1
|
Cui L, Yang Y, Hao Y, Zhao H, Zhang Y, Wu T, Song X. Nanotechnology-Based Therapeutics for Airway Inflammatory Diseases. Clin Rev Allergy Immunol 2025; 68:12. [PMID: 39928241 PMCID: PMC11811441 DOI: 10.1007/s12016-024-09019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 02/11/2025]
Abstract
Under the concept of "one airway, one disease", upper and lower airway inflammatory diseases share similar pathogenic mechanisms and are collectively referred to as airway inflammatory diseases. With industrial development and environmental changes, the incidence of these diseases has gradually increased. Traditional treatments, including glucocorticoids, antihistamines, and bronchodilators, have alleviated much of the discomfort experienced by patients. However, conventional drug delivery routes have inherent flaws, such as significant side effects, irritation of the respiratory mucosa, and issues related to drug deactivation. In recent years, nanomaterials have emerged as excellent carriers for drug delivery and are being increasingly utilized in the treatment of airway inflammatory diseases. These materials not only optimize the delivery of traditional medications but also facilitate the administration of various new drugs that target novel pathways, thereby enhancing the treatment outcomes of inflammatory diseases. This study reviews the latest research on nano-drug delivery systems used in the treatment of airway inflammatory diseases, covering traditional drugs, immunotherapy drugs, antimicrobial drugs, plant-derived drugs, and RNA drugs. The challenges involved in developing nano-delivery systems for these diseases are discussed, along with a future outlook. This review offers new insights that researchers can utilize to advance further research into the clinical application of nano-drug delivery systems for treating airway inflammatory diseases.
Collapse
Affiliation(s)
- Limei Cui
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yan Hao
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongfei Zhao
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China.
| | - Tong Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China.
| |
Collapse
|
2
|
Park JS, Choi YH, Min JY, Lee J, Shim G. Fundamental and Targeted Approaches in Pulmonary Arterial Hypertension Treatment. Pharmaceutics 2025; 17:224. [PMID: 40006591 PMCID: PMC11859843 DOI: 10.3390/pharmaceutics17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its treatment, while irreversible vascular changes, such as fibrosis, remain unaddressed by current therapies. Fundamental research on molecular pathways and targeted delivery systems has paved the way for advanced therapeutic strategies that aim to modify disease progression rather than merely manage symptoms. Nanoparticle-based drug delivery systems, leveraging controlled release and pulmonary targeting, offer a promising avenue to overcome these challenges. Such systems enable precise localization to pulmonary vasculature, minimize systemic side effects, and support emerging approaches like gene therapy and combination treatments. Future research should focus on refining nanoparticle formulations for personalized medicine, optimizing inhalation delivery systems, and integrating multi-target approaches to achieve curative outcomes in PAH. This review explores pathophysiology of PAH, current pharmacological strategies, and innovative nanoparticle-based therapies, emphasizing their potential to transform PAH treatment and address its underlying mechanisms.
