1
|
Romero-Gavilán F, Cerqueira A, García-Arnáez I, Scalschi L, Vicedo B, Azkargorta M, Elortza F, Izquierdo R, Gurruchaga M, Goñi I, Suay J. Proteomic evaluation of borosilicate hybrid sol-gel coatings with osteogenic, immunomodulatory and antibacterial properties. Colloids Surf B Biointerfaces 2025; 250:114561. [PMID: 39956001 DOI: 10.1016/j.colsurfb.2025.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Silica hybrid sol-gel coatings represent an interesting approach to bioactivate dental implants. Boron is known for its osteogenic, angiogenic and antibacterial functions in biomedical applications. This study describes the synthesis of a novel borosilicate hybrid sol-gel coating using a mixture of methyltrimethoxysilane, tetraethyl orthosilicate and trimethyl borate (TMB). Coatings with different amounts of boron were obtained, and their physiochemical properties were examined; in vitro tests with human osteoblasts and macrophages (THP-1) were carried out. The effects of these materials on bacteria viability were evaluated using Escherichia coli and Staphylococcus aureus. The human serum proteins adsorbed onto the coatings were analysed employing proteomic techniques. To synthesise the new materials, the appropriate sol-gel reactions were developed; boron was integrated into the silica network, and well-adhering coatings were obtained. These borosilicate coatings were non-cytotoxic, displayed osteogenic potential, and upregulated adsorption of proteins related to bone regeneration (IGF2, ALS and APOE). Boron upregulated the expression of TNF-α, INFg and TGF-β and increased the TNF-α and TGF-β cytokine production in THP-1. Moreover, the addition of boron caused downregulation of NOX2 expression. Proteomic analysis revealed that boron-doping reduced the adsorption of immunoglobulins and complement system proteins. It also caused an increase in the levels of apolipoproteins, antioxidant proteins and serum amyloid A proteins, which was in agreement with in vitro results. The coatings with 10 and 20 % TMB displayed antibacterial effect against S. aureus. The results of this study will enhance our comprehension of interactions between boron-containing biomaterials and biological systems.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón de la Plana 12071, Spain.
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón de la Plana 12071, Spain
| | - Iñaki García-Arnáez
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Loredana Scalschi
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón de la Plana 12071, Spain
| | - Begonya Vicedo
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón de la Plana 12071, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón de la Plana 12071, Spain
| | - Mariló Gurruchaga
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Isabel Goñi
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, San Sebastián 20018, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón de la Plana 12071, Spain
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Shanbhag S, Al-Sharabi N, Fritz-Wallace K, Kristoffersen EK, Bunæs DF, Romandini M, Mustafa K, Sanz M, Gruber R. Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes. J Funct Biomater 2024; 15:302. [PMID: 39452600 PMCID: PMC11508515 DOI: 10.3390/jfb15100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen membranes (Geistlich Bio-Gide®, Wolhusen, Switzerland) were exposed to pooled human serum in vitro and, after thorough washing, subjected to protein extraction either in conjunction with protein enrichment or via a conventional surfactant-based method. The extracted proteins were analyzed via liquid chromatography with tandem mass spectrometry. Bioinformatic analysis of global profiling, gene ontology, and functional enrichment of the identified proteins was performed. Overall, a total of 326 adsorbed serum proteins were identified. The enrichment and conventional methods yielded similar numbers of total (315 vs. 309), exclusive (17 vs. 11), and major bone-related proteins (18 vs. 14). Most of the adsorbed proteins (n = 298) were common to both extraction groups and included several growth factors, extracellular matrix (ECM) proteins, cell adhesion molecules, and angiogenesis mediators involved in bone regeneration. Functional analyses revealed significant enrichment of ECM, exosomes, immune response, and cell growth components. Key proteins [transforming growth factor-beta 1 (TGFβ1), insulin-like growth factor binding proteins (IGFBP-5, -6, -7)] were exclusively detected with the enrichment-based method. In summary, native collagen membranes exhibited a high protein adsorption capacity in vitro. While both extraction methods were effective, the enrichment-based method showed distinct advantages in detecting specific bone-related proteins. Therefore, the use of multiple extraction methods is advisable in studies investigating protein adsorption on biomaterials.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Niyaz Al-Sharabi
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Katarina Fritz-Wallace
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway
| | - Dagmar Fosså Bunæs
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
- ETEP Research Group, University Complutense of Madrid, 28040 Madrid, Spain
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
4
|
Romero-Gavilán F, Arias-Mainer C, Cerqueira A, Peñarrocha-Oltra D, Bernabeu-Mira JC, García-Arnáez I, Elortza F, Muriach M, Gurruchaga M, Goñi I, Suay J. Roughness affects the response of human fibroblasts and macrophages to sandblasted abutments. Biomed Eng Online 2024; 23:68. [PMID: 39020369 PMCID: PMC11253364 DOI: 10.1186/s12938-024-01264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND A strong seal of soft-tissue around dental implants is essential to block pathogens from entering the peri-implant interface and prevent infections. Therefore, the integration of soft-tissue poses a challenge in implant-prosthetic procedures, prompting a focus on the interface between peri-implant soft-tissues and the transmucosal component. The aim of this study was to analyse the effects of sandblasted roughness levels on in vitro soft-tissue healing around dental implant abutments. In parallel, proteomic techniques were applied to study the interaction of these surfaces with human serum proteins to evaluate their potential to promote soft-tissue regeneration. RESULTS Grade-5 machined titanium discs (MC) underwent sandblasting with alumina particles of two sizes (4 and 8 μm), resulting in two different surface types: MC04 and MC08. Surface morphology and roughness were characterised employing scanning electron microscopy and optical profilometry. Cell adhesion and collagen synthesis, as well as immune responses, were assessed using human gingival fibroblasts (hGF) and macrophages (THP-1), respectively. The profiles of protein adsorption to the surfaces were characterised using proteomics; samples were incubated with human serum, and the adsorbed proteins analysed employing nLC-MS/MS. hGFs exposed to MC04 showed decreased cell area compared to MC, while no differences were found for MC08. hGF collagen synthesis increased after 7 days for MC08. THP-1 macrophages cultured on MC04 and MC08 showed a reduced TNF-α and increased IL-4 secretion. Thus, the sandblasted topography led a reduction in the immune/inflammatory response. One hundred seventy-six distinct proteins adsorbed on the surfaces were identified. Differentially adsorbed proteins were associated with immune response, blood coagulation, angiogenesis, fibrinolysis and tissue regeneration. CONCLUSIONS Increased roughness through MC08 treatment resulted in increased collagen synthesis in hGF and resulted in a reduction in the surface immune response in human macrophages. These results correlate with the changes in protein adsorption on the surfaces observed through proteomics.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - Carlos Arias-Mainer
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - David Peñarrocha-Oltra
- Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, C/Gascó Oliag 1, Valencia, Spain
| | - Juan Carlos Bernabeu-Mira
- Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, C/Gascó Oliag 1, Valencia, Spain
| | - Iñaki García-Arnáez
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - María Muriach
- Unidad Pre-Departmental de Medicina, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mariló Gurruchaga
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Isabel Goñi
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| |
Collapse
|
5
|
Hussain B, Grytten JI, Rongen G, Sanz M, Haugen HJ. Surface Topography Has Less Influence on Peri-Implantitis than Patient Factors: A Comparative Clinical Study of Two Dental Implant Systems. ACS Biomater Sci Eng 2024; 10:4562-4574. [PMID: 38916970 PMCID: PMC11234333 DOI: 10.1021/acsbiomaterials.3c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES This study aims to assess the risk of peri-implantitis (PI) onset among different implant systems and evaluate the severity of the disease from a population of patients treated in a university clinic. Furthermore, this study intends to thoroughly examine the surface properties of the implant systems that have been identified and investigated. MATERIAL AND METHODS Data from a total of six hundred and 14 patients were extracted from the Institute of Clinical Dentistry, Dental Faculty, University of Oslo. Subject- and implant-based variables were collected, including the type of implant, date of implant installation, medical records, recall appointments up to 2022, periodontal measurements, information on diabetes, smoking status, sex, and age. The outcome of interest was the diagnosis of PI, defined as the occurrence of bleeding on probing (BoP), peri-implant probing depth (PD) ≥ 5 mm, and bone loss (BL). Data were analyzed using multivariate linear and logistic regression. Scanning electron microscopy, light laser profilometer, and X-ray photoelectron spectroscopy were utilized for surface and chemical analyses. RESULTS Among the patients evaluated, 6.8% were diagnosed with PI. A comparison was made between two different implant systems: Dentsply Sirona, OsseospeedTM and Straumann SLActive, with mean follow-up times of 3.84 years (SE: 0.15) and 3.34 years (SE: 0.15), respectively. The surfaces have different topographies and surface chemistry. However, no significant association was found between PI and implant surface/system, including no difference in the onset or severity of the disease. Nonetheless, plaque control was associated with an increased risk of developing PI, along with the gender of the patient. Furthermore, patients suffering from PI exhibited increased BL in the anterior region. CONCLUSION No differences were observed among the evaluated implant systems, although the surfaces have different topography and chemistry. Factors that affected the risk of developing PI were plaque index and male gender. The severity of BL in patients with PI was more pronounced in the anterior region. Consequently, our findings show that success in implantology is less contingent on selecting implant systems and more on a better understanding of patient-specific risk factors, as well as on implementing biomaterials that can more effectively debride dental implants.
