1
|
Khalil RM, Shalaby ES, Abdelhameed MF, Shabana MEA, Wagdi MA. Novel surfactant-based elastic vesicular system as a promising approach for the topical delivery of Ibuprofen for enhanced wound healing. J Pharm Sci 2025:103796. [PMID: 40252806 DOI: 10.1016/j.xphs.2025.103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
The objective of the research was to develop and evaluate ibuprofen (Ibu) loaded spanlastics as an efficient wound healing treatment. Ibu- loaded vesicles were prepared employing ethanol injection technique using three edge activators; Tego® care 450, Cremophor RH 40 and Crodafos™ CES along with Span 60. Entrapment efficiency percentage (EE %), vesicular size and zeta potential were evaluated to select the optimal formulations. In- vitro release study, differential scanning calorimetry, xray diffraction and transmission electron microscopy were performed. Selected formulations were incorporated in a hydrogel to assess their in-vivo wound healing efficiency using full-thickness wound model. The vesicles exhibited high EE% (60.6-93.9%), particle size ranged from 114.8 to 663.5 nm and zeta potential was from -26.2 to -42.3 mV which indicated good stability. In-vitro release pattern was biphasic. In-vivo assessment of wound healing efficacy of selected Ibu-loaded spanlastics disclosed significant reduction of wound size. A significant inhibition in TNF-α secretion as well as increased production of VEGF and Col-1 were noticed in rats treated with topical application of Ibu-spanlastics and an almost normal histological structure was observed in their microphotographs. These results confirmed that spanlastics might be a peculiar delivery system for Ibu to improve its topical wound healing efficacy.
Collapse
Affiliation(s)
- Rawia Mohamed Khalil
- Pharmaceutical Technology Department, Pharmaceutical Industries Research Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical Industries Research Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt
| | - Mohamed Fayed Abdelhameed
- Pharmacology Department, Medical Research Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt
| | - Marwa El-Araby Shabana
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt
| | - Marwa Anwar Wagdi
- Pharmaceutical Technology Department, Pharmaceutical Industries Research Institute, National Research Centre (Affiliation ID: 60014618), 33 El-Buhouth street, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Ahmed S, Farag MM, Sadek MA, Aziz DE. Transdermal application of diacerin loaded-terpene enriched invasomes: an approach to augment anti-edema and nociception inhibition activity. J Liposome Res 2025; 35:1-14. [PMID: 39074044 DOI: 10.1080/08982104.2024.2382974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
This study aimed to formulate diacerein loaded terpene-enriched invasomes (DCN-TINV) to fulfill a fruitful management of osteoarthritis. A 23 factorial design was adopted, including A: cholesterol concentration (%w/v), B: ethanol volume (mL) and C: phosphatidylcholine: drug ratio as the studied factors. Invasomes were constructed using the thin film hydration technique. Herein, percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI) and zeta potential (ZP) were statistically analyzed using Design-Expert® software to select the optimum formula. The selected criteria for detecting the optimum formula were restricting PS (<350 nm), dismissing PDI, magnifying ZP (as absolute value) and EE%. The selected formula was further scrutinized through multiple in-vitro studies, including Fourier-transform infrared spectroscopy, differential scanning calorimetry, pH measurement, stability study, release profile and transmission electron microscopy. Furthermore, the ex-vivo performance was evaluated through ex-vivo skin permeation and deposition. Finally, it was subjected to an array of in-vivo tests, namely Draize test, histopathology, In-vivo skin penetration, edema size, and nociception inhibition measurements. The optimum formula with desirability (0.913) demonstrated EE% (89.21% ± 2.12%), PS (319.75 ± 10.11 nm), ZP (-55 ± 3.96 mV) and a prolonged release profile. Intriguingly, revamped skin permeation (1143 ± 32.11 µg/cm2), nociception inhibition (77%) and In-vivo skin penetration (144 µm) compared to DCN suspension (285 ± 21.25 µg/cm2, 26% and 48 µm, respectively) were displayed. The optimum DCN-TINV exhibited plausible safety and stability profiles consolidated with auspicious efficacy for better management of osteoarthritis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Michael M Farag
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Sadek
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, Cairo, Egypt
| | - Diana E Aziz
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Zaid Alkilani A, Alkhaldi R, Basheer HA, Amro BI, Alhusban MA. Fabrication of Thymoquinone and Ascorbic Acid-Loaded Spanlastics Gel for Hyperpigmentation: In Vitro Release, Cytotoxicity, and Skin Permeation Studies. Pharmaceutics 2025; 17:48. [PMID: 39861696 PMCID: PMC11768207 DOI: 10.3390/pharmaceutics17010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics gel loaded with bioactive agents, TQ and AA, for the management of hyperpigmentation. Methods: Several spanlastics formulations were successfully fabricated and characterized in terms of morphology, vesicle size, zeta potential, and release. Results: The optimized TQ-loaded spanlastic formulation showed an average size of 223.40 ± 3.50 nm, and 133.00 ± 2.80 nm for AA-loaded spanlastic formulation. The optimized spanlastics formulation showed the highest entrapment efficiency (EE%) of 97.18 ± 2.02% and 93.08 ± 1.95%, for TQ and AA, respectively. Additionally, the edge activator concentration had a significant effect (p < 0.05) on EE%; it was found that by increasing the amount of EA, the EE% increases. Following that, the optimal spanlastics fomulation loaded with TQ and AA were incorporated into gel and explored for appearance, pH, spreadability, stability, rheology, in vitro release, ex vivo permeation study, and MTT cytotoxicity. The formulated spanlastics gel (R-1) has a pH of 5.53. Additionally, R-1 gel was significantly (p < 0.05) more spreadable than control gel, and exhibited a shear thinning behavior. Most importantly, ex vivo skin deposition studies confirmed superior skin deposition of TQ and AA from spanlastic gels. Additionally, results indicated that tyrosinase inhibition was primarily due to TQ. When comparing TQ alone with the TQ-AA combination, inhibition ranged from 18.35 to 42.73% and 24.28 to 42.53%, respectively. Both TQ spanlastics and the TQ-AA combination showed a concentration-dependent inhibition of tyrosinase. Conclusions: Spanlastic gel might represent a promising carrier for the dermal delivery of TQ and AA for the management of hyperpigmentation conditions.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (R.A.); (H.A.B.); (M.A.A.)