Collapse
Affiliation(s)
- Ji Su Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong Hwan Choi
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Ji-Young Min
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Jaeseong Lee
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
3
|
Singh S, Aparna, Sharma N, Gupta J, Kyada A, Nathiya D, Behl T, Gupta S, Anwer MK, Gulati M, Sachdeva M. Application of nano- and micro-particle-based approaches for selected bronchodilators in management of asthma. 3 Biotech 2024; 14:208. [PMID: 39184911 PMCID: PMC11343956 DOI: 10.1007/s13205-024-04051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a chronic inflammatory condition that affects the airways, posing a substantial health threat to a large number of people worldwide. Bronchodilators effectively alleviate symptoms of airway obstruction by inducing relaxation of the smooth muscles in the airways, thereby reducing breathlessness and enhancing overall quality of life. The drug targeting to lungs poses significant challenges; however, this issue can be resolved by employing nano- and micro-particles drug delivery systems. This review provides brief insights about underlying mechanisms of asthma, including the role of several inflammatory mediators that contribute to the development and progression of this disease. This article provides an overview of the physicochemical features, pharmacokinetics, and mechanism of action of particular groups of bronchodilators, including sympathomimetics, PDE-4 inhibitors (phosphodiesterase-4 inhibitors), methylxanthines, and anticholinergics. This study presents a detailed summary of the most recent developments in incorporation of bronchodilators in nano- and micro-particle-based delivery systems which include solid lipid nanoparticles, bilosomes, novasomes, liposomes, polymeric nano- and micro-particles. Specifically, it focuses on breakthroughs in the categories of sympathomimetics, methylxanthines, PDE-4 inhibitors, and anticholinergics. These medications have the ability to specifically target alveolar macrophages, leading to a higher concentration of pharmaceuticals in the lung tissues.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Aparna
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406 Uttar Pradesh India
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, 360003 Gujarat India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Rajasthan, Jaipur India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, India
| | - Sumeet Gupta
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 1444411 Punjab India
- Faculty of Health, ARCCIM, University of Technology Sydney, Ultimo, NSW 20227 Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Eshaghi S, Khaleghi H, Maddahian R. In silico investigation of inhalation condition impacts on hygroscopic growth and deposition of salbutamol sulphate in human airways. Respir Physiol Neurobiol 2024; 326:104271. [PMID: 38703974 DOI: 10.1016/j.resp.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The objective of this study is to explore the transport, size growth, and deposition of Salbutamol Sulphate (SS) using Computational Fluid Dynamics (CFD). A CT-based realistic model of human airways from the oral cavity to the 5th generation of the lung was utilized as the computational domain. Four Test Cases (TC) with varying temperature and relative humidity (RH) under two inspiratory waveforms were considered to completely evaluate the impact of inhalation conditions on particle growth. Salbutamol Sulphate (SS) is a β2-adrenergic agonist and has been extensively used for asthma treatment. A monodispersed distribution of SS particles with an initial diameter of 167 nm was considered at the mouth inlet based on pharmaceutical data. Results indicated that inhalation of saturated/supersaturated air (RH>100%) leads to significant hygroscopic growth of SS particles with a factor of 10. In addition, the deposition efficiency of SS particles under the Quick and Deep (QD) inhalation profile was enhanced as the flow temperature and humidity increased. However, the implementation of Slow and Deep (SD) inspiratory waveform revealed that the same particle size growth is achieved in the respiratory system with lower deposition efficiency in the mouth-throat (less than 3%) and tracheobronchial airway (less than 2.18%). For the escaped particles form the right lung, in the SD waveform under TC 3, the maximum particle size distribution was for 600 nm particles with 25% probability. In the left lung, 30% of the particles were increased up to 950 nm in size. For the QD waveform in TC 3 and TC4, the most frequent particles were 800 nm with 36% probability. This holds practical significance in the context of deep lung delivery for asthmatic patients with enhanced deposition efficiency and large particle size. The findings of the present study can contribute to the development of targeted drug delivery strategies for the treatment of pulmonary diseases using hygroscopic dry powder formulations.
Collapse
Affiliation(s)
- Sajad Eshaghi
- Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal-Al-Ahmad, Tehran 14115143, Iran
| | - Hassan Khaleghi
- Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal-Al-Ahmad, Tehran 14115143, Iran
| | - Reza Maddahian
- Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal-Al-Ahmad, Tehran 14115143, Iran.
