1
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
2
|
Ocampo Y, Caro D, Rivera D, Castro J, Pájaro I, Salas R, Franco L. Active fraction of ground cherry ( Physalis angulata L.) calyces attenuates azoxymethane dextran sulfate sodium‑induced colon carcinogenesis in mice. Biomed Rep 2024; 21:188. [PMID: 39420920 PMCID: PMC11484217 DOI: 10.3892/br.2024.1876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Physalis angulata L., commonly known as wild tomato or ground cherry, is widely used in tropical and subtropical areas to treat health disorders including inflammation, hepatitis, dermatitis, cancer and diabetes. In Colombia, anti-cancer and anti-inflammatory activity are the most common ethnopharmacological applications of P. angulata calyces. P. angulata dichloromethane fraction (PADF) has significant anti-inflammatory activity. The present study assessed the pharmacological effect of PADF on colorectal cancer (CRC) using cancer and normal human cells and an azoxymethane (AOM)/dextran sulfate sodium (DSS) murine model. MTT and clonogenic assay, cell cycle and apoptosis analysis and mitochondrial membrane potential measurement were employed to evaluate in vitro activity of PADF. PADF selectively induced a cytotoxic effect against CRC cells via apoptosis and G2/M arrest. In the AOM/DSS model, treatment with PADF diminished tumor number and size, affected area and expression of proliferating cell nuclear antigen and promoted colon tissue repair. These effects might be related to the increased expression of p38 pro-apoptotic protein in addition to anti-inflammatory activity of PADF demonstrated by decreased levels of TNF-α, IL-6, and IL-1β. PADF may serve as a potential treatment for CRC. Further investigation is warranted to identify the bioactive components in PADF.
Collapse
Affiliation(s)
- Yanet Ocampo
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
| | - Daneiva Caro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
- Dentistry Program, Universidad del Sinú-Elías Bechara Zainúm-Seccional Cartagena, Cartagena 130014, Colombia
| | - David Rivera
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
| | - Jenny Castro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia
| | - Indira Pájaro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla 081007, Colombia
| | - Rubén Salas
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
| | - Luis Franco
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
3
|
Xu Y, Zhang H, Yang H, Liu C, Song C, Cheng Y, He C, Zou Z, Zhou D, Wu G, Zhang X. Eicosapentaenoic acid and docosahexaenoic acid suppress colonic tumorigenesis in obese mice. J Funct Foods 2024; 116:106164. [DOI: 10.1016/j.jff.2024.106164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
4
|
Eribo OA, Naidoo CC, Theron G, Walzl G, du Plessis N, Chegou NN. An Archetypical Model for Engrafting Bacteroides fragilis into Conventional Mice Following Reproducible Antibiotic Conditioning of the Gut Microbiota. Microorganisms 2023; 11:microorganisms11020451. [PMID: 36838416 PMCID: PMC9966493 DOI: 10.3390/microorganisms11020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bacteroides fragilis is a commonly investigated commensal bacterium for its protective role in host diseases. Here, we aimed to develop a reproducible antibiotic-based model for conditioning the gut microbiota and engrafting B. fragilis into a conventional murine host. Initially, we selected different combinations of antibiotics, including metronidazole, imipenem, and clindamycin, and investigated their efficacy in depleting the mouse Bacteroides population. We performed 16S rRNA sequencing of DNA isolated from fecal samples at different time points. The α-diversity was similar in mice treated with metronidazole (MET) and differed only at weeks 1 (p = 0.001) and 3 (p = 0.009) during metronidazole/imipenem (MI) treatment. Bacteroides compositions, during the MET and MI exposures, were similar to the pre-antibiotic exposure states. Clindamycin supplementation added to MET or MI regimens eliminated the Bacteroides population. We next repeated metronidazole/clindamycin (MC) treatment in two additional independent experiments, followed by a B. fragilis transplant. MC consistently and reproducibly eliminated the Bacteroides population. The depleted Bacteroides did not recover in a convalescence period of six weeks post-MC treatment. Finally, B. fragilis was enriched for ten days following engraftment into Bacteroides-depleted mice. Our model has potential use in gut microbiota studies that selectively investigate Bacteroides' role in diseases of interest.
