1
|
Liu Y, Qu Y, Liu C, Zhang D, Xu B, Wan Y, Jiang P. Neutrophil extracellular traps: Potential targets for the treatment of rheumatoid arthritis with traditional Chinese medicine and natural products. Phytother Res 2024; 38:5067-5087. [PMID: 39105461 DOI: 10.1002/ptr.8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Abnormal formation of neutrophil extracellular traps (NETs) at the synovial membrane leads to the release of many inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Elastase, histone H3, and myeloperoxidase, which are carried by NETs, damage the soft tissues of the joints and aggravate the progression of RA. The balance of NET formation coordinates the pro-inflammatory and anti-inflammatory effects and plays a key role in the development of RA. Therefore, when NETs are used as effector targets, highly targeted drugs with fewer side effects can be developed to treat RA without damaging the host immune system. Currently, an increasing number of studies have shown that traditional Chinese medicines and natural products can regulate the formation of NETs through multiple pathways to counteract RA, which shows great potential for the treatment of RA and has a promising future for clinical application. In this article, we review the latest biological progress in understanding NET formation, the mechanism of NETs in RA, and the potential targets or pathways related to the modulation of NET formation by Chinese medicines and natural products. This review provides a relevant basis for the use of Chinese medicines and natural products as natural adjuvants in the treatment of RA.
Collapse
Affiliation(s)
- Yuan Liu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Yuan Qu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yakun Wan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Liu X, Mao X, Liu Y, Chen W, Li W, Lin N, Zhang Y. Preclinical efficacy of TZG in myofascial pain syndrome by impairing PI3K-RAC2 signaling-mediated neutrophil extracellular traps. iScience 2023; 26:108074. [PMID: 37860777 PMCID: PMC10583084 DOI: 10.1016/j.isci.2023.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/13/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Tianhe Zhuifeng Gao (TZG) shows a satisfying therapeutic efficacy in treating arthromyodynia, which shares similar etiology to myofascial pain syndrome (MPS). We herein aim to explore whether TZG could be a potential prescription for MPS therapy. An MPS rat model was successfully established presenting with reduced pain thresholds, abnormal local switch responses, etc., which was effectively reversed by TZG treatment externally. A transcriptome sequencing based on the active MTrPs samples of rats, combined with network analysis revealed that TZG might ameliorate the progression of MPS by impairing neutrophil extracellular traps (NETs) release through inhibiting PI3K-RAC2 signaling to reduce NADPH oxidase-originated ROS. Experimentally, the expression levels of inducers, biomarkers of NETs formation and vessel injury, and p-PI3K, p-P47, and RAC2 proteins were all significantly up-regulated in affected tissues, which were markedly reversed by TZG. Our results not only shed light into broadening the clinical indications of TZG, but benefit MPS therapy.
Collapse
Affiliation(s)
- Xueting Liu
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Mao
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yudong Liu
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenjia Chen
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weijie Li
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqiong Zhang
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Chu Z, Huang Q, Ma K, Liu X, Zhang W, Cui S, Wei Q, Gao H, Hu W, Wang Z, Meng S, Tian L, Li H, Fu X, Zhang C. Novel neutrophil extracellular trap-related mechanisms in diabetic wounds inspire a promising treatment strategy with hypoxia-challenged small extracellular vesicles. Bioact Mater 2023; 27:257-270. [PMID: 37122894 PMCID: PMC10133407 DOI: 10.1016/j.bioactmat.2023.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been considered a significant unfavorable factor for wound healing in diabetes, but the mechanisms remain unclear. The therapeutic application of small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) has received considerable attention for their properties. Hypoxic preconditioning is reported to enhance the therapeutic potential of MSC-derived sEVs in regenerative medicine. Therefore, the aim of this study is to illustrate the detailed mechanism of NETs in impairment of diabetic wound healing and develop a promising NET-targeting treatment based on hypoxic pretreated MSC-derived sEVs (Hypo-sEVs). Excessive NETs were found in diabetic wounds and in high glucose (HG)-induced neutrophils. Further research showed that high concentration of NETs impaired the function of fibroblasts through activating endoplasmic reticulum (ER) stress. Hypo-sEVs efficiently promoted diabetic wound healing and reduced the excessive NET formation by transferring miR-17-5p. Bioinformatic analysis and RNA interference experiment revealed that miR-17-5p in Hypo-sEVs obstructed the NET formation by targeting TLR4/ROS/MAPK pathway. Additionally, miR-17-5p overexpression decreased NET formation and overcame NET-induced impairment in fibroblasts, similar to the effects of Hypo-sEVs. Overall, we identify a previously unrecognized NET-related mechanism in diabetic wounds and provide a promising NET-targeting strategy for wound treatment.