| |
Collapse
|
5
|
Wu L, Wang W, Guo M, Fu F, Wang W, Sung T, Zhang M, Zhong Z, Wu C, Pan X, Huang Z. Inhalable iron redox cycling powered nanoreactor for amplified ferroptosis-apoptosis synergetic therapy of lung cancer. NANO RESEARCH 2024; 17:5435-5451. [DOI: 10.1007/s12274-024-6455-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 06/25/2024]
|
6
|
Utembe W, Andraos C, Gulumian M. Immunotoxicity of engineered nanomaterials and their role in asthma. Crit Rev Toxicol 2023; 53:491-505. [PMID: 37933836 DOI: 10.1080/10408444.2023.2270519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The toxicity of engineered nanomaterials (ENMs) in vivo and in vitro has formed the basis of most studies. However, the toxicity of ENMs, particularly on the immune system, i.e. immunotoxicity, and their role in manipulating it, are less known. This review addresses the initiation or exacerbation as well as the attenuation of allergic asthma by a variety of ENMs and how they may be used in drug delivery to enhance the treatment of asthma. This review also highlights a few research gaps in the study of the immunotoxicity of ENMs, for example, the potential drawbacks of assays used in immunotoxicity assays; the potential role of hormesis during dosing of ENMs; and the variables that result in discrepancies among different studies, such as the physicochemical properties of ENMs, differences in asthmatic animal models, and different routes of administration.
Collapse
Affiliation(s)
- Wells Utembe
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa
- Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlene Andraos
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Nikjoo D, van der Zwaan I, Rudén J, Frenning G. Engineered microparticles of hyaluronic acid hydrogel for controlled pulmonary release of salbutamol sulphate. Int J Pharm 2023; 643:123225. [PMID: 37451326 DOI: 10.1016/j.ijpharm.2023.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Most pulmonary drugs are immediate-release formulations with short duration of action. Controlled release systems provide the ability to deliver drugs at a controlled rate, which helps maintain drug concentrations within the therapeutic window for a longer period of time. This study aimed to produce microparticles (MPs) of hyaluronic acid hydrogel (HAGA) loaded with salbutamol sulphate (SS) for controlled release in the lung. The drug-loaded MPs were prepared via spray drying and underwent extensive characterization, which revealed that SS was successfully encapsulated in the HAGA matrix. The prepared MPs (denoted as HASS) ranged in size from 1.6 ± 0.4 μm to 1.7 ± 0.5 μm with a fine particle fraction (FPF) of 48-56% and showed improvement in aerodynamic properties compared to unloaded HAGA hydrogel MPs. In vitro drug release studies performed in a Transwell system confirmed the potential of the particles to release the drug in a sustained manner. The drug release was delayed for all formulations, with a t63 between 5 and 30 min, compared to <1min for pure SS. This study advances our understanding of the formulation of a highly soluble drug to achieve controlled release in the lung.
Collapse
Affiliation(s)
- Dariush Nikjoo
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden; Division of Material Science, Department of Engineering Science and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Irès van der Zwaan
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden
| | - Jonas Rudén
- Pharmaceutical Development, Orexo AB, 751 05, Uppsala, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden.
| |
Collapse
|
8
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Guo M, Peng T, Wu C, Pan X, Huang Z. Engineering Ferroptosis Inhibitors as Inhalable Nanomedicines for the Highly Efficient Treatment of Idiopathic Pulmonary Fibrosis. Bioengineering (Basel) 2023; 10:727. [PMID: 37370658 PMCID: PMC10295167 DOI: 10.3390/bioengineering10060727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) refers to chronic progressive fibrotic interstitial pneumonia. It is called a "tumor-like disease" and cannot be cured using existing clinical drugs. Therefore, new treatment options are urgently needed. Studies have proven that ferroptosis is closely related to the development of IPF, and ferroptosis inhibitors can slow down the occurrence of IPF by chelating iron or reducing lipid peroxidation. For example, the ferroptosis inhibitor deferoxamine (DFO) was used to treat a mouse model of pulmonary fibrosis, and DFO successfully reversed the IPF phenotype and increased the survival rate of mice from 50% to 90%. Given this, we perceive that the treatment of IPF by delivering ferroptosis inhibitors is a promising option. However, the delivery of ferroptosis inhibitors faces two bottlenecks: low solubility and targeting. For one thing, we consider preparing ferroptosis inhibitors into nanomedicines to improve solubility. For another thing, we propose to deliver nanomedicines through pulmonary drug-delivery system (PDDS) to improve targeting. Compared with oral or injection administration, PDDS can achieve better delivery and accumulation in the lung, while reducing the systemic exposure of the drug, and is an efficient and safe drug-delivery method. In this paper, three possible nanomedicines for PDDS and the preparation methods thereof are proposed to deliver ferroptosis inhibitors for the treatment of IPF. Proper administration devices and challenges in future applications are also discussed. In general, this perspective proposes a promising strategy for the treatment of IPF based on inhalable nanomedicines carrying ferroptosis inhibitors, which can inspire new ideas in the field of drug development and therapy of IPF.