Collapse
Affiliation(s)
- Badra Hussain
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0316, Norway
| | | | - Gunnar Rongen
- Institute
of Community Dentistry, University of Oslo, Oslo 0316, Norway
| | - Mariano Sanz
- Section
of Periodontology, Faculty of Odontology, University Complutense of Madrid, Madrid 28040, Spain
- ETEP
(Etiology and Therapy of Periodiontal and Peri-Implant Diseases) Research
Group, Complutense University, Madrid 28040, Spain
| | - Håvard Jostein Haugen
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
6
|
Romero-Gavilán F, García-Arnáez I, Cerqueira A, Arias-Mainer C, Azkargorta M, Elortza F, Izquierdo R, Gurruchaga M, Goñi I, Suay J. Using osteogenic medium in the in vitro evaluation of bone biomaterials: Artefacts due to a synergistic effect. Biochimie 2024; 216:24-33. [PMID: 37716498 DOI: 10.1016/j.biochi.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
In vitro tests using bone cells to evaluate the osteogenic potential of biomaterials usually employ the osteogenic medium (OM). The lack of correlation frequently reported between in vitro and in vivo studies in bone biomaterials, makes necessary the evaluation of the impact of osteogenic supplements on these results. This study analysed the proteomic profiles of human osteoblasts (HOb) cultured in the media with and without osteogenic agents (ascorbic acid and β-glycerol phosphate). The cells were incubated for 1 and 7 days, on their own or in contact with Ti. The comparative Perseus analysis identified 2544 proteins whose expression was affected by osteogenic agents. We observed that the OM strongly alters protein expression profiles with a complex impact on multiple pathways associated with adhesion, immunity, oxidative stress, coagulation, angiogenesis and osteogenesis. OM-triggered changes in the HOb intracellular energy production mechanisms, with key roles in osteoblast maturation. HOb cultured with and without Ti showed enrichment in the skeletal system development function due to the OM. However, differentially expressed proteins with key regenerative functions were associated with a synergistic effect of OM and Ti. This synergy, caused by the Ti-OM interaction, could complicate the interpretation of in vitro results, highlighting the need to analyse this phenomenon in biomaterial testing.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Carlos Arias-Mainer
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mariló Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Isabel Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| |
Collapse
|
7
|
Wang YN, Yu L, Wang T, Liu S. Apolipoprotein E facilitates titanium implant osseointegration by regulating osteogenesis-lipogenesis balance. Int J Biol Macromol 2023; 236:123998. [PMID: 36906203 DOI: 10.1016/j.ijbiomac.2023.123998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Apolipoprotein E (ApoE), a protein closely related to various metabolic diseases, is recently considered to play an essential role in bone metabolism. However, the effect and mechanism of ApoE on implant osseointegration have not been clarified. This study aims to investigate the influence of additional ApoE supplementation in regulating the osteogenesis-lipogenesis balance on bone marrow mesenchymal stem cells (BMMSCs) cultured on titanium surface, and the effect of ApoE on the osseointegration of titanium implants. In vivo, the bone volume/total volume (BV/TV) and the bone-implant contact (BIC) significantly elevated in the exogenous supplement of ApoE group, compared with the Normal group. Meanwhile, the adipocyte area proportion around the implant dramatically decreased after 4-week healing. In vitro, the additional ApoE substantially drove the osteogenic differentiation of BMMSCs cultured on the titanium surface and inhibit their lipogenic differentiation as well as lipid droplet accumulation. These results suggest that ApoE, by mediating the differentiation of stem cells on the surface of titanium with this macromolecular protein, is deeply involved in facilitating titanium implant osseointegration, which reveals the potential mechanism and proposes a promising solution for further improving the osseointegration of titanium implants.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Lu Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Ting Wang
- Department of General Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Shiyue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
8
|
Romero-Gavilán F, García-Arnáez I, Cerqueira A, Scalschi L, Vicedo B, Villagrasa A, Izquierdo R, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J. Insight into the antibacterial mechanism of Cu-enriched sol-gel coatings employing proteomics. Biomater Sci 2023; 11:1042-1055. [PMID: 36562316 DOI: 10.1039/d2bm01421a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advanced antibacterial biomaterials can help reduce the severe consequences of infections. Using copper compounds is an excellent option to achieve this goal; they offer a combination of regenerative and antimicrobial functions. In this study, new CuCl2-doped sol-gel coatings were developed and physicochemically characterised. Their osteogenic and inflammatory responses were tested in vitro using human osteoblasts and THP-1 macrophages. Their antibacterial effect was evaluated using Escherichia coli and Staphylococcus aureus. The Cu influence on the adsorption of human serum proteins was analysed employing proteomics. The materials released Cu2+ and were not cytotoxic. The osteoblasts in contact with these materials showed an increased ALP, BMP2 and OCN gene expression. THP-1 showed an increase in pro-inflammatory markers related to M1 polarization. Moreover, Cu-doped coatings displayed a potent antibacterial behaviour against E. coli and S. aureus. The copper ions affected the adsorption of proteins related to immunity, coagulation, angiogenesis, fibrinolysis, and osteogenesis. Interestingly, the coatings had increased affinity to proteins with antibacterial functions and proteins linked to the complement system activation that can lead to direct bacterial killing via large pore-forming complexes. These results contribute to our understanding of the antibacterial mechanisms of Cu-biomaterials and their interaction with biological systems.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Loredana Scalschi
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Begonya Vicedo
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Alejandro Villagrasa
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Mariló Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Isabel Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
9
|
Nascimento MD, Souza BMD, Posch AT. peri-implant ligament. BRAZILIAN JOURNAL OF ORAL SCIENCES 2023. [DOI: 10.20396/bjos.v22i00.8671269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The peri-implant ligament is formed from the interface of bone tissue, through the anchoring of proteins and the surface of the dental implant. In this sense, it is relevant to understand the extent to which this ligament is structured and biomimics the periodontal ligament functions. Aim: The goal of this scoping review is to present and analyze the peri-implant ligament composition and compare the extent to which this ligament is structured and biomimics the periodontal ligament functions. Methods: This scoping review was performed according to the Joanna Briggs Institute methodology for scoping reviews and following the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for scoping review. Two independent researchers searched Pubmed, Cochrane, Embase, Virtual Health Library, Scielo, Scopus, Web of Science, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Digital Library of Theses and Dissertations from the University of São Paulo and Portal Capes. Studies published in English, Portuguese and Spanish, over the last 21 years (2000-2021). Results: A total of 330 titles were identified and after applying inclusion and exclusion factors, 27 studies were included in this review. All proteins were identified regarding their tissue function and classified into 6 major protein groups. After that this new protein ligament was compared with the periodontal ligament regarding its function and composition. The main proteins associated with osseointegration, and thus, with the peri-implant ligament are recognized as belonging to the periodontal ligament. Conclusion: This scoping review results suggest evidence of the composition and function of the periimplant ligament. However, variations may still exist due to the existence of several modulants of the osseointegration process.
Collapse
|
10
|
Romero‐Gavilán F, Cerqueira A, García‐Arnáez I, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J. Proteomic evaluation of human osteoblast responses to titanium implants over time. J Biomed Mater Res A 2023; 111:45-59. [PMID: 36054528 PMCID: PMC9804409 DOI: 10.1002/jbm.a.37444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 01/05/2023]
Abstract
Titanium is widely used in bone prostheses due to its excellent biocompatibility and osseointegration capacity. To understand the effect of sandblasted acid-etched (SAE) Ti implants on the biological responses of human osteoblast (HOb), their proteomic profiles were analyzed using nLC-MS/MS. The cells were cultured with the implant materials, and 2544 distinct proteins were detected in samples taken after 1, 3, and 7 days. Comparative analyses of proteomic data were performed using Perseus software. The expression of proteins related to EIF2, mTOR, insulin-secretion and IGF pathways showed marked differences in cells grown with SAE-Ti in comparison with cells cultured without Ti. Moreover, the proteomic profiles obtained with SAE-Ti were compared over time. The affected proteins were related to adhesion, immunity, oxidative stress, coagulation, angiogenesis, osteogenesis, and extracellular matrix formation functions. The proliferation, mineralization and osteogenic gene expression in HObs cultured with SAE-Ti were characterized in vitro. The results showed that the osteoblasts exposed to this material increase their mineralization rate and expression of COLI, RUNX2, SP7, CTNNB1, CAD13, IGF2, MAPK2, and mTOR. Overall, the observed proteomic profiles can explain the SAE-Ti osteogenic properties, widening our knowledge of key signaling pathways taking part in the early stages of the osseointegration process in this type of implantations.
Collapse
Affiliation(s)
- Francisco Romero‐Gavilán
- Department of Industrial Systems Engineering and DesignUniversitat Jaume ICastellón de la PlanaSpain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and DesignUniversitat Jaume ICastellón de la PlanaSpain
| | - Iñaki García‐Arnáez
- Department of Polymers and Advanced Materials: Physics, Chemistry and TechnologyUniversidad del País VascoSan SebastiánSpain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed‐ISCIIIBizkaia Science and Technology ParkDerioSpain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed‐ISCIIIBizkaia Science and Technology ParkDerioSpain
| | - Mariló Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and TechnologyUniversidad del País VascoSan SebastiánSpain
| | - Isabel Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and TechnologyUniversidad del País VascoSan SebastiánSpain
| | - Julio Suay
- Department of Industrial Systems Engineering and DesignUniversitat Jaume ICastellón de la PlanaSpain
| |
Collapse
|
11
|
Foroushani FT, Dzobo K, Khumalo NP, Mora VZ, de Mezerville R, Bayat A. Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater Res 2022; 26:80. [PMID: 36517896 PMCID: PMC9749192 DOI: 10.1186/s40824-022-00314-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Silicone breast implants are commonly used for cosmetic and oncologic surgical indications owing to their inertness and being nontoxic. However, complications including capsular contracture and anaplastic large cell lymphoma have been associated with certain breast implant surfaces over time. Novel implant surfaces and modifications of existing ones can directly impact cell-surface interactions and enhance biocompatibility and integration. The extent of foreign body response induced by breast implants influence implant success and integration into the body. This review highlights recent advances in breast implant surface technologies including modifications of implant surface topography and chemistry and effects on protein adsorption, and cell adhesion. A comprehensive online literature search was performed for relevant articles using the following keywords silicone breast implants, foreign body response, cell adhesion, protein adsorption, and cell-surface interaction. Properties of silicone breast implants impacting cell-material interactions including surface roughness, wettability, and stiffness, are discussed. Recent studies highlighting both silicone implant surface activation strategies and modifications to enhance biocompatibility in order to prevent capsular contracture formation and development of anaplastic large cell lymphoma are presented. Overall, breast implant surface modifications are being extensively investigated in order to improve implant biocompatibility to cater for increased demand for both cosmetic and oncologic surgeries.
