1
|
Xiao Z, Nian Z, Zhang M, Liu Z, Zhang P, Zhang Z. Single-cell and bulk RNA-sequencing reveal SPP1 and CXCL12 as cell-to-cell communication markers to predict prognosis in lung adenocarcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:4610-4622. [PMID: 38622884 DOI: 10.1002/tox.24297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Lung adenocarcinoma (LUAD) generally presents as an immunosuppressive microenvironment. The characteristics of cell-to-cell communication in the LUAD microenvironment has been unclear. In this study, the LUAD bulk RNA-seq data and single-cell RNA-seq data were retrieved from public dataset. Differential expression genes (DEGs) between LUAD tumor and adjacent non-tumor tissues were calculated by limma algorithm, and then detected by PPI, KEGG, and GO analysis. Cell-cell interactions were explored using the single-cell RNA-seq data. Finally, the first 15 CytoHubba genes were used to establish related pathways and these pathways were used to characterize the immune-related ligands and their receptors in LUAD. Our analyses showed that monocytes or macrophages interact with tissue stem cells and NK cells via SPP1 signaling pathway and tissue stem cells interact with T and B cells via CXCL signaling pathway in different states. Hub genes of SPP1 participated in SPP1 signaling pathway, which was negatively correlated with CD4+ T cell and CD8+ T cell. The expression of SPP1 in LUAD tumor tissues was negatively correlated with the prognosis. While CXCL12 participated in CXCL signaling pathway, which was positively correlated with CD4+ T cell and CD8+ T cell. The role of CXCL12 in LUAD tumor tissues exhibits an opposite effect to that of SPP1. This study reveals that tumor-associated monocytes or macrophages may affect tumor progression. Moreover, the SPP1 and CXCL12 may be the critic genes of cell-to-cell communication in LUAD, and targeting these pathways may provide a new molecular mechanism for the treatment of LUAD.
Collapse
Affiliation(s)
- Zengtuan Xiao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China
| | - Zhe Nian
- Department of Immunology, Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China
| | - Mengzhe Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Zuo Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
2
|
Trotter TN, Dagotto CE, Serra D, Wang T, Yang X, Acharya CR, Wei J, Lei G, Lyerly HK, Hartman ZC. Dormant tumors circumvent tumor-specific adaptive immunity by establishing a Treg-dominated niche via DKK3. JCI Insight 2023; 8:e174458. [PMID: 37847565 PMCID: PMC10721325 DOI: 10.1172/jci.insight.174458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Approximately 30% of breast cancer survivors deemed free of disease will experience locoregional or metastatic recurrence even up to 30 years after initial diagnosis, yet how residual/dormant tumor cells escape immunity elicited by the primary tumor remains unclear. We demonstrate that intrinsically dormant tumor cells are indeed recognized and lysed by antigen-specific T cells in vitro and elicit robust immune responses in vivo. However, despite close proximity to CD8+ killer T cells, dormant tumor cells themselves support early accumulation of protective FoxP3+ T regulatory cells (Tregs), which can be targeted to reduce tumor burden. These intrinsically dormant tumor cells maintain a hybrid epithelial/mesenchymal state that is associated with immune dysfunction, and we find that the tumor-derived, stem cell/basal cell protein Dickkopf WNT signaling pathway inhibitor 3 (DKK3) is critical for Treg inhibition of CD8+ T cells. We also demonstrate that DKK3 promotes immune-mediated progression of proliferative tumors and is significantly associated with poor survival and immunosuppression in human breast cancers. Together, these findings reveal that latent tumors can use fundamental mechanisms of tolerance to alter the T cell microenvironment and subvert immune detection. Thus, targeting these pathways, such as DKK3, may help render dormant tumors susceptible to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - H. Kim Lyerly
- Department of Surgery, and
- Department of Pathology/Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Zachary C. Hartman
- Department of Surgery, and