Collapse
Affiliation(s)
- Mengqin Guo
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| |
Collapse
|
10
|
Chan HW, Chow S, Zhang X, Zhao Y, Tong HHY, Chow SF. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023; 24:98. [PMID: 37016029 PMCID: PMC10072922 DOI: 10.1208/s12249-023-02559-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Yayi Zhao
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R., China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China.
| |
Collapse
|
11
|
Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:318. [PMID: 36679199 PMCID: PMC9866119 DOI: 10.3390/polym15020318] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The rapid and non-invasive pulmonary drug delivery (PDD) has attracted great attention compared to the other routes. However, nanoparticle platforms, like liposomes (LPs) and extracellular vesicles (EVs), require extensive reformulation to suit the requirements of PDD. LPs are artificial vesicles composed of lipid bilayers capable of encapsulating hydrophilic and hydrophobic substances, whereas EVs are natural vesicles secreted by cells. Additionally, novel LPs-EVs hybrid vesicles may confer the best of both. The preparation methods of EVs are distinguished from LPs since they rely mainly on extraction and purification, whereas the LPs are synthesized from their basic ingredients. Similarly, drug loading methods into/onto EVs are distinguished whereby they are cell- or non-cell-based, whereas LPs are loaded via passive or active approaches. This review discusses the progress in LPs and EVs as well as hybrid vesicles with a special focus on PDD. It also provides a perspective comparison between LPs and EVs from various aspects (composition, preparation/extraction, drug loading, and large-scale manufacturing) as well as the future prospects for inhaled therapeutics. In addition, it discusses the challenges that may be encountered in scaling up the production and presents our view regarding the clinical translation of the laboratory findings into commercial products.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Latifah Munirah Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Selangor, Shah Alam 40450, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College MAIWP International (UCMI), Kuala Lumpur 68100, Malaysia
| |
Collapse
|
12
|
Zhou P, Cao Z, Liu Y, Guo T, Yang R, Wang M, Ren X, Wu L, Sun L, Peng C, Wang C, Zhang J. Co-achievement of enhanced absorption and elongated retention of insoluble drug in lungs for inhalation therapy of pulmonary fibrosis. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Beeraka NM, Zhou R, Wang X, Vikram P R H, Kumar TP, Liu J, Greeshma MV, Mandal SP, Gurupadayya BM, Fan R. Immune Repertoire and Advancements in Nanotherapeutics for the Impediment of Severe Steroid Resistant Asthma (SSR). Int J Nanomedicine 2022; 17:2121-2138. [PMID: 35592101 PMCID: PMC9112344 DOI: 10.2147/ijn.s364693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Severe steroid-resistant asthma (SSR) patients do not respond to the corticosteroid therapies due to the heterogeneity, and genome-wide variations. However, there are very limited reports pertinent to the molecular signaling underlying SSR and making pharmacologists, and formulation scientists to identify the effective therapeutic targets in order to produce novel therapies using novel drug delivery systems (NDDS). We have substantially searched literature for the peer-reviewed and published reports delineating the role of glucocorticoid-altered gene expression, and the mechanisms responsible for SSR asthma, and NDDS for treating SSR asthma using public databases PubMed, National Library of Medicine (NLM), google scholar, and medline. Subsequently, we described reports underlying the SSR pathophysiology through several immunological and inflammatory phenotypes. Furthermore, various therapeutic strategies and the role of signaling pathways such as mORC1-STAT3-FGFBP1, NLRP3 inflammasomes, miR-21/PI3K/HDAC2 axis, PI3K were delineated and these can be considered as the therapeutic targets for mitigating the pathophysiology of SSR asthma. Finally, the possibility of nanomedicine-based formulation and their applications in order to enhance the long term retention of several antioxidant and anti-asthmatic drug molecules as a significant therapeutic modality against SSR asthma was described vividly.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Human Anatomy, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical college, Mysuru, Karnataka, India
| | - Runze Zhou
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Hemanth Vikram P R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysore, Karnataka, 570015, India