Collapse
Affiliation(s)
- Fatemeh Tavakoli Foroushani
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | | | | | - Ardeshir Bayat
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
12
|
Saad A, Penaloza Arias C, Wang M, ElKashty O, Brambilla D, Tamimi F, Cerruti M. Biomimetic Strategy to Enhance Epithelial Cell Viability and Spreading on PEEK Implants. ACS Biomater Sci Eng 2022; 8:5129-5144. [PMID: 36453830 DOI: 10.1021/acsbiomaterials.2c00764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polyetheretherketone (PEEK) is a biocompatible material widely used in spinal and craniofacial implants, with potential use in percutaneous implants. However, its inertness prevents it from forming a tight seal with the surrounding soft tissue, which can lead to infections and implant failure. Conversely, the surface chemistry of percutaneous organs (i.e., teeth) helps establish a strong interaction with the epithelial cells of the contacting soft tissues, and hence a tight seal, preventing infection. The seal is created by adsorption of basement membrane (BM) proteins, secreted by epithelial cells, onto the percutaneous organ surfaces. Here, we aim to create a tight seal between PEEK and epithelial tissues by mimicking the surface chemistry of teeth. Our hypothesis is that collagen I, the most abundant tooth protein, enables integration between the epithelial tissue and teeth by promoting adsorption of BM proteins. To test this, we immobilized collagen I via EDC/NHS coupling on a carboxylated PEEK surface modified using diazonium chemistry. We used titanium alloy (Ti-6Al-4V) for comparison, as titanium is the most widely used percutaneous biomaterial. Both collagen-modified PEEK and titanium showed a larger adsorption of key BM proteins (laminin, nidogen, and fibronectin) compared to controls. Keratinocyte epithelial cell viability on collagen-modified PEEK was twice that of control PEEK and ∼1.5 times that of control titanium after 3 days of cell seeding. Both keratinocytes and fibroblasts spread more on collagen-modified PEEK and titanium compared to controls. This work introduces a versatile and biomimetic surface modification technique that may enhance PEEK-epithelial tissue sealing with the potential of extending PEEK applications to percutaneous implants, making it competitive with titanium.
Collapse
Affiliation(s)
- Ahmed Saad
- Department of Mining and Materials Engineering, McGill University, MontrealH3A 0C5, Québec, Canada
| | | | - Min Wang
- Faculty of Dentistry, McGill University, MontrealH3A 0C5, Québec, Canada
| | - Osama ElKashty
- Faculty of Dentistry, McGill University, MontrealH3A 0C5, Québec, Canada.,Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura35516, Egypt
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, MontréalH3T 1J4, Québec, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, MontrealH3A 0C5, Québec, Canada.,College of Dental Medicine, Qatar University, University Street, Doha2713, Qatar
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, MontrealH3A 0C5, Québec, Canada
| |
Collapse
|
13
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Cerqueira A, García-Arnáez I, Muriach M, Azkargorta M, Elortza F, Izquierdo R, Romero-Gavilán F, Gurruchaga M, Suay J, Goñi I. The effect of calcium-magnesium mixtures in sol-gel coatings on bone tissue regeneration. Biomater Sci 2022; 10:5634-5647. [PMID: 35993129 DOI: 10.1039/d2bm00742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calcium and magnesium are two elements essential for bone structure and metabolism. However, their synergistic or competitive effects on bone regeneration are often overlooked during biomaterial development. We examined the interactions between Ca and Mg in sol-gel coatings doped with mixtures of CaCl2 (0.5%) and MgCl2 (0.5, 1, and 1.5%). After physicochemical characterisation, the materials were incubated in vitro with MC3T3-E1 osteoblastic cells and RAW264.7 macrophages, and the protein adsorption was analysed using nLC-MS/MS. The incorporation of the ions did not lead to the formation of crystalline structures and did not affect the sol-gel network cross-linking. The release of the ions did not cause cytotoxic effects at any tested concentration. The proteomic analysis showed that adding the Ca and Mg ions elevated the adsorption of proteins associated with inflammatory response regulation (e.g., ALBU, CLUS, HPT, HPTR, A1AG1 and A1AG2) but decreased the adsorption of immunoglobulins. The CaMg coatings had reduced affinity to proteins associated with coagulation (e.g., FA9, FA10, FA11, FA12) but increased the adsorption of proteins involved in cell adhesion (DSG1, DESP, FBLN1, ZA2G). In vitro assays revealed that the cellular response was affected by changing the concentration of Mg. Moreover, our results show that these differences reflect the changes in the concentrations of both ions in the mix but are not a simple additive effect.
Collapse
Affiliation(s)
- Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - María Muriach
- Deparment of Medicine, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Mariló Gurruchaga
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Isabel Goñi
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| |
Collapse
|
15
|
Romero-Gavilán F, Cerqueira A, Anitua E, Tejero R, García-Arnáez I, Martinez-Ramos C, Ozturan S, Izquierdo R, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J. Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications. J Biol Inorg Chem 2021; 26:715-726. [PMID: 34453217 PMCID: PMC8437886 DOI: 10.1007/s00775-021-01886-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022]
Abstract
Calcium ions are used in the development of biomaterials for the promotion of coagulation, bone regeneration, and implant osseointegration. Upon implantation, the time-dependent release of calcium ions from titanium implant surfaces modifies the physicochemical characteristics at the implant-tissue interface and thus, the biological responses. The aim of this study is to examine how the dynamics of protein adsorption on these surfaces change over time. Titanium discs with and without Ca were incubated with human serum for 2 min, 180 min, and 960 min. The layer of proteins attached to the surface was characterised using nLC-MS/MS. The adsorption kinetics was different between materials, revealing an increased adsorption of proteins associated with coagulation and immune responses prior to Ca release. Implant-blood contact experiments confirmed the strong coagulatory effect for Ca surfaces. We employed primary human alveolar osteoblasts and THP-1 monocytes to study the osteogenic and inflammatory responses. In agreement with the proteomic results, Ca-enriched surfaces showed a significant initial inflammation that disappeared once the calcium was released. The distinct protein adsorption/desorption dynamics found in this work demonstrated to be useful to explain the differential biological responses between the titanium and Ca-ion modified implant surfaces.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Campus del Ríu Sec, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Campus del Ríu Sec, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute I+D, C/ Leonardo da Vinci 14B, 01510, Miñano, Spain
- University Institute of Regenerative Medicine and Oral Implantology (UIRMI), University of the Basque Country (UPV/EHU), C/ Jacinto Quincoces, 39, 01007, Vitoria, Spain
- Private Practice in Oral Implantology, C/Jose Maria Cagigal, 19, 01007, Vitoria, Spain
| | - Ricardo Tejero
- BTI Biotechnology Institute I+D, C/ Leonardo da Vinci 14B, 01510, Miñano, Spain
- University Institute of Regenerative Medicine and Oral Implantology (UIRMI), University of the Basque Country (UPV/EHU), C/ Jacinto Quincoces, 39, 01007, Vitoria, Spain
| | - Iñaki García-Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Cristina Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Seda Ozturan
- Department of Periodontology, Faculty of Dentistry, Istanbul Medeniyet University, Istanbul, Turkey
| | - Raul Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Campus del Ríu Sec, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIBERehd, ProteoRed-ISCIII, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIBERehd, ProteoRed-ISCIII, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Mariló Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Campus del Ríu Sec, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| |
Collapse
|
16
|
Wang Y, Yoshida Y, Kamiie J, Shiwaku Y, Suzuki O, Furuya M, Yokota K, Kanetaka H, Yokoi T, Kawashita M. Proteomic identification of serum proteins to induce osteoconductivity of hydroxyapatite. Dent Mater J 2021; 40:1428-1436. [PMID: 34349048 DOI: 10.4012/dmj.2021-120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We performed proteomic analysis of rat serum proteins adsorbed on hydroxyapatite (HAp) and α-alumina (α-Al2O3) in order to identify proteins that specifically adsorb onto HAp and control cellular responses. Proteins with either or both molecular weight of 22-32 kDa and computed isoelectric point of 5.0-5.5 were preferentially adsorbed on HAp. In total, 182 proteins were adsorbed on both HAp and α-Al2O3, of which 14 were highly enriched on HAp, whereas 68 were adsorbed only on HAp. Therefore, 82 (14+68) proteins were further evaluated by bioinformatics and literature-based analyses. We predicted that hepatocyte growth factor and angiopoietin-like protein 3 (ANGPTL3) are candidate proteins responsible for the osteoconductivity of HAp. Although ANGPTL3 promoted the attachment and spreading of MC3T3-E1 cells, it did not promote their proliferation and differentiation. Our results suggest that specific adsorption of ANGPTL3 on HAp induced osteoconductivity by enhancing the attachment and spreading of osteoblasts.