Collapse
Affiliation(s)
- Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Qilin Huang
- College of Graduate, Tianjin Medical University, Tianjin, 300070, PR China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, 100091, PR China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Lige Tian
- College of Graduate, Tianjin Medical University, Tianjin, 300070, PR China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, 518055, PR China
- Corresponding author.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
- College of Graduate, Tianjin Medical University, Tianjin, 300070, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, 100091, PR China
- Corresponding author. Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
- Corresponding author. Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China.
| |
Collapse
|
4
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Tanshinone IIA Improves Acute Gouty Arthritis in Rats through Regulating Neutrophil Activation and the NLRP3 Inflammasome. DISEASE MARKERS 2022; 2022:5851412. [PMID: 36578443 PMCID: PMC9792249 DOI: 10.1155/2022/5851412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Objectives To investigate the prevention and treatment effect of tanshinone IIA (TIIA) on acute gouty arthritis (AGA) and its mechanism. Methods The anti-AGA effect of TIIA was observed in vivo and in vitro. Neutrophils were isolated from the abdominal cavity of mice, and the anti-AGA effect of TIIA was investigated in a rat model of MSU-induced AGA. The pathological changes of the ankle joint tissues were assessed by H&E. Cytokine and chemokine expression were determined by ELISA and RT-qPCR. The NLRP3 inflammasome pathway protein levels in the ankle joint tissues were evaluated via western blotting. Neutrophil migration was evaluated in air pouch and transwell assays. Immunohistochemistry and immunofluorescence analysis evaluate the release of myeloperoxidase (MPO), neutrophil elastase (NE), and citrullination of histone H3 (CitH3). Beclin-1 and LC3B expressions were determined using western blotting and immunofluorescence. Key Findings. Treatment with TIIA alleviated synovial hyperplasia and neutrophil infiltration, regulated cytokine and chemokine expressions, and inhibited NLRP3 activation in AGA rats, neutrophil migration, MPO, NE, and CitH3 expression, and LC3B and Beclin-1 protein expression. Conclusions These results demonstrate that TIIA can effectively enhance AGA by focusing on the neutrophils and NLRP3 inflammasome, demonstrating that TIIA may act as a potential helpful agent for AGA.
Collapse
|
6
|
Zhuo Q, Wei L, Yin X, Li H, Qin G, Li S, Peng TT, Liu B, Zhao S, Ye Z. LncRNA ZNF667-AS1 alleviates rheumatoid arthritis by sponging miR-523-3p and inactivating the JAK/STAT signalling pathway. Autoimmunity 2021; 54:406-414. [PMID: 34423698 DOI: 10.1080/08916934.2021.1966770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease, which compromises the synovial membrane resulting in chronic inflammation. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) are implicated in the pathogenesis of RA. This study investigated the role of lncRNA ZNF667-AS1 in RA progression. METHODS Synovial tissues and fibroblast-like synoviocytes (FLSs) were obtained from patients with RA. Gene expression was measured using RT-qPCR. Chondrocytes were treated with lipopolysaccharide (LPS) to establish in vitro models of OA. Cell counting kit-8 (CCK-8), western blot, and enzyme-linked immunosorbent assay (ELISA) were used to examine the proliferation and inflammatory cytokine production in chondrocytes. Animal models of OA were established in SD rats. Peripheral blood mononuclear cells (PBMCs) were isolated from the OA rats. Flow cytometry was used to measure the changes of the inflammatory T-helper cell 17 (Th17) cells. The relationship between ZNF667-AS1 and miR-523-3p was verified by luciferase reporter assay. RESULTS ZNF667-AS1 was downregulated in RA-FLSs and LPS-stimulated chondrocytes. ZNF667-AS1 overexpression significantly promoted cell proliferation and inhibited the production of IL-6, IL-17 and TNF-α in LPS-stimulated chondrocytes. Additionally, ZNF667-AS1 overexpression reduced the generation of CD4 + IL-17+ cells. In mechanism, ZNF667-AS1 acted a sponge for miR-523-3p. MiR-523-3p overexpression reversed the ZNF667-AS1-mediated regulation of cell proliferation and inflammation. Furthermore, miR-523-3p overexpression abolished the inhibitory effects of ZNF667-AS1 on the JAK/STAT signalling activation. CONCLUSION ZNF667-AS1 exerts protective effects during RA development by sponging miR-523-3p and inactivating the JAK/STAT signalling.