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical college, Mysuru, Karnataka, India
| | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - B M Gurupadayya
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Correspondence: Ruitai Fan, Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, People’s Republic of China, Email
| |
Collapse
|
14
|
Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Advances in lipid-based pulmonary nanomedicine for the management of inflammatory lung disorders. Nanomedicine (Lond) 2022; 17:913-934. [PMID: 35451334 DOI: 10.2217/nnm-2021-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammatory lung disorders have become one of the fastest growing global healthcare concerns, with more than 500 million annual cases of disorders such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Owing to environmental changes and socioeconomic disparity, the numbers are expected to grow even more in years to come. The therapeutic strategies and approved drugs currently employed in the management of inflammatory lung disorders show dose-dependent resistance and pharmacokinetic limitations. This review comprehensively discusses lipid-based pulmonary nanomedicine as a potential platform to overcome these barriers while ensuring site-specific drug delivery and minimal side effects in nontargeted tissues for the management of noninfectious inflammatory lung disorders.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Parmar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
15
|
Ahmad A. Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma. Life (Basel) 2022; 12:life12040596. [PMID: 35455087 PMCID: PMC9032250 DOI: 10.3390/life12040596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 12/22/2022] Open
Abstract
With a high prevalence globally, asthma is a severe hazard to human health, as well as an economic and social burden. There are now novel therapies available for asthma with the use of nanotechnology. Recent developments in nanoscience and medicine have encouraged the creation of inhalable nanomedicines that can enhance the efficacy, patient compliance, and life quality for sufferers of asthma. Nanocarriers for asthma therapy, including liposomes, micelles, polymers, dendrimers, and inorganics, are presented in depth in this study as well as the current research status of these nanocarriers. Aerosolized nanomaterial-based drug transport systems are currently being developed, and some examples of these systems, as well as prospective future paths, are discussed. New research subjects include nano-modification of medicines and the development of innovative nano-drugs. Clinical experiments have proven that nanocarriers are both safe and effective. Before nanotherapy can be applied in clinical practice, several obstacles must be addressed. We look at some of the most recent research discoveries in the subject of nanotechnology and asthma therapy in this article.
Collapse
Affiliation(s)
- Aftab Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Gulati N, Chellappan DK, MacLoughlin R, Dua K, Dureja H. Inhaled nano-based therapeutics for inflammatory lung diseases: Recent advances and future prospects. Life Sci 2021; 285:119969. [PMID: 34547339 DOI: 10.1016/j.lfs.2021.119969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory lung diseases related morbidity and mortality impose a significant financial burden. Inflammation is a hallmark of many diseases of the respiratory system which is directly or indirectly linked to adverse health conditions, air pollution, rapid lifestyle changes, and regular outbreaks of microbial infections. The unique anatomical and physiological features of the lungs make them an ideal target organ in the treatment of inflammatory respiratory disease and with the help of inhaled therapy lungs can be targeted directly. The principal objective of this review is to present the comprehensive role of inhaled nano-based therapeutics such as liposomes, niosomes, nanoparticles, nanoemulsion, nanosuspension, and exosomes in the treatment and management of inflammatory respiratory diseases. Inhaled nanomedicines provide targeted diagnosis and treatment, improved drug solubility and distribution, prevent first-pass hepatic metabolism, improved patient compliance, and reduced drug side effects. They overcome several biological barriers in the human body and provide immediate, and quick-onset of action. Future research should be focused on improving the therapeutic efficiency of inhaled nanocarriers and to carry out in-depth mechanistic studies to translate current scientific knowledge for the efficient management of inflammatory lung diseases with minimal or no toxicity.