- Department of Pathology/Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Peng C, Ye H, li Z, Duan X, Yang W, Yi Z. Multi-omics characterization of a scoring system to quantify hypoxia patterns in patients with head and neck squamous cell carcinoma. J Transl Med 2023; 21:15. [PMID: 36627705 PMCID: PMC9830846 DOI: 10.1186/s12967-022-03869-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The 5-year survival rate of patients with head and neck squamous cell carcinoma (HNSCC) remains < 50%. Hypoxia patterns are a hallmark of HNSCC that are associated with its occurrence and progression. However, the precise role of hypoxia during HNSCC, such as the relationship between hypoxia, tumor immune landscape and cell communication orchestration remains largely unknown. The current study integrated data from bulk and single-cell RNA sequencing analyses to define the relationship between hypoxia and HNSCC. METHODS A scoring system named the hypoxia score (HS) was constructed based on hypoxia-related genes (HRGs) expression. The predictive value of HS response for patient outcomes and different treatments was evaluated. Single-cell datasets and cell communication were utilized to rule out cell populations which hypoxia targeted on. RESULTS The survival outcomes, immune/Estimate scores, responses to targeted inhibitors, and chemotherapeutic, and immunotherapy responses were distinct between a high HS group and a low HS group (all P < 0.05). Single-cell datasets showed different distributions of HS in immune cell populations (P < 0.05). Furthermore, HLA-DPA1/CD4 axis was identified as a unique interaction between CD4 + T Conv and pDC cells. CONCLUSIONS Altogether, the quantification for hypoxia patterns is a potential biomarker for prognosis, individualized chemotherapeutic and immunotherapy strategies. The portrait of cell communication characteristics over the HNSCC ecosystem enhances the understanding of hypoxia patterns in HNSCC.
Collapse
Affiliation(s)
- Cong Peng
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Huiping Ye
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhengyang li
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiaofeng Duan
- grid.459540.90000 0004 1791 4503Department of Oral and Maxillofacial Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wen Yang
- grid.452244.1Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhuguang Yi
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
4
|
da Costa V, van Vliet SJ, Carasi P, Frigerio S, García PA, Croci DO, Festari MF, Costa M, Landeira M, Rodríguez-Zraquia SA, Cagnoni AJ, Cutine AM, Rabinovich GA, Osinaga E, Mariño KV, Freire T. The Tn antigen promotes lung tumor growth by fostering immunosuppression and angiogenesis via interaction with Macrophage Galactose-type lectin 2 (MGL2). Cancer Lett 2021; 518:72-81. [PMID: 34144098 DOI: 10.1016/j.canlet.2021.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022]
Abstract
Tn is a tumor-associated carbohydrate antigen that constitutes both a diagnostic tool and an immunotherapeutic target. It originates from interruption of the mucin O-glycosylation pathway through defects involving, at least in part, alterations in core-1 synthase activity, which is highly dependent on Cosmc, a folding chaperone. Tn antigen is recognized by the Macrophage Galactose-type Lectin (MGL), a C-type lectin receptor present on dendritic cells and macrophages. Specific interactions between Tn and MGL shape anti-tumoral immune responses by regulating several innate and adaptive immune cell programs. In this work, we generated and characterized a variant of the lung cancer murine cell line LL/2 that expresses Tn by mutation of the Cosmc chaperone gene (Tn+ LL/2). We confirmed Tn expression by lectin glycophenotyping and specific anti-Tn antibodies, verified abrogation of T-synthase activity in these cells, and confirmed its recognition by the murine MGL2 receptor. Interestingly, Tn+ LL/2 cells were more aggressive in vivo, resulting in larger and highly vascularized tumors than those generated from wild type Tn- LL/2 cells. In addition, Tn+ tumors exhibited an increase in CD11c+ F4/80+ cells with high expression of MGL2, together with an augmented expression of IL-10 in infiltrating CD4+ and CD8+ T cells. Importantly, this immunosuppressive microenvironment was dependent on the presence of MGL2+ cells, since depletion of these cells abrogated tumor growth, vascularization and recruitment of IL-10+ T cells. Altogether, our results suggest that expression of Tn in tumor cells and its interaction with MGL2-expressing CD11c+F4/80+ cells promote immunosuppression and angiogenesis, thus favoring tumor progression.