Collapse
Affiliation(s)
- Yunting Wang
- Graduate School of Biomedical Engineering, Tohoku University
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences
| | | | | | | | | | | | - Hiroyasu Kanetaka
- Graduate School of Biomedical Engineering, Tohoku University.,Tohoku University Graduate School of Dentistry
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
17
|
Comprehensive in vitro comparison of cellular and osteogenic response to alternative biomaterials for spinal implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112251. [PMID: 34225890 DOI: 10.1016/j.msec.2021.112251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
A variety of novel biomaterials are emerging as alternatives to conventional metals and alloys, for use in spinal implants. These promise potential advantages with respect to e.g. elastic modulus compatibility with the host bone, improved radiological imaging or enhanced cellular response to facilitate osseointegration. However, to date there is scarce comparative data on the biological response to many of these biomaterials that would give insights into the relative level of bone formation, resorption inhibition and inflammation. Thus, in this study, we aimed to evaluate and compare the in vitro biological response to standard discs of four alternative biomaterials: polyether ether ketone (PEEK), zirconia toughened alumina (ZTA), silicon nitride (SN) and surface-textured silicon nitride (ST-SN), and the reference titanium alloy Ti6Al4V (TI). Material-specific characteristics of these biomaterials were evaluated, such as surface roughness, wettability, protein adsorption (BSA) and apatite forming capacity in simulated body fluid. The activity of pre-osteoblasts seeded on the discs was characterized, by measuring viability, proliferation, attachment and morphology. Then, the osteogenic differentiation of pre-osteoblasts was compared in vitro from early to late stage by Alizarin Red S staining and real-time PCR analysis. Finally, osteoclast activity and inflammatory response were assessed by real-time PCR analysis. Compared to TI, all other materials generally demonstrated a lower osteoclastic activity and inflammatory response. ZTA and SN showed generally an enhanced osteogenic differentiation and actin length. Overall, we could show that SN and ST-SN showed a higher osteogenic effect than the other reference groups, an inhibitive effect against bone resorption and low inflammation, and the results indicate that silicon nitride has a promising potential to be developed further for spinal implants that require enhanced osseointegration.
Collapse
|
18
|
Jing L, Rota S, Olivier F, Momier D, Guigonis JM, Schaub S, Samson M, Bouler JM, Scimeca JC, Rochet N, Lagadec P. Proteomic analysis identified LBP and CD14 as key proteins in blood/biphasic calcium phosphate microparticle interactions. Acta Biomater 2021; 127:298-312. [PMID: 33831568 DOI: 10.1016/j.actbio.2021.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
Immediately upon implantation, scaffolds for bone repair are exposed to the patient's blood. Blood proteins adhere to the biomaterial surface and the protein layer affects both blood cell functions and biomaterial bioactivity. Previously, we reported that 80-200 µm biphasic calcium phosphate (BCP) microparticles embedded in a blood clot, induce ectopic woven bone formation in mice, when 200-500 µm BCP particles induce mainly fibrous tissue. Here, in a LC-MS/MS proteomic study we compared the differentially expressed blood proteins (plasma and blood cell proteins) and the deregulated signaling pathways of these osteogenic and fibrogenic blood composites. We showed that blood/BCP-induced osteogenesis is associated with a higher expression of fibrinogen (FGN) and an upregulation of the Myd88- and NF-κB-dependent TLR4 signaling cascade. We also highlighted the key role of the LBP/CD14 proteins in the TLR4 activation of blood cells by BCP particles. As FGN is an endogenous ligand of TLR4, able to modulate blood composite stiffness, we propose that different FGN concentrations modify the blood clot mechanical properties, which in turn modulate BCP/blood composite osteoactivity through TLR4 signaling. The present findings provide an insight at the protein level, into the mechanisms leading to an efficient bone reconstruction by blood/BCP composites. STATEMENT OF SIGNIFICANCE: Upon implantation, scaffolds for bone repair are exposed to the patient's blood. Blood proteins adhere to bone substitute surface and this protein layer affects both biomaterial bioactivity and bone healing. Therefore, for the best outcome for patients, it is crucial to understand the molecular interactions between blood and bone scaffolds. Biphasic calcium phosphate (BCP) ceramics are considered as the gold standard in bone reconstruction surgery. Here, using proteomic analyses we showed that the osteogenic properties of 80-200 µm BCP particles embedded in a blood clot is associated with a higher expression of fibrinogen. Fibrinogen upregulates the Myd88- and NF-κB-dependent TLR4 pathway in blood cells and, BCP-induced TLR4 activation is mediated by the LBP and CD14 proteins.
Collapse
|
19
|
Anitua E, Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J, Tejero R. Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration. Int J Implant Dent 2021; 7:32. [PMID: 33880662 PMCID: PMC8058122 DOI: 10.1186/s40729-021-00314-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ions (Ca-ion) as compared to standard titanium implant surfaces (control). We used LC–MS/MS to identify the proteins adhered to the surfaces after incubation with human serum and performed bilateral surgeries in the medial section of the femoral condyles of 18 New Zealand white rabbits to test osseointegration at 2 and 8 weeks post-implantation (n=9). Results Ca-ion surfaces adsorbed 181.42 times more FA10 and 3.85 times less FA12 (p<0.001), which are factors of the common and the intrinsic coagulation pathways respectively. We also detected differences in A1AT, PLMN, FA12, KNG1, HEP2, LYSC, PIP, SAMP, VTNC, SAA4, and CFAH (p<0.01). At 2 and 8 weeks post-implantation, the mean bone implant contact (BIC) with Ca-ion surfaces was respectively 1.52 and 1.25 times higher, and the mean bone volume density (BVD) was respectively 1.35 and 1.13 times higher. Differences were statistically significant for BIC at 2 and 8 weeks and for BVD at 2 weeks (p<0.05). Conclusions The strong thrombogenic protein adsorption pattern at Ca-ion surfaces correlated with significantly higher levels of implant osseointegration. More effective implant surfaces combined with smaller implants enable less invasive surgeries, shorter healing times, and overall lower intervention costs, especially in cases of low quantity or quality of bone. Supplementary Information The online version contains supplementary material available at 10.1186/s40729-021-00314-1.
Collapse
Affiliation(s)
- Eduardo Anitua
- University Institute of Regenerative Medicine and Oral Implantology (UIRMI), University of the Basque Country (UPV-EHU), C/ Jacinto Quincoces, 39, 01007, Vitoria, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Iñaki García-Arnáez
- Faculty of Chemical Sciences, University of the Basque Country (UPV-EHU), P.M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Cristina Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Seda Ozturan
- Department of Periodontology, Faculty of Dentistry, Istambul Medeniyet University, Istanbul, Turkey
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Mariló Gurruchaga
- Faculty of Chemical Sciences, University of the Basque Country (UPV-EHU), P.M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Isabel Goñi
- Faculty of Chemical Sciences, University of the Basque Country (UPV-EHU), P.M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Ricardo Tejero
- University Institute of Regenerative Medicine and Oral Implantology (UIRMI), University of the Basque Country (UPV-EHU), C/ Jacinto Quincoces, 39, 01007, Vitoria, Spain.
| |
Collapse
|
20
|
Barberi J, Spriano S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1590. [PMID: 33805137 PMCID: PMC8037091 DOI: 10.3390/ma14071590] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Titanium and its alloys, specially Ti6Al4V, are among the most employed materials in orthopedic and dental implants. Cells response and osseointegration of implant devices are strongly dependent on the body-biomaterial interface zone. This interface is mainly defined by proteins: They adsorb immediately after implantation from blood and biological fluids, forming a layer on implant surfaces. Therefore, it is of utmost importance to understand which features of biomaterials surfaces influence formation of the protein layer and how to guide it. In this paper, relevant literature of the last 15 years about protein adsorption on titanium-based materials is reviewed. How the surface characteristics affect protein adsorption is investigated, aiming to provide an as comprehensive a picture as possible of adsorption mechanisms and type of chemical bonding with the surface, as well as of the characterization techniques effectively applied to model and real implant surfaces. Surface free energy, charge, microroughness, and hydroxylation degree have been found to be the main surface parameters to affect the amount of adsorbed proteins. On the other hand, the conformation of adsorbed proteins is mainly dictated by the protein structure, surface topography at the nano-scale, and exposed functional groups. Protein adsorption on titanium surfaces still needs further clarification, in particular concerning adsorption from complex protein solutions. In addition, characterization techniques to investigate and compare the different aspects of protein adsorption on different surfaces (in terms of roughness and chemistry) shall be developed.
Collapse
Affiliation(s)
- Jacopo Barberi
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | | |
Collapse
|
21
|
Cerqueira A, Araújo-Gomes N, Zhang Y, van den Beucken JJJP, Martínez-Ramos C, Ozturan S, Izquierdo R, Muriach M, Romero-Cano R, Baliño P, Romero-Gavilán FJ. Evaluation of the inflammatory responses to sol-gel coatings with distinct biocompatibility levels. J Biomed Mater Res A 2021; 109:1539-1548. [PMID: 33609006 DOI: 10.1002/jbm.a.37149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/01/2023]
Abstract
The immune system plays a crucial role in determining the implantation outcome, and macrophages are in the frontline of the inflammatory processes. Further, cellular oxidative stress resulting from the material recognition can influence how cell responses develop. Considering this, the aim of this study was to study oxidative stress and macrophages phenotypes in response to sol-gel materials with distinct in vivo outcomes. Four materials were selected (70M30T and 35M35G30T, with high biocompatibility, and 50M50G and 50V50G, with low biocompatibility). Gene expression, immunocytochemistry and cytokine secretion profiles for M1 and M2 markers were determined. Moreover, oxidative stress markers were studied. Immunocytochemistry and ELISA showed that 50M50G and 50V50G lead to a higher differentiation to M1 phenotype, while 70M30T and 35M35G30T promoted M2 differentiation. In oxidative stress, no differences were found. These results show that the balance between M1 and M2, more than individual quantification of each phenotype, determines a biomaterial outcome.
