1
|
Raihan MT, Tanaka Y, Ishikawa T. Characterization of chloroplastic thioredoxin dependent glutathione peroxidase like protein in Euglena gracilis: biochemical and functional perspectives. Biosci Biotechnol Biochem 2024; 88:1034-1046. [PMID: 38925644 DOI: 10.1093/bbb/zbae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Euglena gracilis, a fascinating organism in the scientific realm, exhibits characteristics of both animals and plants. It maintains redox homeostasis through a variety of enzymatic and non-enzymatic antioxidant molecules. In contrast to mammals, Euglena possesses nonselenocysteine glutathione peroxidase homologues that regulate its intracellular pools of reactive oxygen species. In the present study, a full-length cDNA of chloroplastic EgGPXL-1 was isolated and subjected to biochemical and functional characterization. Recombinant EgGPXL-1 scavenged H2O2 and t-BOOH, utilizing thioredoxin as an electron donor rather than glutathione. Despite its monomeric nature, EgGPXL-1 exhibits allosteric behavior with H2O2 as the electron acceptor and follows typical Michaelis-Menten kinetics with t-BOOH. Suppression of EgGPXL-1 gene expression under normal and high-light conditions did not induce critical situations in E. gracilis, suggesting the involvement of compensatory mechanisms in restoring normal conditions.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yasuhiro Tanaka
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
2
|
Raihan MT, Ishikawa T. Biochemical and Functional Profiling of Thioredoxin-Dependent Cytosolic GPX-like Proteins in Euglena gracilis. Biomolecules 2024; 14:765. [PMID: 39062479 PMCID: PMC11275057 DOI: 10.3390/biom14070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Unlike plants and animals, the phytoflagellate Euglena gracilis lacks catalase and contains a non-selenocysteine glutathione peroxidase-like protein (EgGPXL), two peroxiredoxins (EgPrx1 and EgPrx4), and one ascorbate peroxidase in the cytosol to maintain reactive oxygen species (ROS) homeostasis. In the present study, the full-length cDNA of three cytosolic EgGPXLs was obtained and further characterized biochemically and functionally. These EgGPXLs used thioredoxin instead of glutathione as an electron donor to reduce the levels of H2O2 and t-BOOH. The specific peroxidase activities of these enzymes for H2O2 and t-BOOH were 1.3 to 4.9 and 0.79 to 3.5 µmol/min/mg protein, respectively. Cytosolic EgGPXLs and EgPrx1/EgPrx4 were silenced simultaneously to investigate the synergistic effects of these genes on the physiological function of E. gracilis. The suppression of cytosolic EgGPXL genes was unable to induce any critical phenomena in Euglena under normal (100 μmol photons m-2 s-1) and high-light conditions (350 μmol photons m-2 s-1) at both autotrophic and heterotrophic states. Unexpectedly, the suppression of EgGPXL genes was able to rescue the EgPrx1/EgPrx4-silenced cell line from a critical situation. This study explored the potential resilience of Euglena to ROS, even with restriction of the cytosolic antioxidant system, indicating the involvement of some compensatory mechanisms.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan;
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan;
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
3
|
Tanaka Y, Goto K, Jun L, Nishino K, Ogawa T, Maruta T, Ishikawa T. Identification of glucanases and phosphorylases involved in hypoxic paramylon degradation in Euglena gracilis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Tamaki S, Sato R, Koshitsuka Y, Asahina M, Kodama Y, Ishikawa T, Shinomura T. Suppression of the Lycopene Cyclase Gene Causes Downregulation of Ascorbate Peroxidase Activity and Decreased Glutathione Pool Size, Leading to H 2O 2 Accumulation in Euglena gracilis. FRONTIERS IN PLANT SCIENCE 2021; 12:786208. [PMID: 34925426 PMCID: PMC8678482 DOI: 10.3389/fpls.2021.786208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 06/02/2023]
Abstract