| | - Rua’a Alkhaldi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (R.A.); (H.A.B.); (M.A.A.)
| | - Haneen A. Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (R.A.); (H.A.B.); (M.A.A.)
| | - Bassam I. Amro
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11941, Jordan;
| | - Maram A. Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (R.A.); (H.A.B.); (M.A.A.)
| |
Collapse
|
4
|
Karati D, Mukherjee S, Prajapati BG. Unveiling Spanlastics as a Novel Carrier for Drug Delivery: A Review. Pharm Nanotechnol 2025; 13:133-142. [PMID: 38258763 DOI: 10.2174/0122117385286921240103113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
Innovative colloidal preparations that can alter the pharmacological properties of drugs have been made possible by the advancement of nanotechnology. Recent advances in the sciences of the nanoscale have led to the creation of new methods for treating illnesses. Developments in nanotechnology may lessen the side effects of medicine by using effective and regulated drug delivery methods. A promising drug delivery vehicle is spanlastics, an elastic nanovesicle that can transport a variety of drug compounds. Spanlastics have expanded the growing interest in many types of administrative pathways. Using this special type of vesicular carriers, medications intended for topical, nasal, ocular, and trans-ungual treatments are delivered to specific areas. Their elastic and malleable structure allows them to fit into skin pores, making them ideal for transdermal distribution. Spanlastic is composed of non-ionic surfactants or combinations of surfactants. Numerous studies have demonstrated how spanlastics significantly improve, drug bioavailability, therapeutic effectiveness, and reduce medication toxicity. The several vesicular systems, composition and structure of spanlastics, benefits of spanlastics over alternative drug delivery methods, and the process of drug penetration via skin are all summarized in this paper. Additionally, it provides an overview of the many medications that may be treated using spanlastic vesicles. The primary benefits of these formulations were associated with their surface properties, as a variety of proteins might be linked to the look. For instance, procedure assessment and gold nanoparticles were employed as biomarkers for different biomolecules, which included tumor label detection. Anticipate further advancements in the customization and combining of spanlastic vesicles with appropriate zeta potential to transport therapeutic compounds to specific areas for enhanced disease treatment.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, India
| | - Bhupendra G Prajapati
- Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, 384012, Mahesana, Gujarat, India
| |
Collapse
|
5
|
Nadim N, Khan AA, Khan S, Parveen R, Ali J. A narrative review on potential applications of spanlastics for nose-to-brain delivery of therapeutically active agents. Adv Colloid Interface Sci 2025; 335:103341. [PMID: 39566150 DOI: 10.1016/j.cis.2024.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/28/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Spanlastics, which are commonly referred to as elastic niosomes, presents a modified advancement in the area of colloidal system based drug delivery carriers. They are different from niosomes, which are non-ionic surfactant vesicles in having an edge activator. Initially, they were described as ocular drug delivery systems in 2011 by Kakkar and Kaur. Spanlastics have discovered a wide range of applications via different routes of administration. The purpose of this article is to provide information about spanlastics, a newly developed drug delivery system for the management of diseases pertaining to the Central Nervous System (CNS) via intranasal route. The article begins with the details on spanlastics and their composition, their benefits over traditional niosomes, and the mechanism underlying their enhanced absorption. Their applications through various routes of administration in a variety of diseases for a variety of drugs have been discussed. Furthermore, the article explains the nose to brain delivery channels and the advantages that this route offers over conventional delivery routes. Finally, the article discusses the studies encompassing the drug candidates that have been formulated as intranasal spanlastics for the management of different diseased conditions along with the future prospects of this emerging drug delivery system.
Collapse
Affiliation(s)
- Noorain Nadim
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ayub Ahmad Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Albash R, Abdelbari MA, Elbesh RM, Khaleel EF, Badi RM, Eldehna WM, Elkaeed EB, El Hassab MA, Ahmed SM, Mosallam S. Sonophoresis mediated diffusion of caffeine loaded Transcutol® enriched cerosomes for topical management of cellulite. Eur J Pharm Sci 2024; 201:106875. [PMID: 39121922 DOI: 10.1016/j.ejps.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The goal of this research was to augment the deposition of caffeine loaded Transcutol® enriched cerosomes (TECs) gel for efficient topical treatment of cellulite utilizing the sonophoresis technique. Caffeine-loaded TECs were prepared using thin film hydration method applying 23 factorial design to study the impact of different factors, each with two levels on the entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the formulated TECs. The studied factors were cetyl trimethyl ammonium bromide (CTAB) amount (mg) (X1), phosphatidylcholine (PC) amount (mg) (X2), and Transcutol® amount (mg) (X3). Design-Expert® software was utilized to determine the optimum TECs formulation. Afterward, the optimum TECs formulation was loaded into a gel and subjected to extra investigations. The optimum TECs formulation was (TEC5) which was prepared using 10 mg of CTAB, 150 mg of PC, and 10 mg of Transcutol®. TEC5 presented EE% of 87.44 ± 0.14 %, PS of 308.60 ± 13.38 nm, PDI of 0.455 ± 0.030, and ZP of 50.20 ± 1.55 mV. TEC5 had a fiber-like morphology, with elongated tubules of ceramide. Further, the optimum TECs formulation showed a high stability profile. Moreover, an in vivo dermatokinetic study showed superior deposition of caffeine from TEC5 gel coupled with the sonophoresis on rat skin compared to TEC5 gel and caffeine gel. Moreover, the histopathological study of TEC5 on rat skin confirmed the non-irritant nature of TEC 5 gel mediated by ultrasonic waves through the skin. Overall, the outcomes exposed the obvious superiority of sonophoresis delivered TECs-gel for topical delivery of caffeine for cellulite management.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Rovan M Elbesh