Collapse
Affiliation(s)
- Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
17
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
18
|
Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021; 176:113901. [PMID: 34331989 PMCID: PMC7611797 DOI: 10.1016/j.addr.2021.113901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Sivan Arber Raviv
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Jeny Shklover
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Adi Gross
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Avi Schroeder
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
19
|
Patel K, Bothiraja C, Mali A, Kamble R. Investigation of sorafenib tosylate loaded liposomal dry powder inhaler for the treatment of non-small cell lung cancer. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1906367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Khushboo Patel
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Chellampillai Bothiraja
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Ashwin Mali
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Ravindra Kamble
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| |
Collapse
|
20
|
Thubelihle Ndebele R, Yao Q, Shi YN, Zhai YY, Xu HL, Lu CT, Zhao YZ. Progress in the Application of Nano- and Micro-based Drug Delivery Systems in Pulmonary Drug Delivery. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology is associated with the development of particles in the nano-size range that can be used in a wide range of applications in the medical field. It has gained more importance in the pharmaceutical research field particularly in drug delivery, as it results in enhanced therapeutic drug performance, improved drug solubility, targeted drug delivery to the specific sites, minimized side effects, and prolonged drug retention time in the targeted site. To date, the application of nanotechnology continues to offer several benefits in the treatment of various chronic diseases and results in remarkable improvements in treatment outcomes. The use of nano-based delivery systems such as liposomes, micelles, and nanoparticles in pulmonary drug delivery have shown to be a promising strategy in achieving drug deposition and maintained controlled drug release in the lungs. They have been widely used to minimize the risks of drug toxicity in vivo. In this review, recent advances in the application of nano- and micro-based delivery systems in pulmonary drug delivery for the treatment of various pulmonary diseases, such as lung cancer, asthma, and chronic obstructive pulmonary disease, are highlighted. Limitations in the application of these drug delivery systems and some key strategies in improving their formulation properties to overcome challenges encountered in drug delivery are also discussed.
Collapse
Affiliation(s)
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan-Nan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
21
|
Hu X, Yang F, Liao Y, Li L, Zhao G, Zhang L. Docetaxel-Loaded Cholesterol-PEG Co-Modified Poly (n-Butyl) Cyanoacrylate Nanoparticles for Antitumor Drug Pulmonary Delivery: Preparation, Characterization, and in vivo Evaluation. Int J Nanomedicine 2020; 15:5361-5376. [PMID: 32801694 PMCID: PMC7395705 DOI: 10.2147/ijn.s249511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIM Polymeric nanoparticles (NPs) have received much attention as promising carrier systems in lung cancer and brain metastases. METHODS Here, for the first time, we investigated the feasibility of using inhaled cholesterol-PEG co-modified poly (n-butyl) cyanoacrylate NPs (CLS-PEG NPs) of docetaxel (DTX) for sustained pulmonary drug delivery in cancer metastasis. RESULTS Spray-dried or freeze-dried NPs yielded sustained drug release in vitro. In vitro inhalation evaluation data indicated that the inhalation formulation had better inhalability. Compared with intravenous (IV) administration, pharmacokinetic data suggested that the inhalation formulation prolonged plasma concentration of DTX for greater than 24 h and is more quickly and completely absorbed into the rat lung after intratracheal (IT) administration. Furthermore, freeze-dried powders were found to increase the t1/2 and area under curve (AUC) by 2.3 and 6.5 fold compared to the free drug after IT administration, and spray-dried powders were found to increase the t1/2 and AUC by 3.4 and 8.8 fold, respectively. After pulmonary administration of the inhalation formulation, DTX appeared to prolong the pulmonary absorption time. In addition, the inhalation formulation was distributed to the brain in a sustained release manner. CONCLUSION These experimental results demonstrated that freeze- and spray-dried powders have the potential for pulmonary sustained release, and they also have the potential to be used as a novel treatment for the delivery of drugs that pass through the air-blood barrier and enter the brain and are efficient carriers for the treatment of brain metastasis.