Collapse
Affiliation(s)
- Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellón de la Plana, Spain
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, University of Twente, Faculty of Science and Technology, Enschede, The Netherlands
| | - Yang Zhang
- Dentistry - Regenerative Biomaterials, Nijmegen, The Netherlands.,School of Medicine, Shenzhen University, Shenzhen, China
| | | | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Valencia, Spain
| | - Seda Ozturan
- Department of Periodontology, Faculty of Dentistry, Istanbul Medeniyet University, Istanbul, Turkey
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellón de la Plana, Spain
| | - María Muriach
- Unidad Pre-Departmental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Ricard Romero-Cano
- Unidad Pre-Departmental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Pablo Baliño
- Unidad Pre-Departmental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco J Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
22
|
Souza JGS, Bertolini MM, Costa RC, Nagay BE, Dongari-Bagtzoglou A, Barão VAR. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience 2021; 24:102008. [PMID: 33490916 PMCID: PMC7811145 DOI: 10.1016/j.isci.2020.102008] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Implant devices have = proven a successful treatment modality in reconstructive surgeries. However, increasing rates of peri-implant diseases demand further examination of their pathogenesis. Polymicrobial biofilm formation on titanium surfaces has been considered the main risk factor for inflammatory processes on tissues surrounding implant devices, which often lead to implant failure. To overcome microbial accumulation on titanium surfaces biofilm targeting strategies have been developed to modify the surface and incorporate antimicrobial coatings. Because antibiotics are widely used to treat polymicrobial infections, these agents have recently started to be incorporated on titanium surface. This review discusses the biofilm formation on titanium dental implants and key factors to be considered in therapeutic and preventative strategies. Moreover, a systematic review was conducted on coatings developed for titanium surfaces using different antibiotics. This review will also shed light on potential alternative strategies aiming to reduce microbial loads and control polymicrobial infection on implanted devices.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Dental Research Division, Guarulhos University, Guarulhos, SP 07023-070, Brazil
- Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, 39401-303, Brazil
| | - Martinna Mendonça Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
23
|
Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Iloro I, Azkargorta M, Elortza F, Izquierdo R, Gurruchaga M, Goñi I, Suay J. Bioactive zinc-doped sol-gel coating modulates protein adsorption patterns and in vitro cell responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111839. [PMID: 33579477 DOI: 10.1016/j.msec.2020.111839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Zinc is an essential element with an important role in stimulating the osteogenesis and mineralization and suppressing osteoclast differentiation. In this study, new bioactive ZnCl2-doped sol-gel materials were designed to be applied as coatings onto titanium. The biomaterials were physicochemically characterized and the cellular responses evaluated in vitro using MC3T3-E1 osteoblasts and RAW264.7 macrophages. The effect of Zn on the adsorption of human serum proteins onto the material surface was evaluated through nLC-MS/MS. The incorporation of Zn did not affect the crosslinking of the sol-gel network. A controlled Zn2+ release was obtained, reaching values below 10 ppm after 21 days. The materials were no cytotoxic and lead to increased gene expression of ALP, TGF-β, and RUNX2 in the osteoblasts. In macrophages, an increase of IL-1β, TGF-β, and IL-4 gene expression was accompanied by a reduced TNF-α liberation. Proteomic results showed changes in the adsorption patterns of proteins associated with immunological, coagulative, and regenerative functions, in a Zn dose-dependent manner. The variations in protein adsorption might lead to the downregulation of the NF-κB pathway, thus explain the observed biological effects of Zn incorporation into biomaterials. Overall, these coatings demonstrated their potential to promote bone tissue regeneration.
Collapse
Affiliation(s)
- A Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - F Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - I García-Arnáez
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - C Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022, Valencia, Spain
| | - S Ozturan
- Department of Periodontology, Faculty of Dentristy, Istanbul Medeniyet University, Istanbul, Turkey
| | - I Iloro
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - R Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - M Gurruchaga
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - I Goñi
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - J Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
24
|
Zuanazzi D, Xiao Y, Siqueira WL. Evaluating protein binding specificity of titanium surfaces through mass spectrometry-based proteomics. Clin Oral Investig 2020; 25:2281-2296. [PMID: 32870391 DOI: 10.1007/s00784-020-03548-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To evaluate whether surface characteristics of different titanium modifications may influence the composition of the salivary pellicle on each surface by analyzing the salivary proteome through mass spectrometry-based proteomics. MATERIALS AND METHODS Titanium discs with three surfaces modifications (PT (machined titanium), SLA (sandblasted/large-grit/acid-etched), and SLActive (modified SLA)) were characterized (topography, chemistry, and energy) prior to being exposed to saliva for 2 h to form a protein pellicle. The resultant protein layer was retrieved and analyzed through mass spectrometry (nLC-ESI-MS/MS) to examine the surface specificity for protein binding, while the proteome profile of each surface was classified. RESULTS The proteome analysis showed that the salivary pellicle composition was more complex on rough surfaces (SLA and SLActive). Although variability in protein composition was observed between surfaces, most proteins were detected on more than one surface, indicating a limited surface specificity for protein binding. Additionally, the salivary pellicle formed on the SLActive presented a larger number of proteins associated with immune response, biological adhesion, and biomineralization. CONCLUSIONS Although topography, chemistry, and energy differed between the surfaces, they were not determinant to produce a salivary pellicle with high surface specificity. Also, we showed that several salivary proteins adsorbed on Ti surfaces are involved in biological functions important to the biointegration. CLINICAL RELEVANCE This study sheds light on the necessity for the development of bioactive surfaces that favors the formation of a specific protein layer that can enhance tissue response to assist the biointegration of dental implants.
Collapse
Affiliation(s)
- David Zuanazzi
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Yizhi Xiao
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
25
|
Othman Z, Mohren R, Cillero-Pastor B, Shen Z, Lacroix Y, Guttenplan A, Tahmasebi Birgani Z, Eijssen L, Luider T, van Rijt S, Habibovic P. Comparative proteomic analysis of human mesenchymal stromal cell behavior on calcium phosphate ceramics with different osteoinductive potential. Mater Today Bio 2020; 7:100066. [PMID: 32642640 PMCID: PMC7334494 DOI: 10.1016/j.mtbio.2020.100066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/13/2023] Open
Abstract
In recent years, synthetic calcium phosphate (CaP) ceramics have emerged as an alternative to bone grafts in the treatment of large critical-sized bone defects. To successfully substitute for bone grafts, materials must be osteoinductive, that is, they must induce osteogenic differentiation and subsequent bone formation in vivo. Although a set of osteoinductive CaP ceramics has been developed, the precise biological mechanism by which a material directs cells toward osteogenesis and the role of individual chemical and physical properties in this mechanism remain incompletely understood. Here, we used proteomics to compare serum protein adsorption to two CaP ceramics with different osteoinductive potential, namely an osteoinductive β-tricalcium phosphate (TCP) and a non-osteoinductive hydroxyapatite (HA). Moreover, we analyzed the protein profiles of human mesenchymal stromal cells (hMSCs) cultured on these two ceramics. The serum protein adsorption experiments in the absence of cells highlighted the proteins that are highly abundant in the serum and/or have a high affinity to CaP. The extent of adsorption was suggested to be affected by the available surface area for binding and by the ion exchange dynamics on the surface. Several proteins were uniquely expressed by hMSCs on TCP and HA surfaces. Proteins identified as enriched on TCP were involved in processes related to wound healing, cell proliferation, and the production of extracellular matrix. On the other hand, proteins that were enriched on HA were involved in processes related to protein production, translation, localization, and secretion. In addition, we performed a separate proteomics analysis on TCP, HA, and two biphasic calcium phosphates with known osteoinductive potential and performed a clustering analysis on a combination of a set of proteins found to be enriched on osteoinductive materials with a set of proteins already known to be involved in osteogenesis. This yielded two protein networks potentially involved in the process of osteoinduction – one consisting of collagen fragments and collagen-related enzymes and a second consisting of endopeptidase inhibitors and regulatory proteins. The results of this study show that protein profiling can be a useful tool to help understand the effect of biomaterial properties on the interactions between a biomaterial and a biological system. Such understanding will contribute to the design and development of improved biomaterials for (bone) regenerative therapies.
Collapse
Affiliation(s)
- Z. Othman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - R.J.C. Mohren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - B. Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Z. Shen
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Y.S.N.W. Lacroix
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - A.P.M. Guttenplan
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Z. Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - L. Eijssen
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, MHeNs School for Mental Health and Neuroscience Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - T.M. Luider
- Laboratory of Neuro-Oncology and Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - S. van Rijt
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - P. Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
- Corresponding author.
| |
Collapse
|
26
|
Souza JGS, Bertolini M, Costa RC, Lima CV, Barão VAR. Proteomic profile of the saliva and plasma protein layer adsorbed on Ti-Zr alloy: the effect of sandblasted and acid-etched surface treatment. BIOFOULING 2020; 36:428-441. [PMID: 32456471 DOI: 10.1080/08927014.2020.1769613] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Titanium-zirconium (Ti-Zr) alloy has been widely used as a biomaterial for implant devices, and it is commonly treated by sandblasting followed by acid etching (SLA) to improve biological responses. Although protein adsorption is the first biological response, the effect of this SLA treatment on the proteomic profile of proteins adsorbed from saliva and blood plasma has not been tested. In this study, the proteomic profile was evaluated by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Streptococcus sanguinis was used to test whether the protein layer affects bacterial adhesion. SLA treatment affected the proteomic profile, showing exclusive proteins adsorbed from saliva (14) and plasma (3). However, both groups exhibited close patterns of intensity for common proteins, molecular functions and biological processes mediated by proteins. Interestingly, Ti-ZrSLA showed higher bacterial adhesion (∼1.9 fold over) for the surface coated with plasma proteins. Therefore, SLA treatment of Ti-Zr alloy changed the proteomic profile, which may affect bacterial adhesion.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Martinna Bertolini
- School of Dental Medicine, University of Connecticut (UCONN), Farmington, CT, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
27
|
Zhao QM, Li XK, Guo S, Wang N, Liu WW, Shi L, Guo Z. Osteogenic activity of a titanium surface modified with silicon-doped titanium dioxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110682. [PMID: 32204111 DOI: 10.1016/j.msec.2020.110682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/30/2019] [Accepted: 01/19/2020] [Indexed: 01/17/2023]
Abstract
Titanium and its alloys are the most widely used implants in clinical practice. However, their bioactivity is unsatisfactory, and the effect of osteogenesis on the bonding interface between the implant and bone needs to be further improved. In this study, a coating consisting of microporous titanium doped with silicon (Si-TiO2) was successfully created by microarc oxidation (MAO), and Si was evenly distributed on the surface of the coating. The surface morphology, roughness, and phase composition of the Si-TiO2 microporous coating were similar to those of the Si-free doped MAO coatings. The Si-TiO2 microporous coating can promote osteoblast adhesion, spreading, proliferation and differentiation. More importantly, the integrin β1-FAK signaling pathway may be involved in the regulatory effect of the coating on osteoblasts. Further studies in vivo indicated that the Si-TiO2 microporous coating could improve early stage osseointegration. In conclusion, the Si-TiO2 microporous coating is a feasible way to improve the osteogenic abilities of Ti implants to potentially promote clinical performance.