Carotenoids are photosynthetic pigments and hydrophobic antioxidants that are necessary for the survival of photosynthetic organisms, including the microalga Euglena gracilis. In the present study, we identified an uncharacterized gene encoding the E. gracilis β-carotene synthetic enzyme lycopene cyclase (EgLCY) and discovered a relationship between EgLCY-mediated carotenoid synthesis and the reactive oxygen species (ROS) scavenging system ascorbate-glutathione cycle. The EgLCY cDNA sequence was obtained via homology searching E. gracilis transcriptome data. An enzyme assay using Escherichia coli demonstrated that EgLCY converts lycopene to β-carotene. E. gracilis treated with EgLCY double-stranded RNA (dsRNA) produced colorless cells with hypertrophic appearance, inhibited growth, and marked decrease in carotenoid and chlorophyll content, suggesting that EgLCY is essential for the synthesis of β-carotene and downstream carotenoids, which are abundant and physiologically functional. In EgLCY dsRNA-treated cells, the ascorbate-glutathione cycle, composed of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR), was unusually modulated; APX and GR activities significantly decreased, whereas DHAR and MDAR activities increased. Ascorbate content was significantly increased and glutathione content significantly decreased in EgLCY dsRNA-treated cells and was correlated with their recycling enzyme activities. Fluorescent imaging demonstrated that EgLCY dsRNA-treated cells accumulated higher levels of H2O2 compared to wild-type cells. Taken together, this study revealed that EgLCY-mediated synthesis of β-carotene and downstream carotenoid species upregulates APX activity and increases glutathione pool size for H2O2 scavenging. Our study suggests a possible relationship between carotenoid synthesis and the ascorbate-glutathione cycle for ROS scavenging in E. gracilis.
Collapse
Affiliation(s)
- Shun Tamaki
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Ryosuke Sato
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Yuki Koshitsuka
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Masashi Asahina
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tomoko Shinomura
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
5
|
Horáková E, Faktorová D, Kraeva N, Kaur B, Van Den Abbeele J, Yurchenko V, Lukeš J. Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei. FEBS J 2019; 287:964-977. [PMID: 31593329 DOI: 10.1111/febs.15083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Catalase is a widespread heme-containing enzyme, which converts hydrogen peroxide (H2 O2 ) to water and molecular oxygen, thereby protecting cells from the toxic effects of H2 O2 . Trypanosoma brucei is an aerobic protist, which conspicuously lacks this potent enzyme, present in virtually all organisms exposed to oxidative stress. To uncover the reasons for its absence in T. brucei, we overexpressed different catalases in procyclic and bloodstream stages of the parasite. The heterologous enzymes originated from the related insect-confined trypanosomatid Crithidia fasciculata and the human. While the trypanosomatid enzyme (cCAT) operates at low temperatures, its human homolog (hCAT) is adapted to the warm-blooded environment. Despite the presence of peroxisomal targeting signal in hCAT, both human and C. fasciculata catalases localized to the cytosol of T. brucei. Even though cCAT was efficiently expressed in both life cycle stages, the enzyme was active in the procyclic stage, increasing cell's resistance to the H2 O2 stress, yet its activity was suppressed in the cultured bloodstream stage. Surprisingly, following the expression of hCAT, the ability to establish the T. brucei infection in the tsetse fly midgut was compromised. In the mouse model, hCAT attenuated parasitemia and, consequently, increased the host's survival. Hence, we suggest that the activity of catalase in T. brucei is beneficial in vitro, yet it becomes detrimental for parasite's proliferation in both invertebrate and vertebrate hosts, leading to an inability to carry this, otherwise omnipresent, enzyme.