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| | - Feifei Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100193, People’s Republic of China
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100193, People’s Republic of China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing100053, People’s Republic of China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| |
Collapse
|
22
|
Alwattar JK, Chouaib R, Khalil A, Mehanna MM. A novel multifaceted approach for wound healing: Optimization and in vivo evaluation of spray dried tadalafil loaded pro-nanoliposomal powder. Int J Pharm 2020; 587:119647. [PMID: 32673771 DOI: 10.1016/j.ijpharm.2020.119647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
The topical delivery of nanotherapeutics at the injury site for skin regeneration has received increasing attention as a strategy for wound treatment. This study aimed to investigate the preparation of spray dried tadalafil loaded pro-nanoliposomes powder as a novel system to accelerate wound healing process. The optimization was carried out employing 32 factorial design based on phospholipid and cholesterol concentrations. The physicochemical characterizations, in vitro cellular assessment and in vivo performance were evaluated. The results obtained pointed out that phospholipid concentration presented a positive effect on the entrapment efficacy and particle size, while cholesterol hindered the entrapment efficacy yet presented a prominent influence on particle size. Moreover, the optimized formulation showed a sustained release, high zeta potential and uniform spherical particles indicating entrapment of tadalafil in its amorphous state as demonstrated by FTIR and XPRD results. Cell viability and in vitro scratch assay demonstrated no cytotoxicity on human fibroblast cell lines and the ability of the drug and optimized formulation to promote cell migration. In vivo wound healing studies revealed significantly higher wound closure rates for areas treated with optimized loaded-formulation (65.95±6.47%) compared to unloaded formulation (29.78±9.65%), free drug (38.87±11.44%) and sham group (10.22±5.11%). In the in vivo study, histopathological specimens supported the previous results with presentation of cascade of healing elements via the angiogenetic activity of tadalafil. These outcomes provide an insight of a novel and emerging therapeutic drug system for wound treatment in clinical practice.
Collapse
Affiliation(s)
- Jana K Alwattar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Racha Chouaib
- Faculty of Sciences, Lebanese University, Beirut, Lebanon; Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Alia Khalil
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
23
|
Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation. Processes (Basel) 2020. [DOI: 10.3390/pr8070788] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanoparticle-based therapeutics have been used in pulmonary formulations to enhance delivery of poorly water-soluble drugs, protect drugs against degradation and achieve modified release and drug targeting. This review focuses on the use of spray drying as a solidification technique to produce microparticles containing nanoparticles (i.e., nanoparticle (NP) agglomerates) with suitable properties as dry powders for inhalation. The review covers the general aspects of pulmonary drug delivery with emphasis on nanoparticle-based dry powders for inhalation and the principles of spray drying as a method for the conversion of nanosuspensions to microparticles. The production and therapeutic applications of the following types of NP agglomerates are presented: nanoporous microparticles, nanocrystalline agglomerates, lipid-based and polymeric formulations. The use of alternative spray-drying techniques, namely nano spray drying, and supercritical CO2-assisted spray drying is also discussed as a way to produce inhalable NP agglomerates.