Collapse
Affiliation(s)
- Qin Zhuo
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.,Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Lu Wei
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xietian Yin
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.,Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Huiling Li
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Guifu Qin
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Siqi Li
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Ting Ting Peng
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Bo Liu
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Shichao Zhao
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhiqin Ye
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
7
|
Zhang H, Zhou Y, Qu M, Yu Y, Chen Z, Zhu S, Guo K, Chen W, Miao C. Tissue Factor-Enriched Neutrophil Extracellular Traps Promote Immunothrombosis and Disease Progression in Sepsis-Induced Lung Injury. Front Cell Infect Microbiol 2021; 11:677902. [PMID: 34336711 PMCID: PMC8317465 DOI: 10.3389/fcimb.2021.677902] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background Patients with sepsis may progress to acute respiratory distress syndrome (ARDS). Evidence of neutrophil extracellular traps (NETs) in sepsis-induced lung injury has been reported. However, the role of circulating NETs in the progression and thrombotic tendency of sepsis-induced lung injury remains elusive. The aim of this study was to investigate the role of tissue factor-enriched NETs in the progression and immunothrombosis of sepsis-induced lung injury. Methods Human blood samples and an animal model of sepsis-induced lung injury were used to detect and evaluate NET formation in ARDS patients. Immunofluorescence imaging, ELISA, Western blotting, and qPCR were performed to evaluate in vitro NET formation and tissue factor (TF) delivery ability. DNase, an anti-TF antibody, and thrombin inhibitors were applied to evaluate the contribution of thrombin to TF-enriched NET formation and the contribution of TF-enriched NETs to immunothrombosis in ARDS patients. Results Significantly increased levels of TF-enriched NETs were observed in ARDS patients and mice. Blockade of NETs in ARDS mice alleviated disease progression, indicating a reduced lung wet/dry ratio and PaO2 level. In vitro data demonstrated that thrombin-activated platelets were responsible for increased NET formation and related TF exposure and subsequent immunothrombosis in ARDS patients. Conclusion The interaction of thrombin-activated platelets with PMNs in ARDS patients results in local NET formation and delivery of active TF. The notion that NETs represent a mechanism by which PMNs release thrombogenic signals during thrombosis may offer novel therapeutic targets.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilu Zhou
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Águila S, de los Reyes-García AM, Fernández-Pérez MP, Reguilón-Gallego L, Zapata-Martínez L, Ruiz-Lorente I, Vicente V, González-Conejero R, Martínez C. MicroRNAs as New Regulators of Neutrophil Extracellular Trap Formation. Int J Mol Sci 2021; 22:ijms22042116. [PMID: 33672737 PMCID: PMC7924615 DOI: 10.3390/ijms22042116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are formed after neutrophils expelled their chromatin content in order to primarily capture and eliminate pathogens. However, given their characteristics due in part to DNA and different granular proteins, NETs may induce a procoagulant response linking inflammation and thrombosis. Unraveling NET formation molecular mechanisms as well as the intracellular elements that regulate them is relevant not only for basic knowledge but also to design diagnostic and therapeutic tools that may prevent their deleterious effects observed in several inflammatory pathologies (e.g., cardiovascular and autoimmune diseases, cancer). Among the potential elements involved in NET formation, several studies have investigated the role of microRNAs (miRNAs) as important regulators of this process. miRNAs are small non-coding RNAs that have been involved in the control of almost all physiological processes in animals and plants and that are associated with the development of several pathologies. In this review, we give an overview of the actual knowledge on NETs and their implication in pathology with a special focus in cardiovascular diseases. We also give a brief overview on miRNA biology to later focus on the different miRNAs implicated in NET formation and the perspectives opened by the presented data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rocío González-Conejero
- Correspondence: (R.G.-C.); (C.M.); Tel.: +34-968341990 (R.G.-C. & C.M.); Fax: +34-968261914 (R.G.-C. & C.M.)
