1
|
Tschiche HR, Bierkandt FS, Creutzenberg O, Fessard V, Franz R, Greiner R, Gruber-Traub C, Haas KH, Haase A, Hartwig A, Hesse B, Hund-Rinke K, Iden P, Kromer C, Loeschner K, Mutz D, Rakow A, Rasmussen K, Rauscher H, Richter H, Schoon J, Schmid O, Som C, Spindler LM, Tovar GEM, Westerhoff P, Wohlleben W, Luch A, Laux P. Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities. NANOIMPACT 2022; 28:100416. [PMID: 35995388 DOI: 10.1016/j.impact.2022.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.
Collapse
Affiliation(s)
- Harald R Tschiche
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany.
| | - Frank S Bierkandt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Valerie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of contaminants Unit, Fougères, France
| | - Roland Franz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Carmen Gruber-Traub
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences (IAB), Food Chemistry and Toxicology, Germany
| | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany
| | | | - Charlotte Kromer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Diana Mutz
- German Federal Institute for Risk Assessment (BfR), Research Strategy and Coordination, Berlin, Germany
| | - Anastasia Rakow
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hannes Richter
- Fraunhofer IKTS - Institute for Ceramic Technologies and Systems, Hermsdorf, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Som
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Lena M Spindler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Paul Westerhoff
- Arizona State University, Tempe, AZ, United States of America
| | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
Collapse
|
2
|
Oh HJ, Han TT, Mainelis G. Potential consumer exposure to respirable particles and TiO 2 due to the use of eyebrow powders. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:1032-1046. [PMID: 33208837 PMCID: PMC8128939 DOI: 10.1038/s41370-020-00278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cosmetic powders contain numerous components, including titanium dioxide (TiO2), which is classified as possibly carcinogenic to humans (Group 2B). However, little is known about potential inhalation exposures to particles that are released during cosmetic powder applications. METHODS We realistically simulated the application of five different eyebrow powders using a mannequin and then determined concentrations of total suspended particles (TSP), PM10, and PM4 fractions of particles that would be inhaled during powder application. We determined the size and shape of particles in the original powders and released particles, as well as their TiO2 concentrations and Ti content of individual particles. RESULTS The application of eyebrow powders resulted in the release and inhalation of airborne particles at concentrations ranging from 21.2 to 277.3 µg/m3, depending on the particle fraction and the powder. The concentrations of TiO2 in PM4 and PM10 samples reached 2.7 µg/m3 and 9.3 µg/m3, respectively. The concentration of TiO2 in airborne particle fractions was proportional to the presence of TiO2 in the bulk powder. CONCLUSION The application of eyebrow powders results in user exposures to respirable PM4 and PM10 particles, including those containing TiO2. This information should be of interest to stakeholders concerned about inhalation exposure to TiO2.
Collapse
Affiliation(s)
- Hyeon-Ju Oh
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Taewon T Han
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
Sander M, Sander M, Burbidge T, Beecker J. The efficacy and safety of sunscreen use for the prevention of skin cancer. CMAJ 2021; 192:E1802-E1808. [PMID: 33318091 DOI: 10.1503/cmaj.201085] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Megan Sander
- Department of Medicine (Megan Sander, Burbidge), Section of Dermatology, and Cumming School of Medicine (Michael Sander), University of Calgary, Calgary, Alta.; Division of Dermatology (Beecker), Department of Medicine, The Ottawa Hospital; Faculty of Medicine (Beecker), University of Ottawa and The Ottawa Hospital Research institute (Beecker), Ottawa, Ont.