Collapse
Affiliation(s)
- Valeria da Costa
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paula Carasi
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Sofía Frigerio
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Pablo A García
- Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego O Croci
- Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Florencia Festari
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Monique Costa
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Mercedes Landeira
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Santiago A Rodríguez-Zraquia
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabela M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, Argentina
| | - Eduardo Osinaga
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
5
|
Bahrami A, Fereidouni M, Pirro M, Bianconi V, Sahebkar A. Modulation of regulatory T cells by natural products in cancer. Cancer Lett 2019; 459:72-85. [DOI: 10.1016/j.canlet.2019.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
|
6
|
Rittenhouse-Olson K. Thematic 2019 Letter from the Editor. Immunol Invest 2019; 48:673-679. [PMID: 31423924 DOI: 10.1080/08820139.2019.1645985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P. Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer. Cancers (Basel) 2019; 11:cancers11081207. [PMID: 31430951 PMCID: PMC6721805 DOI: 10.3390/cancers11081207] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor dormancy, a clinically undetectable state of cancer, makes a major contribution to the development of multidrug resistance (MDR), minimum residual disease (MRD), tumor outgrowth, cancer relapse, and metastasis. Despite its high incidence, the whole picture of dormancy-regulated molecular programs is far from clear. That is, it is unknown when and which dormant cells will resume proliferation causing late relapse, and which will remain asymptomatic and harmless to their hosts. Thus, identification of dormancy-related culprits and understanding their roles can help predict cancer prognosis and may increase the probability of timely therapeutic intervention for the desired outcome. Here, we provide a comprehensive review of the dormancy-dictated molecular mechanisms, including angiogenic switch, immune escape, cancer stem cells, extracellular matrix (ECM) remodeling, metabolic reprogramming, miRNAs, epigenetic modifications, and stress-induced p38 signaling pathways. Further, we analyze the possibility of leveraging these dormancy-related molecular cues to outmaneuver cancer and discuss the implications of such approaches in cancer treatment.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Massey Cancer Center, Richmond, VA 23298, USA
| | | | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
8
|
Yang LY, Shan YM, Zhang Y, Zhou EH, Chen XP, Zhang H. Aurora kinase A induces chemotherapy resistance through revival of dormant cells in laryngeal squamous cell carcinoma. Head Neck 2019; 41:2239-2248. [PMID: 30706572 DOI: 10.1002/hed.25689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 12/12/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chemotherapy resistance was an important tumor metastasis mechanism. METHODS Cell Counting Kit-8 assay and plate colony formation assay were applied to examine the proliferation of laryngeal squamous cell carcinoma (LSCC). Immunofluorescent staining and Western blotting were carried out to show the expression of related proteins. Wound healing, migration, and invasion assays were used to examine the mobility, migration, and invasion of LSCC. RESULTS Downregulated Aurora kinase A (AURKA) increased chemotherapy sensitivity and reduced the ability of mobility, migration, and invasion of Hep2 cells, while upregulated AURKA possessed opposite results. Hep2/5-Fu cells possessed dormancy-like properties and upregulated AURKA in Hep2/5-Fu cells (Hep2/5-Fu/AURKA cells) revived dormant state. Furthermore, Erk1/2 was restrained in Hep2/5-Fu cells and activated in Hep2/5-Fu/AURKA cells. Moreover, Erk1/2 accelerated the ability of mobility, migration, and invasion in Hep2/5-Fu/AURKA cells. CONCLUSION AURKA activated dormant state to induce chemotherapy resistance and promoted metastasis of LSCC through Erk1/2 pathway.