| | - Constantino Martínez
- Correspondence: (R.G.-C.); (C.M.); Tel.: +34-968341990 (R.G.-C. & C.M.); Fax: +34-968261914 (R.G.-C. & C.M.)
| |
Collapse
|
9
|
Leppkes M, Schick M, Hohberger B, Mahajan A, Knopf J, Schett G, Muñoz LE, Herrmann M. Updates on NET formation in health and disease. Semin Arthritis Rheum 2020; 49:S43-S48. [PMID: 31779852 DOI: 10.1016/j.semarthrit.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022]
Abstract
Following a recent presentation at ATT Mallorca in May 2019, this paper gives insight into the current research of neutrophil extracellular traps (NETs) and their role in conditions of health and disease. Though NETs reportedly support disease progression and play a role in the development of autoimmune diseases, we argue that NETs are mandatory for the mammalian immune system. They are especially important to patrol and surveil outer and inner body surfaces and are capable to perform major anti-microbial activities. Neutrophils are the first cells to be recruited to wounds, where they form NETs and aggregated NETs (aggNETs). The latter close the wounds and are ever-present in skinfolds, where the integrity of the skin is impaired. On infected ocular surfaces NETs form an antimicrobial barrier, which prevents bacterial dissemination into the brain. In the oral cavity, NETs display anti-bacterial properties. Although NETs on internal body surfaces like ducts and vessels offer superficial surveillance, exaggerated aggNET formation may directly block vessels and ducts and thus cause thrombi and ductal occlusion, respectively. In the case of biliopancreatic ducts, clogging by aggNETs may even cause acute pancreatitis. Insufficient clearance of apoptotic remnants and NETs can lead to autoimmune diseases or unwanted, chronic inflammation. To prevent this, macrophages cloak dead cells, while apoptotic cells are cleared. We conclude that neutrophils, NETs and aggNETs can be considered double edged swords that orchestrate the innate immune response but carry the risk to precipitate autoimmunity and epithelial damage.
Collapse
Affiliation(s)
- Moritz Leppkes
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 1 - Gastroenterology, Pneumology and Endocrinology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Maximilian Schick
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Bettina Hohberger
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Ophtalmology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Aparna Mahajan
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Jasmin Knopf
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Georg Schett
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Luis E Muñoz
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany.
| | - Martin Herrmann
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| |
Collapse
|
10
|
Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS NANO 2020; 14:4096-4110. [PMID: 32167280 PMCID: PMC7498156 DOI: 10.1021/acsnano.9b08818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 05/28/2023]
Abstract
Despite broad application of magnetic nanoparticles in biomedicine and electronics, only a few in vivo studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined in vivo by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing Fe3O4 nanoparticles doped with increasing amounts of cobalt (Fe3O4, CoFe2O4 with an iron to cobalt ratio 5:1, 3:1, 1:3, Co3O4) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation). In discovery phase, in-depth proteome profiling of a few representative samples allowed for comprehensive pathway analyses. Clustering of the 681 differentially expressed proteins (FDR < 0.05) revealed general as well as metal oxide specific responses with an overall strong induction of innate immunity and activation of the complement system. The highest expression increase could be found for a cluster of 39 proteins, which displayed strong dose-dependency to iron oxide and can be attributed to neutrophil extracellular trap (NET) formation. In-depth proteome analysis expanded the knowledge of in vivo NET formation. During screening, all BALF samples of the study (n = 166) were measured label-free as single-injections after a short gradient (21 min) LC separation using the Evosep One system, validating the findings from the discovery and defining protein signatures which enable discrimination of lung inflammation. We demonstrate a proteomics-based toxicity screening with high sample throughput easily transferrable to other nanoparticle types. Data are available via ProteomeXchange with identifier PXD016148.