| | - Michael Sander
- Department of Medicine (Megan Sander, Burbidge), Section of Dermatology, and Cumming School of Medicine (Michael Sander), University of Calgary, Calgary, Alta.; Division of Dermatology (Beecker), Department of Medicine, The Ottawa Hospital; Faculty of Medicine (Beecker), University of Ottawa and The Ottawa Hospital Research institute (Beecker), Ottawa, Ont
| | - Toni Burbidge
- Department of Medicine (Megan Sander, Burbidge), Section of Dermatology, and Cumming School of Medicine (Michael Sander), University of Calgary, Calgary, Alta.; Division of Dermatology (Beecker), Department of Medicine, The Ottawa Hospital; Faculty of Medicine (Beecker), University of Ottawa and The Ottawa Hospital Research institute (Beecker), Ottawa, Ont
| | - Jennifer Beecker
- Department of Medicine (Megan Sander, Burbidge), Section of Dermatology, and Cumming School of Medicine (Michael Sander), University of Calgary, Calgary, Alta.; Division of Dermatology (Beecker), Department of Medicine, The Ottawa Hospital; Faculty of Medicine (Beecker), University of Ottawa and The Ottawa Hospital Research institute (Beecker), Ottawa, Ont
| |
Collapse
|
4
|
Sander M, Sander M, Burbidge T, Beecker J. Efficacité et innocuité des écrans solaires pour la prévention du cancer de la peau. CMAJ 2021; 193:E348-E354. [PMID: 33685958 PMCID: PMC8034319 DOI: 10.1503/cmaj.201085-f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Megan Sander
- Département de médecine (Megan Sander, Burbidge), Section de dermatologie et École de médecine Cumming (Michael Sander), Université de Calgary, Calgary, Alb.; Division de dermatologie (Beecker), Service de médecine, Hôpital d'Ottawa; Faculté de médecine (Beecker), Université d'Ottawa et Institut de recherche de l'Hôpital d'Ottawa (Beecker), Ottawa, Ont.
| | - Michael Sander
- Département de médecine (Megan Sander, Burbidge), Section de dermatologie et École de médecine Cumming (Michael Sander), Université de Calgary, Calgary, Alb.; Division de dermatologie (Beecker), Service de médecine, Hôpital d'Ottawa; Faculté de médecine (Beecker), Université d'Ottawa et Institut de recherche de l'Hôpital d'Ottawa (Beecker), Ottawa, Ont
| | - Toni Burbidge
- Département de médecine (Megan Sander, Burbidge), Section de dermatologie et École de médecine Cumming (Michael Sander), Université de Calgary, Calgary, Alb.; Division de dermatologie (Beecker), Service de médecine, Hôpital d'Ottawa; Faculté de médecine (Beecker), Université d'Ottawa et Institut de recherche de l'Hôpital d'Ottawa (Beecker), Ottawa, Ont
| | - Jennifer Beecker
- Département de médecine (Megan Sander, Burbidge), Section de dermatologie et École de médecine Cumming (Michael Sander), Université de Calgary, Calgary, Alb.; Division de dermatologie (Beecker), Service de médecine, Hôpital d'Ottawa; Faculté de médecine (Beecker), Université d'Ottawa et Institut de recherche de l'Hôpital d'Ottawa (Beecker), Ottawa, Ont
| |
Collapse
|
5
|
Pearce KM, Okon I, Watson-Wright C. Induction of Oxidative DNA Damage and Epithelial Mesenchymal Transitions in Small Airway Epithelial Cells Exposed to Cosmetic Aerosols. Toxicol Sci 2020; 177:248-262. [DOI: 10.1093/toxsci/kfaa089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Engineered metal nanoparticles (ENPs) are frequently incorporated into aerosolized consumer products, known as nano-enabled products (NEPs). Concern for consumer pulmonary exposures grows as NEPs produce high concentrations of chemically modified ENPs. A significant knowledge gap still exists surrounding NEP aerosol respiratory effects as previous research focuses on pristine/unmodified ENPs. Our research evaluated metal-containing aerosols emitted from nano-enabled cosmetics and their induction of oxidative stress and DNA damage, which may contribute to epithelial mesenchymal transitions (EMT) within primary human small airway epithelial cells. We utilized an automated NEP generation system to monitor and gravimetrically collect aerosols from two aerosolized cosmetic lines. Aerosol monitoring data were inputted into modeling software to determine potential inhaled dose and in vitro concentrations. Toxicological profiles of aerosols and comparable pristine ENPs (TiO2 and Fe2O3) were used to assess reactive oxygen species and oxidative stress by fluorescent-based assays. Single-stranded DNA (ssDNA) damage and 8-oxoguanine were detected using the CometChip assay after 24-h exposure. Western blots were conducted after 21-day exposure to evaluate modulation of EMT markers. Results indicated aerosols possessed primarily ultrafine particles largely depositing in tracheobronchial lung regions. Significant increases in oxidative stress, ssDNA damage, and 8-oxoguanine were detected post-exposure to aerosols versus pristine ENPs. Western blots revealed statistically significant decreases in E-cadherin and increases in vimentin, fascin, and CD44 for two aerosols, indicating EMT. This work suggests certain prolonged NEP inhalation exposures cause oxidative DNA damage, which may play a role in cellular changes associated with reduced respiratory function and should be of concern.
Collapse
Affiliation(s)
| | - Imoh Okon
- Center for Molecular & Translational Medicine, Georgia State University, Atlanta, Georgia 30302
| | | |
Collapse
|