Collapse
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Kang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shuo Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ning Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen-Wen Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lei Shi
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
28
|
Romero-Gavilán F, Araújo-Gomes N, Cerqueira A, García-Arnáez I, Martínez-Ramos C, Azkargorta M, Iloro I, Elortza F, Gurruchaga M, Suay J, Goñi I. Proteomic analysis of calcium-enriched sol-gel biomaterials. J Biol Inorg Chem 2019; 24:563-574. [PMID: 31030324 DOI: 10.1007/s00775-019-01662-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
Calcium is an element widely used in the development of biomaterials for bone tissue engineering as it plays important roles in bone metabolism and blood coagulation. The Ca ions can condition the microenvironment at the tissue-material interface, affecting the protein deposition process and cell responses. The aim of this study was to analyze the changes in the patterns of protein adsorption on the silica hybrid biomaterials supplemented with different amounts of CaCl2, which can function as release vehicles. This characterization was carried out by incubating the Ca-biomaterials with human serum. LC-MS/MS analysis was used to characterize the adsorbed protein layers and compile a list of proteins whose affinity for the surfaces might depend on the CaCl2 content. The attachment of pro- and anti-clotting proteins, such as THRB, ANT3, and PROC, increased significantly on the Ca-materials. Similarly, VTNC and APOE, proteins directly involved on osteogenic processes, attached preferentially to these surfaces. To assess correlations with the proteomic data, these formulations were tested in vitro regarding their osteogenic and inflammatory potential, employing MC3T3-E1 and RAW 264.7 cell lines, respectively. The results confirmed a Ca dose-dependent osteogenic and inflammatory behavior of the materials employed, in accordance with the protein attachment patterns.
Collapse
Affiliation(s)
- F Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Nuno Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - A Cerqueira
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - I García-Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco., P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - C Martínez-Ramos
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - I Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - M Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco., P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - J Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - I Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco., P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| |
Collapse
|
29
|
Osteogenic Cell Behavior on Titanium Surfaces in Hard Tissue. J Clin Med 2019; 8:jcm8050604. [PMID: 31052572 PMCID: PMC6571803 DOI: 10.3390/jcm8050604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/15/2022] Open
Abstract
It is challenging to remove dental implants once they have been inserted into the bone because it is hard to visualize the actual process of bone formation after implant installation, not to mention the cellular events that occur therein. During bone formation, contact osteogenesis occurs on roughened implant surfaces, while distance osteogenesis occurs on smooth implant surfaces. In the literature, there have been many in vitro model studies of bone formation on simulated dental implants using flattened titanium (Ti) discs; however, the purpose of this study was to identify the in vivo cell responses to the implant surfaces on actual, three-dimensional (3D) dental Ti implants and the surrounding bone in contact with such implants at the electron microscopic level using two different types of implant surfaces. In particular, the different parts of the implant structures were scrutinized. In this study, dental implants were installed in rabbit tibiae. The implants and bone were removed on day 10 and, subsequently, assessed using scanning electron microscopy (SEM), immunofluorescence microscopy (IF), transmission electron microscopy (TEM), focused ion-beam (FIB) system with Cs-corrected TEM (Cs-STEM), and confocal laser scanning microscopy (CLSM)-which were used to determine the implant surface characteristics and to identify the cells according to the different structural parts of the turned and roughened implants. The cell attachment pattern was revealed according to the different structural components of each implant surface and bone. Different cell responses to the implant surfaces and the surrounding bone were attained at an electron microscopic level in an in vivo model. These results shed light on cell behavioral patterns that occur during bone regeneration and could be a guide in the use of electron microscopy for 3D dental implants in an in vivo model.
Collapse
|
30
|
Biguetti CC, Cavalla F, Silveira EV, Tabanez AP, Francisconi CF, Taga R, Campanelli AP, Trombone APF, Rodrigues DC, Garlet GP. HGMB1 and RAGE as Essential Components of Ti Osseointegration Process in Mice. Front Immunol 2019; 10:709. [PMID: 31024546 PMCID: PMC6461067 DOI: 10.3389/fimmu.2019.00709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
The release of the prototypic DAMP High Mobility Group Box 1 (HMGB1) into extracellular environment and its binding to the Receptor for Advanced Glycation End Products (RAGE) has been described to trigger sterile inflammation and regulate healing outcome. However, their role on host response to Ti-based biomaterials and in the subsequent osseointegration remains unexplored. In this study, HMGB1 and RAGE inhibition in the Ti-mediated osseointegration were investigated in C57Bl/6 mice. C57Bl/6 mice received a Ti-device implantation (Ti-screw in the edentulous alveolar crest and a Ti-disc in the subcutaneous tissue) and were evaluated by microscopic (microCT [bone] and histology [bone and subcutaneous]) and molecular methods (ELISA, PCR array) during 3, 7, 14, and 21 days. Mice were divided into 4 groups: Control (no treatment); GZA (IP injection of Glycyrrhizic Acid for HMGB1 inhibition, 4 mg/Kg/day); RAP (IP injection of RAGE Antagonistic Peptide, 4 mg/Kg/day), and vehicle controls (1.5% DMSO solution for GZA and 0.9% saline solution for RAP); treatments were given at all experimental time points, starting 1 day before surgeries. HMGB1 was detected in the Ti-implantation sites, adsorbed to the screws/discs. In Control and vehicle groups, osseointegration was characterized by a slight inflammatory response at early time points, followed by a gradual bone apposition and matrix maturation at late time points. The inhibition of HMGB1 or RAGE impaired the osseointegration, affecting the dynamics of mineralized and organic bone matrix, and resulting in a foreign body reaction, with persistence of macrophages, necrotic bone, and foreign body giant cells until later time points. While Control samples were characterized by a balance between M1 and M2-type response in bone and subcutaneous sites of implantation, and also MSC markers, the inhibition of HMGB1 or RAGE caused a higher expression M1 markers and pro-inflammatory cytokines, as well chemokines and receptors for macrophage migration until later time points. In conclusion, HMGB1 and RAGE have a marked role in the osseointegration, evidenced by their influence on host inflammatory immune response, which includes macrophages migration and M1/M2 response, MSC markers expression, which collectively modulate bone matrix deposition and osseointegration outcome.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Franco Cavalla
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - Elcia Varize Silveira
- Department of Biological and Allied Health Sciences, Universidade Sagrado Coração, Bauru, Brazil
| | - André Petenuci Tabanez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Rumio Taga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Danieli C Rodrigues
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX, United States
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Jäger M, Jennissen HP, Haversath M, Busch A, Grupp T, Sowislok A, Herten M. Intrasurgical Protein Layer on Titanium Arthroplasty Explants: From the Big Twelve to the Implant Proteome. Proteomics Clin Appl 2019; 13:e1800168. [PMID: 30770655 DOI: 10.1002/prca.201800168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/08/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Aseptic loosening in total joint replacement due to insufficient osteointegration is an unsolved problem in orthopaedics. The purpose of the study is to obtain a picture of the initial protein adsorption layer on femoral endoprosthetic surfaces as the key to the initiation of osseointegration. EXPERIMENTAL DESIGN The paper describes the first study of femoral stem explants from patients for proteome analysis of the primary protein layer. After 2 min in situ, the stems are explanted and frozen in liquid nitrogen. Proteins are eluted under reducing conditions and analyzed by LC-MS/MS. RESULTS After exclusion of proteins identified by a single peptide, the implant proteome is found to consist of 2802 unique proteins. Of these, 77% are of intracellular origin, 9% are derived from the plasma proteome, 8% from the bone proteome, and four proteins with highest specificity score could be assigned to the bone marrow proteome (transcriptome). The most abundant protein in the adsorbed total protein layer is hemoglobin (8-11%) followed by serum albumin (3.6-6%). CONCLUSIONS A detailed knowledge of the initial protein film deposited onto the implants, as demonstrated here for the first time, may help to understand and predict the response of the osseous microenvironment to implant surfaces.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany
| | - Herbert P Jennissen
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.,Institute of Physiological Chemistry, Work Group Biochemical Endocrinology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marcel Haversath
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany
| | - André Busch
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thomas Grupp
- Aesculap AG, Research & Development, 78532 Tuttlingen, Germany
| | - Andrea Sowislok
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.,Institute of Physiological Chemistry, Work Group Biochemical Endocrinology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Monika Herten
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
32
|
Pantaroto HN, Amorim KP, Matozinho Cordeiro J, Souza JGS, Ricomini-Filho AP, Rangel EC, Ribeiro ALR, Vaz LG, Barão VAR. Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. BIOFOULING 2019; 35:173-186. [PMID: 30935231 DOI: 10.1080/08927014.2019.1580360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
The chemical composition of biomaterials can drive their biological responses; therefore, this in vitro study aimed to evaluate the proteomic profile of the salivary pellicle formed on titanium (Ti) alloys containing niobium (Nb) and zirconium (Zr). The experimental groups consisted of Ti35NbxZr (x = 5 and 10 wt%) alloys, and commercially pure titanium (cpTi); titanium aluminium vanadium (Ti6Al4V) alloys were used as controls. The physical and chemical characteristics of the Ti materials were analysed. The proteomic profile was evaluated by liquid chromatography coupled with tandem mass spectrometry. Bacterial adhesion (2 h) of mixed species (Streptococcus sanguinis and Actinomyces naeslundii) was investigated as colony-forming units (n = 6). This paper reports the finding that salivary pellicle composition can be modulated by the composition of the Ti material. The Ti35NbxZr group showed a significant ability to adsorb proteins from saliva, which can favour interactions with cells and compatibility with the body.