Collapse
Affiliation(s)
- Osagie A. Eribo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Charissa C. Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- Correspondence:
| |
Collapse
|
5
|
Interrogation of the mammalian gut-brain axis using LC-MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models. Nat Protoc 2023; 18:490-529. [PMID: 36352124 DOI: 10.1038/s41596-022-00767-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/26/2022] [Indexed: 11/11/2022]
Abstract
Interest in the communication between the gastrointestinal tract and central nervous system, known as the gut-brain axis, has prompted the development of quantitative analytical platforms to analyze microbe- and host-derived signals. This protocol enables investigations into connections between microbial colonization and intestinal and brain neurotransmitters and contains strategies for the comprehensive evaluation of metabolites in in vitro (organoids) and in vivo mouse model systems. Here we present an optimized workflow that includes procedures for preparing these gut-brain axis model systems: (stage 1) growth of microbes in defined media; (stage 2) microinjection of intestinal organoids; and (stage 3) generation of animal models including germ-free (no microbes), specific-pathogen-free (complete gut microbiota) and specific-pathogen-free re-conventionalized (germ-free mice associated with a complete gut microbiota from a specific-pathogen-free mouse), and Bifidobacterium dentium and Bacteroides ovatus mono-associated mice (germ-free mice colonized with a single gut microbe). We describe targeted liquid chromatography-tandem mass spectrometry-based metabolomics methods for analyzing microbially derived short-chain fatty acids and neurotransmitters from these samples. Unlike other protocols that commonly examine only stool samples, this protocol includes bacterial cultures, organoid cultures and in vivo samples, in addition to monitoring the metabolite content of stool samples. The incorporation of three experimental models (microbes, organoids and animals) enhances the impact of this protocol. The protocol requires 3 weeks of murine colonization with microbes and ~1-2 weeks for liquid chromatography-tandem mass spectrometry-based instrumental and quantitative analysis, and sample post-processing and normalization.
Collapse
|
6
|
Metzger R, Winter L, Bouznad N, Garzetti D, von Armansperg B, Rokavec M, Lutz K, Schäfer Y, Krebs S, Winheim E, Friedrich V, Matzek D, Öllinger R, Rad R, Stecher B, Hermeking H, Brocker T, Krug AB. CCL17 Promotes Colitis-Associated Tumorigenesis Dependent on the Microbiota. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2227-2238. [PMID: 36426975 DOI: 10.4049/jimmunol.2100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.
Collapse
Affiliation(s)
- Rebecca Metzger
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lis Winter
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikt von Armansperg
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Konstantin Lutz
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yvonne Schäfer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabrina Krebs
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Verena Friedrich
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Ludwig Maximilian University of Munich, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Munich, Germany; and.,German Cancer Research Center, Heidelberg, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
7
|
Kvakova M, Kamlarova A, Stofilova J, Benetinova V, Bertkova I. Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J Gastroenterol 2022; 28:3370-3382. [PMID: 36158273 PMCID: PMC9346452 DOI: 10.3748/wjg.v28.i27.3370] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of human mortality worldwide. As conventional anticancer therapy not always being effective, there is growing interest in innovative “drug-free” cancer treatments or interventions that improve the efficacy of established therapy. CRC is associated with microbiome alterations, a process known as dysbiosis that involves depletion and/or enrichment of particular gut bacterial species and their metabolic functions. Supplementing patient treatment with traditional probiotics (with or without prebiotics), next-generation probiotics (NGP), or postbiotics represents a potentially effective and accessible complementary anticancer strategy by restoring gut microbiota composition and/or by signaling to the host. In this capacity, restoration of the gut microbiota in cancer patients can stabilize and enhance intestinal barrier function, as well as promote anticarcinogenic, anti-inflammatory, antimutagenic or other biologically important biochemical pathways that show high specificity towards tumor cells. Potential benefits of traditional probiotics, NGP, and postbiotics include modulating gut microbiota composition and function, as well as the host inflammatory response. Their application in CRC prevention is highlighted in this review, where we consider supportive in vitro, animal, and clinical studies. Based on emerging research, NGP and postbiotics hold promise in establishing innovative treatments for CRC by conferring physiological functions via the production of dominant natural products and metabolites that provide new host-microbiota signals to combat CRC. Although favorable results have been reported, further investigations focusing on strain and dose specificity are required to ensure the efficacy and safety of traditional probiotics, NGP, and postbiotics in CRC prevention and treatment.