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Misr University for Science and Technology, Giza, Egypt
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara Mohamed Ahmed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
7
|
Khalil RM, Abdelhameed MF, Abou Taleb S, El-Saied MA, Shalaby ES. Preparation and characterisation of esculetin-loaded nanostructured lipid carriers gels for topical treatment of UV-induced psoriasis. Pharm Dev Technol 2024; 29:886-898. [PMID: 39315459 DOI: 10.1080/10837450.2024.2407854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
SIGNIFICANCE As an inflammatory and autoimmune skin condition, psoriasis affects 2-3% of people worldwide. Psoriasis requires prolonged treatments with immunosuppressive medications which have severe adverse effects. Esculetin (Esc) is a natural medication that has been utilised to treat psoriasis. OBJECTIVE The goal of this work is to improve Esc's solubility by developing novel Esc nanostructured lipid carriers (NLCs) for treating psoriasis and increasing the residence time on the skin which infers better skin absorption. METHODS The particle size, zeta potential and entrapment efficiency (EE) of Esc NLCs were assessed. Incorporating NLCs into gum Arabic gel preparation enhances their industrial applicability, absorption and residence time on the skin. Esc NLC gels were evaluated by in vitro release and in vivo effectiveness on a rat model of UV-induced psoriasis. RESULTS Esc NLCs showed high EE reaching more than 95% and reasonable particle size ranging between (53.86 ± 0.38 to 236.3 ± 0.11 nm) and were spherical. The release study of Esc NLCs gel demonstrated a fast release of Esc denoting enhanced bioavailability. Compared to free Esc, Esc NLCs gel (F2) could considerably lower the level of CD34 and TNF-α in the skin. The results were validated through histopathological analysis. CONCLUSION As Esc NLCs gel (F2) has strong anti-inflammatory properties, our results showed that it presented a significant potential for healing psoriasis.
Collapse
Affiliation(s)
- Rawia M Khalil
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Sally Abou Taleb
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
8
|
Ahmed S, Aziz DE, Sadek MA, Tawfik MA. Capped flexosomes for prominent anti-inflammatory activity: development, optimization, and ex vivo and in vivo assessments. Drug Deliv Transl Res 2024; 14:2474-2487. [PMID: 38315262 PMCID: PMC11525274 DOI: 10.1007/s13346-024-01522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/07/2024]
Abstract
This study aimed to formulate diacerein (DCN)-loaded flexosomes for enhanced efficacy against osteoarthritis. A 23 D-optimal design was employed, investigating the impact of surfactant type (A), surfactant concentration (%w/v) (B), and oleylamine amount (mg) (C). Flexosomes were formulated using a rotary evaporator, and Design-Expert® software was utilized to statistically analyze entrapment efficiency (EE%), zeta potential (ZP), poly-dispersity index (PDI), and particle size (PS) to determine the optimum formula. The selection criteria prioritized increased ZP (as absolute value) and EE%, coupled with decreased PDI and PS. Rigorous physicochemical, in vivo, and ex vivo tests were conducted to validate the safety, stability, and activity of the optimal formula. Physicochemical assessments encompassed pH measurement, transmission electron microscopy, differential scanning calorimetry, release profiles, storage effects, and Fourier transform infrared spectroscopy. In vivo tests included permeation studies, histopathology, anti-inflammatory activity, and skin irritancy, while ex vivo tests focused on permeation parameters and skin deposition. The optimum formula demonstrated high desirability (0.931), along with favorable EE% (90.93%), ZP (- 40.4 mV), particle size (188.55 nm), and sustained behavior. Notably, improved in vivo permeation (132 µm), skin deposition (193.43 µg/cm2), and antinociceptive activity (66%) compared to DCN suspension (48 µm, 66.31 µg/cm2, and 26%, respectively) were observed. The optimal formula also exhibited excellent safety and storage characteristics. In conclusion, DCN-loaded flexosomes exhibit significant potential for effectively managing osteoarthritis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Diana E Aziz
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
9
|
Alsofany JM, Khater SE. Repurposing of Nano-Engineered Piroxicam as an Approach for Cutaneous Wound Healing. J Pharm Sci 2024; 113:2723-2733. [PMID: 38862089 DOI: 10.1016/j.xphs.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Drug repurposing is a potential strategy to overcome the huge economic expenses of wound healing products. This work aims to develop a topical gel of piroxicam encapsulated into a nanospanlastics vesicular system as an effective, dermal wound dressing. Firstly, piroxicam was entrapped into nanospanlastics formulations and optimized utilizing 23 full factorial experimental designs. The scrutinized factors were Span 60: Edge activator ratio, edge activator type, and permeation enhancer type. The measured responses were vesicle size (VS), polydispersity index (PDI), and% entrapment efficiency (EE). The optimized formula was further adopted into an alginate-pectin gel matrix to maximize adherence to the skin. The rheology and in-vitro release were studied for the developed nanospanlastics gel. Cytotoxicity and wound healing potential using scratch assay were assessed on human adult dermal fibroblast cells. The optimal piroxicam nanospanlastics formula demonstrated a VS of 124.1 ± 1.3 nm, PDI of 0.21 ± 0.01, and EE% of 97.27±0.21%. About 70.0 ± 0.9% and 57.4 ± 0.1% of piroxicam were released from nanospanlastics dispersion and gel within 24 h, respectively. Nanospanlastics gel of piroxicam flowed in a non-Newtonian pseudoplastic shear thinning pattern. It was also biocompatible with the human dermal fibroblast cells and significantly promoted their migration rate which suggests an auspicious cutaneous wound healing aptitude.