Collapse
Affiliation(s)
- Heloisa Navarro Pantaroto
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Karina Pintaudi Amorim
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Jairo Matozinho Cordeiro
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - João Gabriel S Souza
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Antônio Pedro Ricomini-Filho
- b Department of Physiological Science , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Elidiane C Rangel
- c Laboratory of Technological Plasmas, Engineering College , University Estadual Paulista (UNESP) , Sorocaba , São Paulo , Brazil
- d Faculdade de Ciências do Tocantins (FACIT) , Araguaína , Tocantins , Brazil
| | - Ana Lúcia R Ribeiro
- e Faculdade de Ciências Humanas, Econômicas e da Saúde de Araguaína/Instituto Tocantinense Presidente Antônio Carlos (FAHESA/ITPAC) , Araguaína , Tocantins , Brazil
| | - Luís Geraldo Vaz
- f Department of Dental Materials and Prosthodontics , University Estadual Paulista (UNESP), Araraquara Dental School , Araraquara , São Paulo , Brazil
| | - Valentim A R Barão
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| |
Collapse
|
33
|
Hotchkiss KM, Sowers KT, Olivares-Navarrete R. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater 2018; 35:176-184. [PMID: 30509481 DOI: 10.1016/j.dental.2018.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/14/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Roughened dental implants promote mesenchymal stem cell (MSCs) osteoblastic differentiation, and hydrophilic modifications induce anti-inflammatory macrophages activation. While the effect of different surface modifications on osseointegration of commercial dental implants have been compared in vivo and clinically, the initial cellular response to these modifications often overlooked. We aimed to characterize the macrophage inflammatory response and MSC osteogenesis across different commercially available implants in vitro. METHODS Six commercially available rough implants [OsseoSpeed™ (Astra-Tech™, Implant A); Osseotite® (Biomet 3i™, Implant B); TiUnite™ (Nobel-Biocare®, Implant C); Ti-SLA®, (Implant D), Roxolid® (RXD-SLA, Implant E), RXD-SLActive® (Implant F) (Straumann®)] were examined. Macrophages and MSCs were seeded directly on implants and cultured in custom vials. mRNA and protein levels of pro- (IL1B, IL6, IL17A, CXCL10, TNFa) and anti- (IL4, IL10, TGFB1) inflammatory markers were measured after 24 and 48h in macrophages. Osteoblastic differentiation of MSCs was assessed after seven days by alkaline phosphatase activity, osteocalcin, and angiogenic, osteogenic, and inflammatory markers by ELISA and qPCR (n=6/variable, ANOVA, post hoc Tukey HSD with α=0.05). RESULTS Hydrophilic implant F induced the highest level of osteogenic factor released from MSCs and anti-inflammatory factors from macrophages with the lowest level of pro-inflammatory factors. Alternatively, implants A and C supported lower levels of osteogenesis and increased secretion of pro-inflammatory factors. SIGNIFICANCE In this study, we successfully evaluated differences in cell response to commercially available clinical implants using an in vitro model. Data from this model suggest that not all surface modification procedures generate the same cell response.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Kegan T Sowers
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
34
|
Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, Martínez-Ramos C, Elortza F, Azkargorta M, Iloro I, Gurruchaga M, Suay J, Goñi I. The effect of strontium incorporation into sol-gel biomaterials on their protein adsorption and cell interactions. Colloids Surf B Biointerfaces 2018; 174:9-16. [PMID: 30408675 DOI: 10.1016/j.colsurfb.2018.10.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 01/06/2023]
Abstract
It is known strontium can both inhibit the osteoclast formation and stimulate the osteoblast maturation, so biomaterials containing this element can favour bone structure stabilisation. The addition of Sr to biomaterials could affect their interactions with proteins and cells. Here, a silica-hybrid sol-gel network doped with different amounts of SrCl2 and applied as coatings on titanium discs was examined. in vitro analysis was performed to determine the potential effect of Sr in the coatings, showing enhanced gene expression of osteogenic markers (alkaline phosphatase and transforming growth factor-β) in MC3T3-E1 incubated with Sr-doped biomaterials. The examination of inflammatory markers (tumour necrosis factor-α and interleukin 10) in RAW 264.7 macrophages revealed an anti-inflammatory potential of these materials. Proteins adsorbed onto the coatings incubated with human serum (3 h at 37 °C) were also analysed; mass spectrometry was used to characterise the proteins adhering to materials with different Sr content. Adding Sr to the coatings increased their affinity to APOE and VTNC proteins (associated with anti-inflammatory and osteogenic functions). Moreover, the proteins involved in coagulation processes, such as prothrombin, were more abundant on the coatings containing Sr than on the base sol-gel surfaces. Correlations between gene expression and proteomic results were also examined.
Collapse
Affiliation(s)
- F Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain
| | - N Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain; Department of Medicine. Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain.
| | - I García-Arnáez
- Facultad de Ciencias Químicas. Universidad del País Vasco (UPV/EHU). P. M. de Lardizábal, 3. San Sebastián 20018. Spain
| | - C Martínez-Ramos
- Department of Medicine. Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - I Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - M Gurruchaga
- Facultad de Ciencias Químicas. Universidad del País Vasco (UPV/EHU). P. M. de Lardizábal, 3. San Sebastián 20018. Spain
| | - J Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n. Castellón 12071. Spain
| | - I Goñi
- Facultad de Ciencias Químicas. Universidad del País Vasco (UPV/EHU). P. M. de Lardizábal, 3. San Sebastián 20018. Spain
| |
Collapse
|
35
|
Mödinger Y, Teixeira GQ, Neidlinger-Wilke C, Ignatius A. Role of the Complement System in the Response to Orthopedic Biomaterials. Int J Mol Sci 2018; 19:ijms19113367. [PMID: 30373272 PMCID: PMC6274916 DOI: 10.3390/ijms19113367] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Various synthetic biomaterials are used to replace lost or damaged bone tissue that, more or less successfully, osseointegrate into the bone environment. Almost all biomaterials used in orthopedic medicine activate the host-immune system to a certain degree. The complement system, which is a crucial arm of innate immunity, is rapidly activated by an implanted foreign material into the human body, and it is intensely studied regarding blood-contacting medical devices. In contrast, much less is known regarding the role of the complement system in response to implanted bone biomaterials. However, given the increasing knowledge of the complement regulation of bone homeostasis, regeneration, and inflammation, complement involvement in the immune response following biomaterial implantation into bone appears very likely. Moreover, bone cells can produce complement factors and are target cells of activated complement. Therefore, new bone formation or bone resorption around the implant area might be greatly influenced by the complement system. This review aims to summarize the current knowledge on biomaterial-mediated complement activation, with a focus on materials primarily used in orthopedic medicine. In addition, methods to modify the interactions between the complement system and bone biomaterials are discussed, which might favor osseointegration and improve the functionality of the device.
Collapse
Affiliation(s)
- Yvonne Mödinger
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), University of Ulm, D-89081 Ulm, Germany.
| | - Graciosa Q Teixeira
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), University of Ulm, D-89081 Ulm, Germany.
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), University of Ulm, D-89081 Ulm, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm), University of Ulm, D-89081 Ulm, Germany.
| |
Collapse
|
36
|
Calciolari E, Donos N. The use of omics profiling to improve outcomes of bone regeneration and osseointegration. How far are we from personalized medicine in dentistry? J Proteomics 2018; 188:85-96. [DOI: 10.1016/j.jprot.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
|
37
|
Araújo-Gomes N, Romero-Gavilán F, Lara-Sáez I, Elortza F, Azkargorta M, Iloro I, Martínez-Ibañez M, Martín de Llano JJ, Gurruchaga M, Goñi I, Suay J, Sánchez-Pérez AM. Silica-gelatin hybrid sol-gel coatings: A proteomic study with biocompatibility implications. J Tissue Eng Regen Med 2018; 12:1769-1779. [PMID: 29785783 DOI: 10.1002/term.2708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 11/09/2022]
Abstract
Osseointegration, including the foreign body reaction to biomaterials, is an immune-modulated, multifactorial, and complex healing process in which various cells and mediators are involved. The buildup of the osseointegration process is immunological and inflammation-driven, often triggered by the adsorption of proteins on the surfaces of the biomaterials and complement activation. New strategies for improving osseointegration use coatings as vehicles for osteogenic biomolecules delivery from implants. Natural polymers, such as gelatin, can mimic Collagen I and enhance the biocompatibility of a material. In this experimental study, two different base sol-gel formulations and their combination with gelatin were applied as coatings on sandblasted, acid-etched titanium substrates, and their biological potential as osteogenic biomaterials was tested. We examined the proteins adsorbed onto each surface and their in vitro and in vivo effects. In vitro results showed an improvement in cell proliferation and mineralization in gelatin-containing samples. In vivo testing showed the presence of a looser connective tissue layer in those coatings with substantially more complement activation proteins adsorbed, especially those containing gelatin. Vitronectin and FETUA, proteins associated with mineralization process, were significantly more adsorbed in gelatin coatings.