Collapse
Affiliation(s)
- Monika Kvakova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Anna Kamlarova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Stofilova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Veronika Benetinova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| |
Collapse
|
8
|
de Souza JB, Brelaz-de-Castro MCA, Cavalcanti IMF. Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sci 2021; 290:120202. [PMID: 34896161 DOI: 10.1016/j.lfs.2021.120202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC), also named as colon and rectal or bowel cancer, is one of the leading neoplasia diagnosed in the world. Genetic sequencing studies of microorganisms from the intestinal microbiota of patients with CRC revealed that changes in its composition occur with the development of the disease, which can play a fundamental role in its development, being mediated by the production of metabolites and toxins that damage enterocytes. Some microorganisms are frequently reported in the literature as the main agents of this process, such as the bacteria Fusobacterium nucleatum, Escherichia coli and Bacteroides fragilis. Thus, understanding the mechanisms and function of each microorganism in CRC is essential for the development of treatment tools that focus on the gut microbiota. This review verifies current research aimed at evaluating the microorganisms present in the microbiota that can influence the development of CRC, as well as possible forms of treatment that can prevent the initiation and/or spread of this disease. Due to the incidence of CRC, alternatives have been launched considering factors beyond those already known in the disease development, such as diet, fecal microbiota transplantation, use of probiotics and antibiotics, which have been widely studied for this purpose. However, despite being promising, the studies that focus on the development of new therapeutic approaches targeting the microorganisms that cause CRC still need to be improved and better developed, involving new techniques to elucidate the effectiveness and safety of these new methods.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
9
|
THE INTESTINAL COMMENSAL, Bacteroides fragilis, MODULATES HOST RESPONSES TO VIRAL INFECTION AND THERAPY: LESSONS FOR EXPLORATION DURING Mycobacterium tuberculosis INFECTION. Infect Immun 2021; 90:e0032121. [PMID: 34606367 DOI: 10.1128/iai.00321-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota has emerged as a critical player in host health. Bacteroides fragilis is a prominent member of the gut microbiota within the phyla Bacteroidetes. This commensal bacterium produces unique capsular polysaccharides processed by antigen-presenting cells and activates CD4+ T cells to secrete inflammatory cytokines. Indeed, due to their immunomodulatory functions, B. fragilis and its capsular polysaccharide-A (PSA) are arguably the most explored single commensal microbiota/symbiotic factor. B. fragilis/PSA has been shown to protect against colitis, encephalomyelitis, colorectal cancer, pulmonary inflammation, and asthma. Here, we review (1) recent data on the immunomodulatory role of B. fragilis/PSA during viral infections and therapy, (2) B. fragilis PSA's dual ability to mediate pro-and anti-inflammatory processes, and the potential for exploring this unique characteristic during intracellular bacterial infections such as with Mycobacterium tuberculosis (3) discuss the protective roles of single commensal-derived probiotic species including B. fragilis in lung inflammation and respiratory infections that may provide essential cues for possible exploration of microbiota based/augmented therapies in tuberculosis (TB). Available data on the relationship between B. fragilis/PSA, the immune system, and disease suggest clinical relevance for developing B. fragilis into a next-generation probiotic or, possibly, the engineering of PSA into a potent carbohydrate-based vaccine.
Collapse
|
10
|
Lee YP, Huang WC, Lin TJ, Chiu CC, Wang YC, Chen YH, Hung SW, Chuang HL, Chen TH. Toll-like receptor 4 prevents AOM/DSS-induced colitis-associated colorectal cancer in Bacteroides fragilis gnotobiotic mice. Hum Exp Toxicol 2021; 40:622-633. [PMID: 32924602 DOI: 10.1177/0960327120954249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteroides fragilis (BF) plays a critical role in developing and maintaining the mammalian immune system. We previously found that BF colonization could prevent inflammation and tumor formation in a germ-free (GF) colitis-associated colorectal cancer (CAC) mouse model. The role of Toll-like receptor 4 (TLR4) in CAC development has not been clearly elucidated in BF mono-colonized gnotobiotic mice. The wild-type (WT) and TLR4 knockout (T4K) germ-free mice were raised with or without BF colonization for 28 days (GF/WT, GF/T4K, BF/WT, and BF/T4K) and then CAC was induced under azoxymethane (AOM)/dextran sulfate sodium (DSS) administration. The results showed that tumor formation and tumor incidence were significantly inhibited in the BF/WT group compared to those observed in the GF/WT group. However, the tumor prevention effect was not observed in the BF/T4K group unlike in the BF/WT group. Moreover, the CAC histological severity of the BF/WT group was ameliorated, but more severe lesions were found in the GF/WT, GF/T4K, and BF/T4K groups. Immunohistochemistry showed decreased cell proliferation (PCNA, β-catenin) and inflammatory markers (iNOS) in the BF/WT group compared to those in the BF/T4K group. Taken together, BF mono-colonization of GF mice might prevent CAC via the TLR4 signal pathway.