Collapse
Affiliation(s)
- Jihad Mahmoud Alsofany
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt.
| | - Shaymaa Elsayed Khater
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| |
Collapse
|
10
|
Yasser M, El Naggar EE, Elfar N, Teaima MH, El-Nabarawi MA, Elhabal SF. Formulation, optimization and evaluation of ocular gel containing nebivolol Hcl-loaded ultradeformable spanlastics nanovesicles: In vitro and in vivo studies. Int J Pharm X 2024; 7:100228. [PMID: 38317829 PMCID: PMC10839649 DOI: 10.1016/j.ijpx.2023.100228] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The study aims to improve the ocular delivery of Nebivolol HCL (NBV) belonging to the Biopharmaceutics classification system (BCSII) by using spanlastic nanovesicles (SNVs) for ophthalmic delivery and incorporating them into hydroxypropyl methylcellulose gel with ketorolac tromethamine (KET) as an anti-inflammatory to improve glaucoma complications like Conjunctivitis. SNVs were prepared by ethanol injection technique using span (60) as a surfactant and labrasol as an edge activator (EA). The impact of formulation factors on SNVs properties was investigated using a Box-Behnken design. In vitro evaluations showed that the formulations (F1, F4, and F14), containing Span 60 and labrasol as EA (25%, 50%, and 25%), exhibited high EE% with low PS and high ZP and DI. Additionally, 61.72 ± 0.77%, 58.97 ± 1.44%, and 56.20 ± 2.32% of the NBV amount were released from F1, F4, and F14 after 5 h, compared to 93.94 ± 1.21% released from drug suspension. The selected formula (G1), containing F1 in combination with KET and 2% w/w HPMC, exhibited 76.36 ± 0.90% drug release after 12 h. Ex vivo Confocal laser scanning revealed a high penetration of NBV-SNVs gel that ascertained the results of the in-vitro study. In vivo studies showed a significant decrease in glaucoma compared to drug suspension, and histopathological studies showed improvement in glaucomatous eye retinal atrophy. G1 is considered a promising approach to improving ocular permeability, absorption, and anti-inflammatory activity, providing a safer alternative to current regimens.
Collapse
Affiliation(s)
- Mohamed Yasser
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Eman E. El Naggar
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nehal Elfar
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| |
Collapse
|
11
|
Ahuja A, Bajpai M. Novel Arena of Nanocosmetics: Applications and their Remarkable Contribution in the Management of Dermal Disorders, Topical Delivery, Future Trends and Challenges. Curr Pharm Des 2024; 30:115-139. [PMID: 38204262 DOI: 10.2174/0113816128288516231228101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanocosmetics have attracted a considerable audience towards natural care due to their low cost, target-specific delivery, and reduced toxicity compared to chemical-based cosmetics. Nanofomulations, including nanoemulsions, nanotubes, and polymeric carriers, have become next-generation products explored for the multifaced applications of nanotechnology in skin care. The rise in the cosmetic industry demands innovative and personalized products designed using nanocarriers for better targeting and improving patient compliance. Furthermore, nanocosmetics increase the efficiency of skin permeation active ingredient entrapment, providing better UV protection. Moreover, it offers controlled drug release, targeting active sites and enhancing physical stability. Further, overcoming the drawback of penetration problems makes them sustainable formulations for precision medicine. Skincare nourishment with nanocosmetics using Indian spices helps to maintain, beautify, and rejuvenate human skin. Nanophytopharmaceuticals extracted from plants, including alkaloids, flavonoids, antioxidants, and volatile oils, are essential phyto-products for skin care. Nano herbals and nanocosmetics are a growing market and gift of nature that nourishes and cures skin ailments like acne, pemphigus, anti-aging, albinism, psoriasis, and fungal infections. The emerging concern is highlighted in the investigation of nanoformulation toxicity and safety concerns in skin care. Further, it helps to manifest research, development, and innovation in expanding the scope of herbal industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
12
|
Raafat SN, El Wahed SA, Badawi NM, Saber MM, Abdollah MR. Enhancing the anticancer potential of metformin: fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis. Int J Pharm X 2023; 6:100215. [PMID: 38024451 PMCID: PMC10630776 DOI: 10.1016/j.ijpx.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin (MET), an oral antidiabetic drug, was reported to possess promising anticancer effects. We hypothesized that MET encapsulation in unique nanospanlastics would enhance its anticancer potential against HEP-2 cells. Our results showed the successful fabrication of Nano-MET spanlastics (d = 232.10 ± 0.20 nm; PDI = 0.25 ± 0.11; zeta potential = (-) 44.50 ± 0.96; drug content = 99.90 ± 0.11 and entrapment efficiency = 88.01 ± 2.50%). MTT assay revealed the enhanced Nano-MET cytotoxicity over MET with a calculated IC50 of 50 μg/mL and > 500 μg/mL, respectively. Annexin V/PI apoptosis assay showed that Nano-MET significantly decreased the percentage of live cells from 95.49 to 93.70 compared to MET and increased the percentage of cells arrested in the G0/G1 phase by 8.38%. Moreover, Nano-MET downregulated BCL-2 and upregulated BAX protein levels by 1.57 and 1.88 folds, respectively. RT-qPCR revealed that Nano-MET caused a significant 13.75, 4.15, and 2.23-fold increase in caspase-3, -8, and - 9 levels as well as a 100 and 43.47-fold decrease in cyclin D1 and mTOR levels, respectively. The proliferation marker Ki67 immunofluorescent staining revealed a 3-fold decrease in positive cells in Nano-MET compared to the control. Utilizing the combined Pathway-Enrichment Analysis (PEA) and Reactome analysis indicated high enrichment of certain pathways including nucleotides metabolism, Nudix-type hydrolase enzymes, carbon dioxide hydration, hemostasis, and the innate immune system. In summary, our results confirm MET cytotoxicity enhancement by its encapsulation in nanospanlastics. We also highlight, using PEA, that MET can modulate multiple pathways implicated in carcinogenesis.