Collapse
Affiliation(s)
- Anja M. Billing
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| | - Kristina B. Knudsen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Laura-Jayne A. Ellis
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Håkan Wallin
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
- Department
of Health Technology, Technical University
of Denmark, Lyngby 2800, Denmark
| | - Frank Kjeldsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
11
|
Talotta R, Atzeni F, Laska MJ. Retroviruses in the pathogenesis of systemic lupus erythematosus: Are they potential therapeutic targets? Autoimmunity 2020; 53:177-191. [PMID: 32321325 DOI: 10.1080/08916934.2020.1755962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is characterised by the hyper-activation of immunologic pathways related to the antiviral response. Exogenous and endogenous retroviruses, by integrating their DNA templates in the host cell genome, may epigenetically control the transcription of genes involved in the immune response. Furthermore, their nucleic acids or neo-synthesized proteins could stimulate the sensor molecules placed upstream the inflammatory cascade. Exogenous retroviruses, like human immunodeficiency virus, have been associated to SLE-like manifestations or to a fair SLE diagnosis. In addition, there is some evidence confirming a pathogenic role of human endogenous retroviruses in SLE. In line with these data, the use of antiretroviral agents could represent an attractive opportunity in the future therapeutic algorithms of this disease, but studies are still missing.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
12
|
Zhang L, Wu H, Zhao M, Lu Q. Identifying the differentially expressed microRNAs in autoimmunity: A systemic review and meta-analysis. Autoimmunity 2020; 53:122-136. [DOI: 10.1080/08916934.2019.1710135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lian Zhang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| |
Collapse
|
13
|
Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work. Front Immunol 2019; 10:2824. [PMID: 31849989 PMCID: PMC6901596 DOI: 10.3389/fimmu.2019.02824] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of their main components on surrounding tissues. Several distinct NETosis pathways have been described in response to various triggers. Among these triggers, IgG immune complexes (IC) play an important role since they induce robust NET release upon binding to activating FcγRs on neutrophils. Few in vitro studies have documented the mechanisms of IC-induced NET release and evidence about the partners involved is controversial. In vivo, animal models and clinical studies have strongly suggested the importance of IgG IC-induced NET release for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune diseases in which NETs are undoubtedly major players, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example of disease recently associated with IC-induced NET release. Understanding the role of IC-induced NETs in these settings will pave the way for new diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Vanessa Granger
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marine Peyneau
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Luc de Chaisemartin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
14
|
Ramirez GA, Manfredi AA, Maugeri N. Misunderstandings Between Platelets and Neutrophils Build in Chronic Inflammation. Front Immunol 2019; 10:2491. [PMID: 31695699 PMCID: PMC6817594 DOI: 10.3389/fimmu.2019.02491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Regulated hemostasis, inflammation and innate immunity entail extensive interactions between platelets and neutrophils. Under physiological conditions, vascular inflammation offers a template for the establishment of effective intravascular immunity, with platelets providing neutrophils with an array of signals that increase their activation threshold, thus limiting collateral damage to tissues and promoting termination of the inflammatory response. By contrast, persistent systemic inflammation as observed in immune-mediated diseases, such as systemic vasculitides, systemic sclerosis, systemic lupus erythematosus or rheumatoid arthritis is characterized by platelet and neutrophil reciprocal activation, which ultimately culminates in the generation of thrombo-inflammatory lesions, fostering vascular injury and organ damage. Here, we discuss recent evidence regarding the multifaceted aspects of platelet-neutrophil interactions from bone marrow precursors to shed microparticles. Moreover, we analyse shared and disease-specific events due to an aberrant deployment of these interactions in human diseases. To restore communications between the pillars of the immune-hemostatic continuum constitutes a fascinating challenge for the near future.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Norma Maugeri
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
15
|
Podolska MJ, Mahajan A, Hahn J, Knopf J, Maueröder C, Petru L, Ullmann M, Schett G, Leppkes M, Herrmann M, Muñoz LE, Schauer C. Treatment with DNases rescues hidden neutrophil elastase from aggregated NETs. J Leukoc Biol 2019; 106:1359-1366. [PMID: 31478257 DOI: 10.1002/jlb.3ab0918-370r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 07/09/2018] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The release of neutrophil extracellular traps (NETs) is one of the weapons neutrophils have in their armory. NETs consist of extracellular chromatin fibers decorated with a plethora of cytoplasmic and granular proteins, such as the antimicrobial serine protease neutrophil elastase (NE). Because the first description of NETs as beneficial to the host, reports on their double-faced role in health and disease have considerably increased recently. On one hand, NETs reportedly trap and kill bacteria and also participate in the resolution of the acute inflammation associated with infection and with tissue damage. On the other hand, numerous negative aspects of NETs contribute to the etiopathogenesis of autoimmune disorders. Employing soluble and solid fluorescent substrates, we demonstrate the interaction of NE with aggregated NETs (aggNETs), the limitation of its enzymatic activity and the containment of the enzyme from surrounding tissues. These events prevent the spread of inflammation and tissue damage. The detection of DNase 1-dependent elevation of NE activity attests the continuous presence of patrolling neutrophils forming NETs and aggNETs even under conditions physiologic conditions.