Collapse
Affiliation(s)
- Li-Yun Yang
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Ya-Min Shan
- Department of Otolaryngology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi Zhang
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - En-Hui Zhou
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Xiao-Ping Chen
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hao Zhang
- Department of Otolaryngology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
9
|
Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. J Control Release 2018; 285:56-66. [DOI: 10.1016/j.jconrel.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|
10
|
Lin Y, Liu S, Su L, Su Q, Lin J, Huang X, Wang C. miR-570 Inhibits Proliferation, Angiogenesis, and Immune Escape of Hepatocellular Carcinoma. Cancer Biother Radiopharm 2018; 33:252-257. [PMID: 29874097 DOI: 10.1089/cbr.2017.2389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one common malignancy. The authors previously demonstrated that miR-570 regulates the development of HCC. This study detected the effect of miR-570 on cell apoptosis, angiogenesis, T cell activation, and proliferation in a tumorigenicity assay in nude mice. miR-570 mimics and negative control (NC) were transfected into SMMC7721 cells, and then, the cells were subcutaneously injected in the right flank in nude mice. Six weeks later, the dissected tumors and peripheral blood were collected. Tumor weight and volume were measured, and expression of miR-570 and apoptosis-related gene Bax/Bcl-2 was detected by quantitative real-time polymerase chain reaction. Hematoxylin and eosin, immunohistochemistry of CD31 and vascular endothelial growth factor (VEGF), TUNEL assay, and flow cytometry detection of CD4 and CD8 in peripheral blood were performed. miR-570 mimics suppressed tumor growth compared with the NC, with decreases in tumor weight and tumor volume. Very few CD31 and VEGF were found in tumor sections in miR-570 mimics group. Bax level was significantly increased, while Bcl-2 level was significantly downregulated. Significant lower ratio of CD3+CD4+ T cells and higher ratio of CD8+IFN-γ+ T cells were found in peripheral blood and tumor tissues in miR-570 mimics than NC. Collectively, miR-570 plays an important role in the proliferation, angiogenesis, and immune escape of HCC, which might be potential diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Yongxin Lin
- 1 Department of Traditional Chinese Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute , Guangzhou, Guangdong 510080, People's Republic of China
| | - Shan Liu
- 2 The Research Center of Integrative Medical, School of Basic Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510405, People's Republic of China .,3 Institute of Tropical Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510405, People's Republic of China
| | - Le Su
- 4 Haizhu District of Chinese Medicine Hospital , Guangzhou, Guangdong 510220, People's Republic of China
| | - Qiao Su
- 5 Laboratory Animal Center, The First Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong 510080, People's Republic of China
| | - Juze Lin
- 1 Department of Traditional Chinese Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute , Guangzhou, Guangdong 510080, People's Republic of China
| | - Xuhui Huang
- 1 Department of Traditional Chinese Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute , Guangzhou, Guangdong 510080, People's Republic of China
| | - Changjun Wang
- 1 Department of Traditional Chinese Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute , Guangzhou, Guangdong 510080, People's Republic of China
| |
Collapse
|
11
|
Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch Oral Biol 2018; 92:32-37. [PMID: 29751146 DOI: 10.1016/j.archoralbio.2018.04.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE This study evaluated the role of anti-tumor immune response of curcumin on tongue squamous cell carcinama (TSCC). EXPERIMENTAL DESIGN Cell lines (Cal 27, FaDu) and animal model (4NQO mice model) were uesd in this study. The MTT assay was used to detecte cell proliferation. The Western blotting, immunohistochemistry and immunofluorescence were used to examine the protein expression. The flow cytometry was performed to determine the number of Treg and MDSC. RESULTS The expression of PD-L1 and p-STAT3Y705 were does-dependently inhibited in Fadu and Cal 27 cell line. The results of in vivo demonstrated that curcumin significantly attenuated tumor growth in 4NQO mice model. The expression of PD-L1 and p-STAT3Y705 were similarly decreased in vivo. Moreover, the anti-tumor immune response was remarkably improved after curcumin treatment through increasing CD8 positive T cells and decreasing Tregs and MDSCs. CONCLUSIONS Curcumin treatment resulted in inhibition of PD-L1 and p-STAT3Y705 expression both in vitro and in vivo. Moreover, the immunosuppressive tumor microenvironment was changed after curcumin treatment. These data suggested that curcumin could effectively promote anti-tumor immune response in TSCC.