Collapse
Affiliation(s)
- Shereen Nader Raafat
- Department of Pharmacology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
- Stem Cells and Tissue Culture Hub (CIDS), Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Sara Abd El Wahed
- Department of Oral Pathology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Noha M. Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Mona M. Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Maha R.A. Abdollah
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
13
|
Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv 2023; 30:2163321. [PMID: 36579655 PMCID: PMC9809415 DOI: 10.1080/10717544.2022.2163321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lamotrigine. (LMT) is a triazine drug has an antiepileptic effect but with low water solubility, dissolution rate and thus therapeutic effect. Spanlastics are nano-vesicular carriers' act as site-specific drug delivery system. Intranasal route could direct the drug from nose to brain and provide a faster and more specific therapeutic effect. Therefore, this study aimed to upload lamotrigine onto nano-vesicles using spanlastic nasal insert delivery for effective epilepsy treatment via overcoming lamotrigine's low solubility and improving its bioavailability. Lamtrigine-loaded nano-spanlastic vesicles were prepared by ethanol injection method. To study different formulation factor's effect on formulations characters; particle size (PS), Zeta potential (ZP), polydispersity index (PDI), entrapment efficiency percentage (EE%) and LMT released amount after 6 h (Q6h); 2^1 and 3^1 full factorial designs were employed. Optimized formula was loaded in lyophilized nasal inserts formulation which were characterized for LMT release and mucoadhesion. Pharmacokinetics studies in plasma and brain were performed on rats to investigate drug targeting efficiency. The optimal nano-spanlastic formulation (F4; containing equal Span 60 amount (100 mg) and edge activator; Tween 80) exhibited nano PS (174.2 nm), high EE% (92.75%), and Q6h > 80%. The prepared nasal inserts (S4) containing 100 mg HPMC has a higher mucoadhesive force (9319.5 dyne/cm2) and dissolution rate (> 80% within 10 min) for rapid in vivo bio-distribution. In vivo studies showed considerable improvement brain and plasma's rate and extent absorption after intranasal administration indicating a high brain targeting efficiency. The results achieved indicate that nano-spanlastic nasal-inserts offer a promising LMT brain targeting in order to maximize its antiepileptic effect.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, 12566, Egypt
| | - Hadel A. Abo El-Enin
- Department of Pharmaceutics, National organization of drug Control and Research (NODCAR), Giza, Egypt,CONTACT Hadel A. Abo El-Enin Department of Pharmaceutics, National organization of drug Control and Research (NODCAR), Giza, Egypt
| | - Ghada Abdelkader
- College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| | - Mohamed Abdel-Hakeem
- Department of pharmaceutical biotechnology, College of biotechnology, Misr University For Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
14
|
Ali MM, Shoukri RA, Yousry C. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Deliv Transl Res 2023; 13:1153-1168. [PMID: 36585559 PMCID: PMC9981512 DOI: 10.1007/s13346-022-01285-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/31/2022]
Abstract
Rasagiline mesylate (RM) is a monoamine oxidase inhibitor that is commonly used to alleviate the symptoms of Parkinson's disease. However, it suffers from low oral bioavailability due to its extensive hepatic metabolism in addition to its hydrophilic nature which limits its ability to pass through the blood-brain barrier (BBB) and reach the central nervous system where it exerts its pharmacological effect. Thus, this study aims to form RM-loaded spanlastic vesicles for intranasal (IN) administration to overcome its hepatic metabolism and permit its direct delivery to the brain. RM-loaded spanlastics were prepared using thin film hydration (TFH) and modified spraying technique (MST). A 23 factorial design was constructed to study and optimize the effects of the independent formulation variables, namely, Span type, Span: Brij 35 ratio, and sonication time on the vesicles᾽ characteristics in each preparation technique. The optimized system prepared using MST (MST 2) has shown higher desirability factor with smaller PS and higher EE%; thus, it was selected for further in vivo evaluation where it revealed that the extent of RM distribution from the intranasally administered spanlastics to the brain was comparable to that of the IV drug solution with significantly high brain-targeting efficiency (458.47%). These results suggest that the IN administration of the optimized RM-loaded spanlastics could be a promising, non-invasive alternative for the efficient delivery of RM to brain tissues to exert its pharmacological activities without being dissipated to other body organs which subsequently may result in higher pharmacological efficiency and better safety profile.
Collapse
Affiliation(s)
- Mohamed Mahmoud Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Cairo, Egypt
| | - Raguia Aly Shoukri
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Cairo, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Cairo, Egypt.