Collapse
Affiliation(s)
- Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Natalia Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czech Republic
| | - Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czech Republic.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
6
|
Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. The Mitochondrion of Euglena gracilis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:19-37. [PMID: 28429315 DOI: 10.1007/978-3-319-54910-1_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H2-producing anaerobic mitochondria of protists.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cessa Rauch
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Biochemistry and Physiology of Reactive Oxygen Species in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:47-64. [PMID: 28429317 DOI: 10.1007/978-3-319-54910-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are by-products of various metabolic processes in aerobic organisms including Euglena. Chloroplasts and mitochondria are the main sites of ROS generation by photosynthesis and respiration, respectively, through the active electron transport chain. An efficient antioxidant network is required to maintain intracellular ROS pools at optimal conditions for redox homeostasis. A comparison with the networks of plants and animals revealed that Euglena has acquired some aspects of ROS metabolic process. Euglena lacks catalase and a typical selenocysteine containing animal-type glutathione peroxidase for hydrogen peroxide scavenging, but contains enzymes involved in ascorbate-glutathione cycle solely in the cytosol. Ascorbate peroxidase in Euglena, which plays a central role in the ascorbate-glutathione cycle, forms a unique intra-molecular dimer structure that is related to the recognition of peroxides. We recently identified peroxiredoxin and NADPH-dependent thioredoxin reductase isoforms in cellular compartments including chloroplasts and mitochondria, indicating the physiological significance of the thioredoxin system in metabolism of ROS. Besides glutathione, Euglena contains the unusual thiol compound trypanothione, an unusual form of glutathione involving two molecules of glutathione joined by a spermidine linker, which has been identified in pathogenic protists such as Trypanosomatida and Schizopyrenida. Furthermore, in contrast to plants, photosynthesis by Euglena is not susceptible to hydrogen peroxide because of resistance of the Calvin cycle enzymes fructose-1,6-bisphosphatse, NADP+-glyceraldehyde-3-phosphatase, sedoheptulose-1,7-bisphosphatase, and phosphoribulokinase to hydrogen peroxide. Consequently, these characteristics of Euglena appear to exemplify a strategy for survival and adaptation to various environmental conditions during the evolutionary process of euglenoids.
Collapse
|
8
|
Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta D, Sawa Y, Ishikawa T. Wax Ester Synthase/Diacylglycerol Acyltransferase Isoenzymes Play a Pivotal Role in Wax Ester Biosynthesis in Euglena gracilis. Sci Rep 2017; 7:13504. [PMID: 29044218 PMCID: PMC5647427 DOI: 10.1038/s41598-017-14077-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/06/2017] [Indexed: 11/08/2022] Open
Abstract
Wax ester fermentation is a unique energy gaining pathway for a unicellular phytoflagellated protozoan, Euglena gracilis, to survive under anaerobiosis. Wax esters produced in E. gracilis are composed of saturated fatty acids and alcohols, which are the major constituents of myristic acid and myristyl alcohol. Thus, wax esters can be promising alternative biofuels. Here, we report the identification and characterization of wax ester synthase/diacylglycerol acyltrasferase (WSD) isoenzymes as the terminal enzymes of wax ester production in E. gracilis. Among six possible Euglena WSD orthologs predicted by BLASTX search, gene expression analysis and in vivo evaluation for enzyme activity with yeast expressing individual recombinant WSDs indicated that two of them (EgWSD2 and EgWSD5) predominantly function as wax ester synthase. Furthermore, experiments with gene silencing demonstrated a pivotal role of both EgWSD2 and EgWSD5 in wax ester synthesis, as evidenced by remarkably reduced wax ester contents in EgWSD2/5-double knockdown E. gracilis cells treated with anaerobic conditions. Interestingly, the decreased ability to produce wax ester did not affect adaptation of E. gracilis to anaerobiosis. Lipid profile analysis suggested allocation of metabolites to other compounds including triacylglycerol instead of wax esters.