Collapse
Affiliation(s)
- Yen-Peng Lee
- Graduate Institute of Veterinary Pathobiology, 200384College of Veterinary Medicine, National Chung Hsing University, Taichung
| | - Wen-Ching Huang
- Department of Exercise and Health Science, 38028National Taipei University of Nursing and Health Sciences, Taipei
| | - Tien-Jen Lin
- Division of Neurosurgery, Department of Surgery, School of Medicine, 243733College of Medicine, Taipei Medical University, Taipei
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taipei
- Graduate Institute of Sports Science, College of Exercise and Health Sciences, National Taiwan Sport University, Taoyuan
| | - Chien-Chao Chiu
- Division of Animal Industry, Animal Technology Laboratories, 499343Agricultural Technology Research Institute, Miaoli
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathobiology, 200384College of Veterinary Medicine, National Chung Hsing University, Taichung
| | - Yi-Hsun Chen
- Graduate Institute of Veterinary Pathobiology, 200384College of Veterinary Medicine, National Chung Hsing University, Taichung
| | - Shao-Wen Hung
- Division of Animal Industry, Animal Technology Laboratories, 499343Agricultural Technology Research Institute, Miaoli
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, 200384College of Veterinary Medicine, National Chung Hsing University, Taichung
| |
Collapse
|
11
|
Parida S, Sharma D. The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within. Cancer Res 2020; 81:790-800. [PMID: 33148661 DOI: 10.1158/0008-5472.can-20-2629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
The human body is colonized by the microbial cells that are estimated to be as abundant as human cells, yet their genome is roughly 100 times the human genome, providing significantly more genetic diversity. The past decade has observed an explosion of interest in examining the existence of microbiota in the human body and understanding its role in various diseases including inflammatory bowel disease, neurologic diseases, cardiovascular disorders, and cancer. Many studies have demonstrated differential community composition between normal tissue and cancerous tissue, paving the way for investigations focused on deciphering the cause-and-effect relationships between specific microbes and initiation and progression of various cancers. Also, evolving are the strategies to alter tumor-associated dysbiosis and move it toward eubiosis with holistic approaches to change the entire neighborhood or to neutralize pathogenic strains. In this review, we discuss important pathogenic bacteria and the underlying mechanisms by which they affect cancer progression. We summarize key microbiota alterations observed in multiple tumor niches, their association with clinical stages, and their potential use in cancer diagnosis and management. Finally, we discuss microbiota-based therapeutic approaches.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Underwood MA, Mukhopadhyay S, Lakshminrusimha S, Bevins CL. Neonatal intestinal dysbiosis. J Perinatol 2020; 40:1597-1608. [PMID: 32968220 PMCID: PMC7509828 DOI: 10.1038/s41372-020-00829-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
The initial colonization of the neonatal intestinal tract is influenced by delivery mode, feeding, the maternal microbiota, and a host of environmental factors. After birth, the composition of the infant's microbiota undergoes a series of significant changes particularly in the first weeks and months of life ultimately developing into a more stable and diverse adult-like population in childhood. Intestinal dysbiosis is an alteration in the intestinal microbiota associated with disease and appears to be common in neonates. The consequences of intestinal dysbiosis are uncertain, but strong circumstantial evidence and limited confirmations of causality suggest that dysbiosis early in life can influence the health of the infant acutely, as well as contribute to disease susceptibility later in life.
Collapse
Affiliation(s)
- Mark A. Underwood
- grid.27860.3b0000 0004 1936 9684Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA USA
| | - Sagori Mukhopadhyay
- grid.25879.310000 0004 1936 8972Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Satyan Lakshminrusimha
- grid.27860.3b0000 0004 1936 9684Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA USA
| | - Charles L. Bevins
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA USA
| |
Collapse
|