| |
Collapse
|
15
|
Eita AS, M. A. Makky A, Anter A, Khalil IA. Repurposing of atorvastatin emulsomes as a topical antifungal agent. Drug Deliv 2022; 29:3414-3431. [DOI: 10.1080/10717544.2022.2149898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Alaa S. Eita
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Amna M. A. Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asem Anter
- Microbiology Unit, Drug Factory, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| |
Collapse
|
16
|
Ahmed S, Amin MM, El-Korany SM, Sayed S. Corneal targeted fenticonazole nitrate-loaded novasomes for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. Drug Deliv 2022; 29:2428-2441. [PMID: 35880688 PMCID: PMC9341384 DOI: 10.1080/10717544.2022.2103600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of this manuscript was to develop and optimize Fenticonazole Nitrate (FTN)-loaded novasomes aiming to enhance drug corneal penetration and to improve its antifungal activity. Ethanol injection was used to formulate FTN-loaded novasomes adopting a central composite design. The researched factors were: stearic acid concentration (g%) (A), span 80: drug ratio (B) and cholesterol amount (mg) (C), and their effects on percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI), zeta potential (ZP), and in vitro drug release after 8 hours (Q8h) were studied. Numerical optimization by Design-Expert® software was employed to select the optimum formula in respect to highest EE%, ZP (as absolute value), and Q8h >80% and lowest PS and PDI. Additional evaluation of the optimum formula was accomplished by short term stability study, effect of gamma sterilization, determination of Minimal Inhibitory Concentration and ex vivo corneal permeation study. The in vivo evaluation of the optimum formula was done to ensure its safety via in vivo ocular irritancy and in vivo corneal tolerance studies. Also, the efficacy was confirmed through in vivo corneal uptake study and susceptibility test. The optimum formula with the highest desirability value (0.738) showed EE% (94.31%), PS (197.05 nm), ZP (-66.95 mV) and Q8h (85.33%). It revealed to be safe, with augmented corneal permeation (527.98 µg/cm2) that leads to higher antifungal activity. The above results confirmed the validity of novasomes to improve the corneal permeation and antifungal activity of Fenticonazole Nitrate.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sarah Mohamed El-Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Zaki RM, Ibrahim MA, Alshora DH, El Ela AESA. Formulation and Evaluation of Transdermal Gel Containing Tacrolimus-Loaded Spanlastics: In Vitro, Ex Vivo and In Vivo Studies. Polymers (Basel) 2022; 14:polym14081528. [PMID: 35458277 PMCID: PMC9024636 DOI: 10.3390/polym14081528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Our goal was to prepare Span 60-based elastic nanovesicles (spanlastics (SPLs)) of tacrolimus (TCR) using the adapted ethanol injection method, characterize them, and evaluate their ability to improve the transdermal permeation of the active substance. The impact of two different concentrations of penetration enhancers, namely, propylene glycol and oleic acid, on the entrapment efficiency, vesicle size, and zeta potential was assessed. Moreover, in vitro release through a semipermeable membrane and ex vivo penetration through hairless rat skin were performed. Morphological examination and pharmacokinetics were performed for one selected formulation (F3OA1). TCR-loaded SPLs were effectively formulated with two different concentrations of permeation enhancers, and the effect of these enhancers on their physicochemical properties differed in accordance with the concentration and kind of enhancer used. The results of in vitro release displayed a considerable (p < 0.05) enhancement compared to the suspension of the pure drug, and there was a correlation between the in vitro and ex vivo results. The selected TCR-loaded nanovesicles incorporated into a gel base showed appreciable advantages over the oral drug suspension and the TCR-loaded gel. Additionally, the pharmacokinetic parameters were significantly (p < 0.05) improved based on our findings. Moreover, the AUC0−7 ng·h/mL form F3 OA1 was 3.36-fold higher than that after the administration of the TCR oral suspension.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.I.); (A.E.S.A.E.E.)
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Doaa H. Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.I.); (A.E.S.A.E.E.)
- Correspondence:
| | - Amal El Sayeh Abou El Ela
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.I.); (A.E.S.A.E.E.)
- Department of Pharmaceutics, College of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
18
|
Ansari MD, khan I, Solanki P, Pandit J, Jahan RN, Aqil M, Sultana Y. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Novel nano spanlastic carrier system for buccal delivery of lacidipine. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
21
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
22
|
Spanlastics as an efficient delivery system for the enhancement of thymoquinone anticancer efficacy: Fabrication and cytotoxic studies against breast cancer cell lines. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Habib BA, Abd El-Samiae AS, El-Houssieny BM, Tag R. Formulation, characterization, optimization, and in-vivo performance of febuxostat self-nano-emulsifying system loaded sublingual films. Drug Deliv 2021; 28:1321-1333. [PMID: 34176376 PMCID: PMC8260042 DOI: 10.1080/10717544.2021.1927247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Febuxostat (FXS) is a potent antigout drug with poor water solubility and relative high first-pass effect leading to moderate oral bioavailability (<49%). This study aimed to increase FXS solubility and bioavailability by optimizing sublingual fast-dissolving films (SFs) containing a selected FXS self-nano-emulsifying system (s-SNES) previously prepared by our team. The s-SNES was loaded into SFs by solvent casting technique. A full factorial design (32) was applied to study the effects of polymer and plasticizer types on mechanical characteristics and the dissolution profile of FXS from the SFs. Numerical optimization was performed to select the SF having highest desirability according to predetermined characteristics. The optimized SF (O-SF) contained 1 g of s-SNES, polyvinylpyrrolidone K30 (6%w/v), polyethylene glycol 300 (20%w/w of polymer wt.), and Avicel PH101 (0.5%w/v). O-SF showed good permeation of FXS through sheep sublingual tissue. Storage of O-SF for three months showed no significant change in the FXS dissolution profile. In-vivo performance of O-SF in rabbits was compared to that of oral marketed tablets (Staturic® 80 mg). A cross-over design was applied and pharmacokinetic parameters were calculated after ensuring absence of sequence effect. Statistical analysis revealed better performance for O-SF with significantly higher Cmax, AUC0–24, AUC0–∞, apparent t1/2 together with lower tmax, and apparent kel than marketed tablets. Relative bioavailability of O-SF compared to the marketed tablet was found to be 240.6%. This confirms the achievement of the study aims of improving dissolution rate and bioavailability of FXS using a patient-wise convenient formula.