Collapse
Affiliation(s)
- Takuya Tomiyama
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Kaeko Kurihara
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-chou, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-chou, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
9
|
Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K, Ishikawa T. Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett 2017; 591:1360-1370. [PMID: 28423179 DOI: 10.1002/1873-3468.12659] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/27/2017] [Accepted: 04/13/2017] [Indexed: 11/07/2022]
Abstract
The phytoflagellate Euglena gracilis produces a large amount of paramylon (PM), a conglomerate of liner β-1,3-glucan chains, as a storage polysaccharide. PM is synthesized from uridine diphosphate-glucose, but its mechanism of formation is largely unknown. Two enzymes, glucan synthase-like (EgGSL) 1 and EgGSL2 were previously identified as candidates for PM synthesis in a Euglena transcriptome analysis. Here, we performed a reverse genetic analysis on these enzymes. Knockdown of EgGSL2, but not EgGSL1, significantly inhibits PM accumulation in Euglena cells. Additionally, β-1,3-glucan synthesis is detected in a PM-associated membrane fraction extracted from Euglena cells. Our findings indicate that EgGSL2 is the predominant enzyme for PM biosynthesis.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Yuta Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
10
|
Ozasa K, Won J, Song S, Tamaki S, Ishikawa T, Maeda M. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis. PLoS One 2017; 12:e0172813. [PMID: 28234984 PMCID: PMC5325543 DOI: 10.1371/journal.pone.0172813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022] Open
Abstract
The adaptation to a strong light is one of the essential characteristics of green algae, yet lacking relatively the information about the photophobic responses of Eukaryotic microalgae. We investigated the photophobic step-up responses of Euglena gracilis over a time course of several hours with alternated repetition of blue-light pulse illumination and spatially patterned blue-light illumination. Four distinctive photophobic motions in response to strong blue light were identified in a trace image analysis, namely on-site rotation, running and tumbling, continuous circular swimming, and unaffected straightforward swimming. The cells cultured in autotrophic conditions under weak light showed mainly the on-site rotation response at the beginning of blue-light illumination, but they acquired more blue-light tolerant responses of running and tumbling, circular swimming, or straightforward swimming. The efficiency of escaping from a blue-light illuminated area improved markedly with the development of these photophobic motions. Time constant of 3.0 h was deduced for the evolution of photophobic responses of E. gracilis. The nutrient-rich metabolic status of the cells resulting from photosynthesis during the experiments, i.e., the accumulation of photosynthesized nutrient products in balance between formation and consumption, was the main factor responsible for the development of photophobic responses. The reduction-oxidation status in and around E. gracilis cells did not affect their photophobic responses significantly, unlike the case of photophobic responses and phototaxis of Chlamydomonas reinhardtii cells. This study shows that the evolution of photophobic motion type of E. gracilis is dominated mainly by the nutrient metabolic status of the cells. The fact suggests that the nutrient-rich cells have a higher threshold for switching the flagellar motion from straightforward swimming to rotation under a strong light.
Collapse
Affiliation(s)
| | - June Won
- Department of Mechanical Convergence Engineering, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Simon Song
- Department of Mechanical Convergence Engineering, Hanyang University, Seongdong-gu, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Shun Tamaki
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takahiro Ishikawa
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Mizuo Maeda
- Bioengineering Lab, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
11
|
Tamaki S, Maruta T, Sawa Y, Shigeoka S, Ishikawa T. Biochemical and physiological analyses of NADPH-dependent thioredoxin reductase isozymes in Euglena gracilis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:29-36. [PMID: 26025518 DOI: 10.1016/j.plantsci.2015.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/14/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
At least four peroxiredoxins that are coupled with the thioredoxin (Trx) system have been shown to play a key role in redox metabolism in the unicellular phytoflagellate Euglena gracilis. In order to clarify Trx-mediated redox regulation in this alga, we herein identified three NADPH-dependent thioredoxin reductases (NTRs) using a homologous search and characterized their enzymatic properties and physiological roles. Each Euglena NTR protein belonged to the small, large, and NTRC types, and were named EgNTR1, EgNTR2, and EgNTRC, respectively. EgNTR2 was phylogenetically different from the known NTRs in eukaryotic algae. EgNTR1 was predicted to be localized in mitochondria, EgNTR2 in the cytosol, and EgNTRC in plastids. The catalytic efficiency of EgNTR2 for NADPH was 30-46-fold higher than those of EgNTR1 and truncated form of EgNTRC, suggested that large type EgNTR2 reduced Trx more efficiently. The silencing of EgNTR2 gene expression resulted in significant growth inhibition and cell hypertrophy in Euglena cells. These results suggest that EgNTRs function in each cellular compartment and are physiologically important, particularly in the cytosol.
Collapse
Affiliation(s)
- Shun Tamaki
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|