Collapse
|
12
|
Boduc M, Roessler M, Mandic R, Netzer C, Güldner C, Walliczek-Dworschak U, Stuck BA, Mandapathil M. Foxp3 expression in lymph node metastases in patients with head and neck cancer. Acta Otolaryngol 2017; 137:1215-1219. [PMID: 28741409 DOI: 10.1080/00016489.2017.1353705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The prevalence and activity of regulatory T cells in patients with cancer correlates with poor prognosis. These cells are characterized by their expression of Forkhead box protein-3 (Foxp3). Squamous cell carcinoma is the most prevalent type of cancer in the head and neck region with overall poor survival rates, also due to early spread of metastatic cells. MATERIAL AND METHODS Primary tumor specimens as well as lymph node specimens harvested during neck dissection of 65 patients with a diagnosis of HNSCC were subjected to immunohistochemical and H-score analysis of Foxp3 expression. Demographics, diagnoses, histopathology and subsequent outcome were analyzed. RESULTS The primary cancer was squamous cell carcinoma in all patients (male/female 55:10) with the following tumor locations: oral cavity n = 16, oropharynx n = 28, hypopharynx n = 11 and larynx n = 10 (Stage III n = 18; Stage IVA n = 45; Stage IVB n = 2). The H-score for Foxp3 expression in the primary lesion as well as metastatic lymph nodes was significantly higher in advanced stages compared to early stages with differences among tumor locations, which were not significant. High Foxp3 expression was associated with inferior overall survival rates at a mean follow-up of 83.4 months (6-204 months) Conclusions: Foxp3 expression in HNSCC varied from the anatomical site and correlated positively with tumor stage and was associated with poor prognosis. Therefore, Foxp3 expressions in primary lesions as well as lymphogenic metastases appear to predict high-risk HSNCC patients. Novel therapeutic approaches targeting Foxp3+ cells might seem promising for this patient population.
Collapse
Affiliation(s)
- Mehtap Boduc
- Department of Otorhinolaryngology, Head and Neck Surgery, Philipps-University Marburg, Marburg, Germany
| | - Marion Roessler
- Department of Pathology, Philipps-University Marburg, Marburg, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, Philipps-University Marburg, Marburg, Germany
| | - Christoph Netzer
- Department of Otorhinolaryngology, Head and Neck Surgery, Philipps-University Marburg, Marburg, Germany
| | - Christian Güldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Philipps-University Marburg, Marburg, Germany
| | - Ute Walliczek-Dworschak
- Department of Otorhinolaryngology, Head and Neck Surgery, Philipps-University Marburg, Marburg, Germany
| | - Boris A. Stuck
- Department of Otorhinolaryngology, Head and Neck Surgery, Philipps-University Marburg, Marburg, Germany
| | - Magis Mandapathil
- Department of Otorhinolaryngology, Head and Neck Surgery, Philipps-University Marburg, Marburg, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Asklepios Clinic St. Georg, Hamburg, Germany
| |
Collapse
|
13
|
Letter from the Editor 2017. Immunol Invest 2017; 46:759-764. [PMID: 29058543 DOI: 10.1080/08820139.2017.1377856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU, Asghar K. Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-dioxygenase inhibitors. Onco Targets Ther 2017; 10:463-476. [PMID: 28176942 PMCID: PMC5268369 DOI: 10.2147/ott.s119362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine application in cancer immunotherapy is currently one of the most challenging areas in cancer therapeutic intervention. Innovative solutions have been provided by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging approach to stimulate the immune responses against cancer. The inhibition of indoleamine 2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan while increasing the concentration of kynurenine metabolites. Various preclinical studies showed that IDO inhibition in certain diseases may result in significant therapeutic effects. Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors are classified according to their source, inhibitory concentrations, the chemical structure, and the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more advantages as compared to the conventional chemotherapy. Search for more efficient and less toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for several research groups worldwide, especially revealing to be an extensive and a promising area in cancer therapeutic innovations.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Amnah Mahroo
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Kaenat Nasir
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Rai Khalid Farooq
- Department of Physiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nasir Jalal
- Department of Molecular and Cellular Pharmacology, Health Sciences Platform, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Kashif Asghar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad; Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
15
|
|
16
|
Rittenhouse-Olson K. Letter from the Editor 2016. Immunol Invest 2016; 45:703-707. [PMID: 27775449 DOI: 10.1080/08820139.2016.1235387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|