Collapse
Affiliation(s)
- Basant A Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amina S Abd El-Samiae
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Boushra M El-Houssieny
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Randa Tag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Salem HF, Kharshoum RM, Awad SM, Ahmed Mostafa M, Abou-Taleb HA. Tailoring of Retinyl Palmitate-Based Ethosomal Hydrogel as a Novel Nanoplatform for Acne Vulgaris Management: Fabrication, Optimization, and Clinical Evaluation Employing a Split-Face Comparative Study. Int J Nanomedicine 2021; 16:4251-4276. [PMID: 34211271 PMCID: PMC8239256 DOI: 10.2147/ijn.s301597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
AIM Retinyl palmitate (RP), the most stable vitamin A derivative, is used to treat photoaging and other skin disorders. The need to minimize the adverse effects of topical drug administration has led to an enhanced interest in loading RP on ethosomes for topical drug delivery. The aim of the current study was to prepare and compare the performance of RP decorated ethosomal hydrogel with tretinoin cream in the treatment of acne vulgaris as an approach to improve drug efficacy and decrease its side effects. METHODS RP-loaded ethosomes were prepared using the injection sonication technique. A Box-Behnken design using Design Expert® software was used for the optimization of formulation variables. Particle size, zeta potential (ZP), entrapment efficiency percent (EE%), % drug release, and permeation over 24 h of different formulations were determined. The optimal formulation was incorporated into a hydrogel. Finally, the efficacy and tolerability of the optimized RP ethosomal hydrogel were clinically evaluated for acne treatment using a split-face comparative clinical study. RESULTS The optimized ethosomal RP showed particle size of 195.8±5.45 nm, ZP of -62.1±2.85 mV, EE% of 92.63±4.33%, drug release % of 96.63±6.81%, and drug permeation % of 85.98 ±4.79%. Both the optimized RP ethosomal hydrogel and tretinoin effectively reduced all types of acne lesions (inflammatory, non-inflammatory, and total lesions). However, RP resulted in significantly lower non-inflammatory and total acne lesion count than the marketed tretinoin formulation. Besides, RP-loaded ethosomes showed significantly improved tolerability compared to marketed tretinoin with no or minimal skin irritation symptoms. CONCLUSION RP ethosomal hydrogel is considerably effective in controlling acne vulgaris with excellent skin tolerability. Therefore, it represents an interesting alternative to conventional marketed tretinoin formulation for topical acne treatment.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Sara M Awad
- Department of Dermatology, Venereology and Andrology, Assiut University Hospital, Assiut, Egypt
| | - Mai Ahmed Mostafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| |
Collapse
|
25
|
Nemr AA, El-Mahrouk GM, Badie HA. Development and evaluation of surfactant-based elastic vesicular system for transdermal delivery of Cilostazole: ex-vivo permeation and histopathological evaluation studies. J Liposome Res 2021; 32:159-171. [PMID: 33970754 DOI: 10.1080/08982104.2021.1918151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cilostazole (CLZ) is an anti-platelet drug that suffers from extensive first pass-metabolism and gastrointestinal side effects. This study aimed to prepare spanlastics for enhancing the transdermal delivery of CLZ to avoid its oral problems. CLZ-loaded spanlastic dispersions were prepared by ethanol injection technique according to a 413121 full factorial design to investigate the effect of formulation variables on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and the percent of drug released after 2 and 24 h (Q2 and 24 h). Spanlastic-loaded gel of the optimized formula was prepared using hydroxypropyl methylcellulose (HPMC K4M). The optimum formula (F13), constitutes of Span60 and CremophoreRH40 at a weight ratio of 80:20 and distilled water for hydration, had the highest desirability value of (0.841) and exhibited the highest EE% of (69.29 ± 0.29%), PS of (452.7 ± 5.94 nm), ZP of (-32.6 ± 0.4 mV), Q 2 h of (33.28 ± 1.45%) and Q24h of (82.37 ± 1.37. F13 was subjected to ex-vivo permeation study and showed a cumulative amount permeated after 48 h(Q48h) equal to (750.71 ± 3 μg/cm2) in comparison to the drug suspension which showed Q48h equal to (190.20 ± 6.3 μg/cm2). Also, F13 showed an increase in the drug flux of (17.84 μg/cm2.h) and enhancement ratio(ER) of (5.71 ± 0.1) in comparison to the drug suspension that showed drug flux of (3.12 ± 0.0 μg/cm2.h). Spanlastics-loaded gel was subjected to an in-vitro release study compared to(F13) spanlastic dispersion and showed a more sustained release effect. In addition, histopathological studies showed no sign of skin alteration confirming safe delivery through the skin. CLZ showed promising results with high potential to be delivered transdermally.
Collapse
Affiliation(s)
- Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Galal Mohamed El-Mahrouk
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hany Abdo Badie
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Co-polymer mixed micelles enhanced transdermal transport of Lornoxicam: in vitro characterization, and in vivo assessment of anti-inflammatory effect and antinociceptive activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Abstract
The aim of this work is to survey the potential of cubogel as an ocular dosage form to boost the corneal permeability of Dorzolamide Hydrochloride DZ; an antiglaucomal drug. DZ-loaded cubosomal dispersions were prepared according to Box-Behnken design, where the effect of independent variables; Monoolein MO concentration (2.5, 5 and 7.5%w/w), Pluronic® F127 concentration (0.25, 0.5 and 0.75%w/w) and magnetic stirrer speed of (400, 800 and 1200 rpm) was studied on PS (nm), Zp (−mV) and Q 2 h (%) respectively. The prepared formulae were characterized via drug content DC (%), particle size PS (nm), polydispersity index PDI, zeta potential Zp (−mV), in-vitro drug release (Q 2 h%) and finally TEM. The optimized formulation composed of: 6.13% w/w of MO, 0.75% w/w of F127 and prepared at 1200 rpm stirring speed was chosen based on the criteria of minimum PS (nm), maximum Zp (−mV) and minimum Q 2 h (%). Results revealed that the optimum formula showed PS of 153.3 ± 8.4 n, Zp of 32 ± 3 −mV and 37.78 ± 1.3% released after 2 h. Carbopol 934 (1% w/v) as gelling agent was used to prepare the optimum cubogel, which was further evaluated by DSC, ex-vivo permeation and stability studies at 4 °C for three months. Moreover, in vivo studies of the optimized cubogel include; draize test, histological examination, confocal laser scanning microscopy (CLSM) and intraocular pressure (IOP) measurement. Results revealed that the optimized cubogel was considerably safe, stable and competent to corneal delivery as assured by draize and histological examination. CLSM showed a deeper penetration of more than 2.5-fold. A higher bioavailability (288.24 mg. h/ml) was attained from cubogel compared to the market product Trusopt® eye drops (115.40 mg. h/ml) following IOP measurement. Therefore, DZ-loaded cubogel could be considered as promising delivery system to boost the transcorneal permeation hence corneal bioavailability of DZ as antiglaucomal drug.
