and nanoscience, are readily applicable to diseases of the central nervous system. Novel classes of drugs will widen the scope of therapeutic action beyond merely modifying transmitter function and stem cell and gene therapies could offer an even more selective mode of targeting. Further into the future, nanotechnology has the potential to allow development of new medicines and novel access routes via miniaturized monitoring and screening devices: these systems, together with increasing use of carbon-silicon interfacing, will challenge traditional neuropharmacology. As the 21(st) century unfolds, the structure and function of the brain, which is incomparable with any other organ, will present unique technological and ethical questions.
Collapse
Affiliation(s)
- Susan A Greenfield
- Oxford University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK
| |
Collapse
|