Collapse
|
24
|
Zhang T, Wang R, Li M, Bao J, Chen Y, Ge Y, Jin Y. Comparative study of intratracheal and oral gefitinib for the treatment of primary lung cancer. Eur J Pharm Sci 2020; 149:105352. [PMID: 32315772 DOI: 10.1016/j.ejps.2020.105352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Oral gefitinib tablets are widely applied for the treatment of non-small cell lung cancer (NSCLC) though its broad distribution in the body may result in weak therapeutic efficiency and undesired side effects. Here, liposomal gefitinib dry powder inhalers (LGDs) were prepared using the injection-lyophilization method. LGDs were rough porous particles under a scanning electron microscope, which can be rapidly rehydrated to liposomes. LGDs and gefitinib powders were separately intratracheally (i.t.) administered into the lungs of primary lung cancer rats, while powdered gefitinib tablets were orally administered. Gefitinib was rapidly absorbed from the lung after i.t. administration of LGDs. The maximal gefitinib concentration in the circulation and the area under curve (AUC) of i.t. LGDs were higher than those of i.t. gefitinib powders and oral gefitinib. More importantly, much higher concentration and longer retention of gefitinib in the lung were shown after i.t. administration of LGDs and gefitinib powders but remarkably less drug distribution in the liver compared to oral gefitinib. LGDs showed higher therapeutic effect on rat primary lung cancer than i.t. gefitinib powders and oral gefitinib with reduction of inflammation, weak lung injury, and high apoptosis. Combination of inhalation and liposomes of anticancer drugs is a promising strategy for treatment of primary lung cancer.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, Hefei 230001, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Jianwei Bao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Bengbu Medical College, Bengbu 233030, China
| | - Yanming Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yuanyuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, Hefei 230001, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, Hefei 230001, China; Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
25
|
Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-Pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101509] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Wang Z, Lv Y, Zhang D, Liu H, Dong L, Ming T, Su X. In Vivo Effects of Salbutamol Residues on Blood Lipid, Lung Structure, Gene Expression, and Gut Microorganism Composition. ACS OMEGA 2019; 4:20644-20653. [PMID: 31858050 PMCID: PMC6906778 DOI: 10.1021/acsomega.9b02701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/06/2019] [Indexed: 05/20/2023]
Abstract
Salbutamol (SAL), one of the prohibited veterinary drugs, has been proven to be harmful to animals, but very few studies reported the underlying mechanism of actions and the effects after SAL intake. In this study, Ba-Ma minipigs were used as the animal model to demonstrate the impacts of SAL residues on blood lipid and the lung bronchial structures and the regulation of gene expression and gut microorganism population. The results showed that (1) SAL decreased the indexes of serum lipid and organ, (2) SAL widely retained in various tissues and organs, (3) the lung bronchial expanded under the influence of SAL, (4) the gene expression of growth-related ghrelin has increased, and (5) the residues of SAL affected the composition of gut microorganism population, which could be associated with the mechanism of action of SAL on pig. The findings suggest that SAL could be harmful to minipigs by altering the blood lipid, bronchial morphology, gastric mucosal gene expression, and the gut microorganism population.
Collapse
Affiliation(s)
- Zhaoyang Wang
- State
Key Laboratory for Managing Biotic and Chemical Threats to the Quality
and Safety of Agro-products, Ningbo University, Ningbo 315700, China
- School
of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yan Lv
- Ningbo
Academy of Agricultural Sciences, Ningbo 315100, China
| | - Diya Zhang
- School
of Marine Science, Ningbo University, Ningbo 315211, China
| | - Haohao Liu
- School
of Bioengineering, East China University
of Science and Technology, Shanghai 200237, China
| | - Lisha Dong
- School
of Marine Science, Ningbo University, Ningbo 315211, China
| | - Tinghong Ming
- School
of Marine Science, Ningbo University, Ningbo 315211, China
| | - Xiurong Su
- State
Key Laboratory for Managing Biotic and Chemical Threats to the Quality
and Safety of Agro-products, Ningbo University, Ningbo 315700, China
- School
of Marine Science, Ningbo University, Ningbo 315211, China
- E-mail: . Tel.: 86-0574-87608368. Fax: 86-0574-87608368
| |
Collapse
|