Collapse
Affiliation(s)
- Sinar Sayed
- Pharmaceutics and Industrial Pharmacy, Cairo University Faculty of Pharmacy, Cairo, Egypt
| | | | - Maha Mohamed Amin
- Pharmaceutics and Industrial Pharmacy, Cairo University Faculty of Pharmacy, Cairo, Egypt
| | | |
Collapse
|
28
|
Ahmed S, Kassem MA, Sayed S. Bilosomes as Promising Nanovesicular Carriers for Improved Transdermal Delivery: Construction, in vitro Optimization, ex vivo Permeation and in vivo Evaluation. Int J Nanomedicine 2020; 15:9783-9798. [PMID: 33324052 PMCID: PMC7733410 DOI: 10.2147/ijn.s278688] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose The goal of this research was to enhance the transdermal delivery of lornoxicam (LX), using nanovesicular carriers composed of the bile salt sodium deoxycholate (SDC), soybean phosphatidyl choline (SPC) and a permeation enhancer limonene. Methods Thin-film hydration was the technique employed for the fabrication using a Box–Behnken design with three central points. The investigated factors were SPC molar concentration, SDC amount in mg and limonene percentage (%). The studied responses were percent entrapment efficiency (%EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and in vitro drug release (after 2, 10 h). In order to obtain the optimum formula, numerical optimization by Design-Expert® software was used. Electing the optimized bilosomal formula was based on boosting %EE, ZP (as absolute value) and in vitro drug release, taking in consideration diminishing PS and PDI. Further assessment of the selected formula was achieved by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), stability testing, ex vivo skin permeation and deposition. The in vivo pharmacodynamics activities of the optimized formula were examined on male rats and mice and compared to that of the oral market product. Results The optimized bilosomal formula demonstrated to be nonirritant, with noticeably enhanced anti-inflammatory and antinociceptive activities. Superior in vivo permeation was proved by confocal laser scanning microscopy (CLSM). Conclusion The outcomes demonstrated that bilosomes could improve transdermal delivery of lornoxicam. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/G8p7XhM43Og
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Aly Kassem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv Transl Res 2020; 11:1009-1036. [PMID: 32607938 DOI: 10.1007/s13346-020-00814-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this investigation was to encapsulate carvedilol, a model beta-blocker antihypertensive into nano-spanlastics, followed by incorporation into 1% CMC wafer to afford a mucoadhesive buccal drug delivery system, targeting to sidestep the first-pass metabolism, improving the drug absorption and pharmacological effect, achieving non-invasive buccal delivery for treating hypertension. Carvedilol-loaded nano-spanlastics were rendered by ethanol injection technique, using 23 factorial design. The effect of formulation variables was investigated on nano-spanlastic characteristics. The optimal nano-spanlastic formulation (S2; containing 20% Brij 97) exhibited particle size (239.8 ± 5 nm), entrapment efficiency (98. 16 ± 1.44%), deformability index (8.74 ± 0.42 g), and the flux after 24 h (Jmax) (22.5 ± 0.25 (μg/cm2/h) with enhancement ratio 2.87 as well as excellent stability after storage. Permeation study verified the preeminence of the S2 formula. A confocal laser scanning microscope showed deep penetration of S2 through sheep buccal mucosa formula compared to rhodamine B solution. S2-based wafer showed acceptable characters (pH, swelling, drug content, residence time, and release rate). In vivo studies (pharmacodynamic study and biochemical evaluation) showed considerable improvement in blood pressure, the profile of the lipid, oxidant stress biomarkers, and cardiac markers. Histopathological studies revealed the superiority of S2 wafer in the protection of heart tissues over Carvid®. The results achieved indicate that nano-spanlastic-based wafer offers a promising improving trans-buccal carvedilol delivery system. Graphical abstract.
Collapse
|
30
|
Salama A, Badran M, Elmowafy M, Soliman GM. Spironolactone-Loaded LeciPlexes as Potential Topical Delivery Systems for Female Acne: In Vitro Appraisal and Ex Vivo Skin Permeability Studies. Pharmaceutics 2019; 12:E25. [PMID: 31881783 PMCID: PMC7022583 DOI: 10.3390/pharmaceutics12010025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
Spironolactone (SP), an aldosterone antagonist with anti-androgen properties, has shown promising results in the treatment of female acne. However, its systemic side effects limit its clinical benefits. This study aimed to prepare and evaluate LeciPlexes for SP topical delivery. LeciPlexes were prepared by a one-step procedure and characterized using various techniques. Optimum LeciPlex preparation was incorporated into 1% methylcellulose gel and SP permeability was tested ex vivo in Sprague-Dawley rat skin. The maximum drug encapsulation efficiency obtained was 93.6 ± 6.9% and was dependent on the drug/phospholipid and surfactant/phospholipid ratios. A zeta potential of +49.3 ± 3.5 to +57.7 ± 3.3 mV and a size of 108 ± 25.3 to 668.5 ± 120.3 nm were observed for the LeciPlexes. FT-IR and DSC studies confirmed the incorporation of SP into the LeciPlexes through hydrophobic and hydrogen bonding interactions. SP release from the LeciPlex formulations was significantly slower than from the drug suspension. Cumulative SP permeated through rat skin from LeciPlex gel was about 2-fold higher than SP control gel. Cumulative SP deposited in the stratum corneum and other skin layers from the LeciPlex gel was about 1.8- and 2.6-fold higher than SP control gel, respectively. This new SP LeciPlex formulation is a promising carrier for the treatment of female acne.
Collapse
Affiliation(s)
- Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt; (M.B.); (M.E.)
| | - Mohamed Badran
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt; (M.B.); (M.E.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt; (M.B.); (M.E.)
| | - Ghareb M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|