Collapse
Affiliation(s)
- Nuno Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón, Spain.,Department of Medicine, Universitat Jaume I, Castellón, Spain
| | - Francisco Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón, Spain
| | - Irene Lara-Sáez
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | | | - Javier J Martín de Llano
- Department of Pathology and Health Research, Institute of the Hospital Clínico (INCLIVA), Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Mariló Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, San Sebastián, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, San Sebastián, Spain
| | - Julio Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón, Spain
| | | |
Collapse
|
38
|
Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I, Martínez-Ramos C, Sánchez-Pérez AM, Azkargorta M, Elortza F, de Llano JJM, Gurruchaga M, Goñi I, Suay J. Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem 2018; 23:459-470. [PMID: 29572572 DOI: 10.1007/s00775-018-1553-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
The prime objectives in the development of biomaterials for dental applications are to improve the quality of osseointegration and to short the time needed to achieve it. Design of implants nowadays involves changes in the surface characteristics to obtain a good cellular response. Incorporating osteoinductive elements is one way to achieve the best regeneration possible post-implantation. This study examined the osteointegrative potential of two distinct biomaterials: sandblasted acid-etched titanium and a silica sol-gel hybrid coating, 70% MTMOS-30% TEOS. In vitro, in vivo, and proteomic characterisations of the two materials were conducted. Enhanced expression levels of ALP and IL-6 in the MC3T3-E1 cells cultured with coated discs, suggest that growing cells on such surfaces may increase mineralisation levels. 70M30T-coated implants showed improved bone growth in vivo compared to uncoated titanium. Complete osseointegration was achieved on both. However, coated implants displayed osteoinductive properties, while uncoated implants demonstrated osteoconductive characteristics. Coagulation-related proteins attached predominantly to SAE-Ti surface. Surface properties of the material might drive the regenerative process of the affected tissue. Analysis of the proteins on the coated dental implant showed that few proteins specifically attached to its surface, possibly indicating that its osteoinductive properties depend on the silicon delivery from the implant.
Collapse
Affiliation(s)
- N Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain.,Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain
| | - F Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain.
| | - I García-Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - C Martínez-Ramos
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain
| | - A M Sánchez-Pérez
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - J J Martín de Llano
- Department of Pathology, Faculty of Medicine and Dentistry, Health Research Institute of the Hospital Clínico (INCLIVA), University of Valencia, 46010, Valencia, Spain
| | - M Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - I Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - J Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain
| |
Collapse
|
39
|
Othman Z, Cillero Pastor B, van Rijt S, Habibovic P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials 2018; 167:191-204. [PMID: 29571054 DOI: 10.1016/j.biomaterials.2018.03.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
The role that biomaterials play in the clinical treatment of damaged organs and tissues is changing. While biomaterials used in permanent medical devices were required to passively take over the function of a damaged tissue in the long term, current biomaterials are expected to trigger and harness the self-regenerative potential of the body in situ and then to degrade, the foundation of regenerative medicine. To meet these different requirements, it is imperative to fully understand the interactions biomaterials have with biological systems, in space and in time. This knowledge will lead to a better understanding of the regenerative capabilities of biomaterials aiding their design with improved functionalities (e.g. biocompatibility, bioactivity). Proteins play a pivotal role in the interaction between biomaterials and cells or tissues. Protein adsorption on the material surface is the very first event of this interaction, which is determinant for the subsequent processes of cell growth, differentiation, and extracellular matrix formation. Against this background, the aim of the current review is to provide insight in the current knowledge of the role of proteins in cell-biomaterial and tissue-biomaterial interactions. In particular, the focus is on proteomics studies, mainly using mass spectrometry, and the knowledge they have generated on protein adsorption of biomaterials, protein production by cells cultured on materials, safety and efficacy of new materials based on nanoparticles and the analysis of extracellular matrices and extracellular matrix-derived products. In the outlook, the potential and limitations of this approach are discussed and mass spectrometry imaging is presented as a powerful technique that complements existing mass spectrometry techniques by providing spatial molecular information about the material-biological system interactions.
Collapse
Affiliation(s)
- Ziryan Othman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Sabine van Rijt
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
40
|
Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surf B Biointerfaces 2017; 162:316-325. [PMID: 29223071 DOI: 10.1016/j.colsurfb.2017.11.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/30/2017] [Indexed: 11/22/2022]
Abstract
There is an ever-increasing need to develop dental implants with ideal characteristics to achieve specific and desired biological response in the scope of improve the healing process post-implantation. Following that premise, enhancing and optimizing titanium implants through superficial treatments, like silica sol-gel hybrid coatings, are regarded as a route of future research in this area. These coatings change the physicochemical properties of the implant, ultimately affecting its biological characteristics. Sandblasted acid-etched titanium (SAE-Ti) and a silica hybrid sol-gel coating (35M35G30T) applied onto the Ti substrate were examined. The results of in vitro and in vivo tests and the analysis of the protein layer adsorbed to each surface were compared and discussed. In vitro analysis with MC3T3-E1 osteoblastic cells, showed that the sol-gel coating raised the osteogenic activity potential of the implants (the expression of osteogenic markers, the alkaline phosphatase (ALP) and IL-6 mRNAs, increased). In the in vivo experiments using as model rabbit tibiae, both types of surfaces promoted osseointegration. However, the coated implants demonstrated a clear increase in the inflammatory activity in comparison with SAE-Ti. Mass spectrometry (LC-MS/MS) analysis showed differences in the composition of protein layers formed on the two tested surfaces. Large quantities of apolipoproteins were found attached predominantly to SAE-Ti. The 35M35G30T coating adsorbed a significant quantity of complement proteins, which might be related to the material intrinsic bioactivity, following an associated, natural and controlled immune response. The correlation between the proteomic data and the in vitro and in vivo outcomes is discussed on this experimental work.
Collapse
|
41
|
Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants. MATERIALS 2017; 10:ma10111302. [PMID: 29137166 PMCID: PMC5706249 DOI: 10.3390/ma10111302] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of “smaller, faster, cheaper”, nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.
Collapse
|
42
|
Romero-Gavilan F, Sánchez-Pérez AM, Araújo-Gomes N, Azkargorta M, Iloro I, Elortza F, Gurruchaga M, Goñi I, Suay J. Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. BIOFOULING 2017; 33:676-689. [PMID: 28871865 DOI: 10.1080/08927014.2017.1356289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The interactions of implanted biomaterials with the host organism determine the success or failure of an implantation. Normally, their biocompatibility is assessed using in vitro tests. Unfortunately, in vitro and in vivo results are not always concordant; new, effective methods of biomaterial characterisation are urgently needed to predict the in vivo outcome. As the first layer of proteins adsorbed onto the biomaterial surfaces might condition the host response, mass spectrometry analysis was performed to characterise these proteins. Four distinct hybrid sol-gel biomaterials were tested. The in vitro results were similar for all the materials examined here. However, in vivo, the materials behaved differently. Six of the 171 adsorbed proteins were significantly more abundant on the materials with weak biocompatibility; these proteins are associated with the complement pathway. Thus, protein analysis might be a suitable tool to predict the in vivo outcomes of implantations using newly formulated biomaterials.
Collapse
Affiliation(s)
- F Romero-Gavilan
- a Department of Industrial Systems and Design , Universitat Jaume I , Castellón , Spain
| | | | - N Araújo-Gomes
- a Department of Industrial Systems and Design , Universitat Jaume I , Castellón , Spain
- b Department of Medicine , Universitat Jaume I , Castellón , Spain
| | - M Azkargorta
- d Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - I Iloro
- d Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - F Elortza
- d Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - M Gurruchaga
- c Facultad de Ciencias Químicas , Universidad del País Vasco , San Sebastián , Spain
| | - I Goñi
- c Facultad de Ciencias Químicas , Universidad del País Vasco , San Sebastián , Spain
| | - J Suay
- a Department of Industrial Systems and Design , Universitat Jaume I , Castellón , Spain
| |
Collapse
|
43
|
Araújo-Gomes N, Romero-Gavilán F, Sánchez-Pérez AM, Gurruchaga M, Azkargorta M, Elortza F, Martinez-Ibañez M, Iloro I, Suay J, Goñi I. Characterization of serum proteins attached to distinct sol-gel hybrid surfaces. J Biomed Mater Res B Appl Biomater 2017; 106:1477-1485. [PMID: 28675640 DOI: 10.1002/jbm.b.33954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/16/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
The success of a dental implant depends on its osseointegration, an important feature of the implant biocompatibility. In this study, two distinct sol-gel hybrid coating formulations [50% methyltrimethoxysilane: 50% 3-glycidoxypropyl-trimethoxysilane (50M50G) and 70% methyltrimethoxysilane with 30% tetraethyl orthosilicate (70M30T)] were applied onto titanium implants. To evaluate their osseointegration, in vitro and in vivo assays were performed. Cell proliferation and differentiation in vitro did not show any differences between the coatings. However, four and eight weeks after in vivo implantation, the fibrous capsule area surrounding 50M50G-implant was 10 and 4 times, respectively, bigger than the area of connective tissue surrounding the 70M30T treated implant. Thus, the in vitro results gave no prediction or explanation for the 50M50G-implant failure in vivo. We hypothesized that the first protein layer adhered to the surface may have direct implication in implant osseointegration, and perhaps correlate with the in vivo outcome. Human serum was used for adsorption analysis on the biomaterials, the first layer of serum proteins adhered to the implant surface was analyzed by proteomic analysis, using mass spectrometry (LC-MS/MS). From the 171 proteins identified; 30 proteins were significantly enriched on the 50M50G implant surface. This group comprised numerous proteins of the immune complement system, including several subcomponents of the C1 complement, complement factor H, C4b-binding protein alpha chain, complement C5 and C-reactive protein. This result suggests that these proteins enriched in 50M50G surface might trigger the cascade leading to the formation of the fibrous capsule observed. The implications of these results could open up future possibilities to predict the biocompatibility problems in vivo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1477-1485, 2018.
Collapse
Affiliation(s)
- Nuno Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain.,Departamento de Medicina, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain
| | - Francisco Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain
| | - Ana M Sánchez-Pérez
- Departamento de Medicina, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain
| | - Marilo Gurruchaga
- Facultad de Ciencias Químicas. POLYMAT Universidad del País Vasco, P. M. de Lardizábal 3, San Sebastián, 20018, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain
| | - María Martinez-Ibañez
- Facultad de Ciencias Químicas. POLYMAT Universidad del País Vasco, P. M. de Lardizábal 3, San Sebastián, 20018, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain
| | - Julio Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas. POLYMAT Universidad del País Vasco, P. M. de Lardizábal 3, San Sebastián, 20018, Spain
| |
Collapse
|