Collapse
Affiliation(s)
- Malgorzata J Podolska
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Aparna Mahajan
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Jonas Hahn
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Christian Maueröder
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany.,Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lenka Petru
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany.,Department of Rheumatology, First Faculty of Medicine, Charles University-Institute of Rheumatology, Prague, Czech Republic
| | - Marc Ullmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Georg Schett
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Moritz Leppkes
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 1-Gastroenterology, Pneumology and Endocrinology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Luis E Muñoz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| | - Christine Schauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlange, Germany
| |
Collapse
|
16
|
Hook JS, Cao M, Potera RM, Alsmadi NZ, Schmidtke DW, Moreland JG. Nox2 Regulates Platelet Activation and NET Formation in the Lung. Front Immunol 2019; 10:1472. [PMID: 31338092 PMCID: PMC6626916 DOI: 10.3389/fimmu.2019.01472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
The mortality rate of patients with critical illness has decreased significantly over the past two decades, but the rate of decline has slowed recently, with organ dysfunction as a major driver of morbidity and mortality. Among patients with the systemic inflammatory response syndrome (SIRS), acute lung injury is a common component with serious morbidity. Previous studies in our laboratory using a murine model of SIRS demonstrated a key role for NADPH oxidase 2 (Nox2)-derived reactive oxygen species in the resolution of inflammation. Nox2-deficient (gp91phox−/y) mice develop profound lung injury secondary to SIRS and fail to resolve inflammation. Alveolar macrophages from gp91phox−/y mice express greater levels of chemotactic and pro-inflammatory factors at baseline providing evidence that Nox2 in alveolar macrophages is critical for homeostasis. Based on the lung pathology with increased thrombosis in gp91phox−/y mice, and the known role of platelets in the inflammatory process, we hypothesized that Nox2 represses platelet activation. In the mouse model, we found that platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) and CXCL7 were increased in the bronchoalveolar fluid of gp91phox−/y mice at baseline and 24 h post intraperitoneal zymosan-induced SIRS consistent with platelet activation. Activated platelets interact with leukocytes via P-selectin glycoprotein ligand 1 (PSGL-1). Within 2 h of SIRS induction, alveolar neutrophil PSGL-1 expression was higher in gp91phox−/y mice. Platelet-neutrophil interactions were decreased in the peripheral blood of gp91phox−/y mice consistent with movement of activated platelets to the lung of mice lacking Nox2. Based on the severe lung pathology and the role of platelets in the formation of neutrophil extracellular traps (NETs), we evaluated NET production. In contrast to previous studies demonstrating Nox2-dependent NET formation, staining of lung sections from mice 24 h post zymosan injection revealed a large number of citrullinated histone 3 (H3CIT) and myeloperoxidase positive cells consistent with NET formation in gp91phox−/y mice that was virtually absent in WT mice. In addition, H3CIT protein expression and PAD4 activity were higher in the lung of gp91phox−/y mice post SIRS induction. These results suggest that Nox2 plays a critical role in maintaining homeostasis by regulating platelet activation and NET formation in the lung.
Collapse
Affiliation(s)
- Jessica S Hook
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Mou Cao
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Renee M Potera
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Nesreen Z Alsmadi
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - David W Schmidtke
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Jessica G Moreland
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
17
|
Paryzhak SY, Dumych TI, Peshkova SM, Bila EE, Lutsyk AD, Barras A, Boukherroub R, Szunerits S, Bilyy RO. Interaction of 4 allotropic modifications of carbon nanoparticles with living tissues. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|