1
|
Barbarossa A, Rosato A, Tardugno R, Carrieri A, Corbo F, Limongelli F, Fumarola L, Fracchiolla G, Carocci A. Antibiofilm Effects of Plant Extracts Against Staphylococcus aureus. Microorganisms 2025; 13:454. [PMID: 40005818 PMCID: PMC11858306 DOI: 10.3390/microorganisms13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The global rise in antimicrobial resistance poses a significant threat to public health, necessitating alternative therapeutic options. One critical challenge is treating infections caused by biofilm-forming bacteria, which are notably resistant to conventional antibiotics. Staphylococcus aureus, including methicillin-resistant strains (MRSA), is a major pathogen in biofilm-related infections, complicating treatment and leading to chronic cases. Plant extracts have emerged as promising alternatives, offering new avenues for effective treatment. This study evaluated the antibacterial and antibiofilm activities of commercial extracts of Vitis vinifera L. (grape), Camellia sinensis L. (green tea), Olea europaea L. (olive), Quercus robur (oak), and Coffea arabica L. (coffee) against S. aureus strains from ATCC collections and clinical isolates. Preliminary screening using the disk diffusion test assessed the zones of inhibition, which was followed by minimum inhibitory concentration (MIC) determination via broth microdilution, with Quercus robur L. showing the best overall MIC results. The results obtained demonstrate the strong antibacterial activity of the extracts, with the MIC values ranging from 0.2 to 12.4 mg/mL. Using the XTT reduction assay, the extracts inhibited biofilm growth by 80-85% after 24 h of incubation, with Coffea arabica L. achieving interesting antibiofilm activities. These findings suggest that the investigated plant extracts hold potential as antimicrobial agents and biofilm inhibitors, offering an alternative approach to tackling antimicrobial resistance. Further research is needed to explore their potential applications in developing novel adjuvant therapies.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Antonio Rosato
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Roberta Tardugno
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Francesco Limongelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Luciana Fumarola
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Alessia Carocci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| |
Collapse
|
2
|
Gugleva V, Mihaylova R, Kamenova K, Zheleva-Dimitrova D, Stefanova D, Tzankova V, Zaharieva MM, Najdenski H, Forys A, Trzebicka B, Petrov PD, Momekova D. Development and Characterization of Dual-Loaded Niosomal Ion-Sensitive In Situ Gel for Ocular Delivery. Gels 2024; 10:816. [PMID: 39727573 DOI: 10.3390/gels10120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The study investigates the development and characterization of dual-loaded niosomes incorporated into ion-sensitive in situ gel as a potential drug delivery platform for ophthalmic application. Cannabidiol (CBD) and epigallocatechin-3-gallate (EGCG) simultaneously loaded niosomes were prepared via the thin film hydration (TFH) method followed by pulsatile sonication and were subjected to comprehensive physicochemical evaluation. The optimal composition was included in a gellan gum-based in situ gel, and the antimicrobial activity, in vitro toxicity in a suitable corneal epithelial model (HaCaT cell line), and antioxidant potential of the hybrid system were further assessed. Dual-loaded niosomes based on Span 60, Tween 60, and cholesterol (3.5:3.5:3 mol/mol) were characterized by appropriate size (250 nm), high entrapment efficiency values for both compounds (85% for CBD and 50% for EGCG) and sustained release profiles. The developed hybrid in situ gel exhibited suitable rheological characteristics to enhance the residence time on the ocular surface. The conducted microbiological studies reveal superior inhibition of methicillin-resistant Staphylococcus aureus (MRSA) adhesion by means of the niosomal in situ gel compared to the blank gel and untreated control. Regarding the antioxidant potential, the dual loading of CBD and EGCG in niosomes enhances their protective properties, and the inclusion of niosomes in gel form preserves these effects. The obtained outcomes indicate the developed niosomal in situ gel as a promising drug delivery platform in ophthalmology.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 Tsar Osvoboditel Str., 9000 Varna, Bulgaria
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev St., 1113 Sofia, Bulgaria
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Hristo Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Petar D Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev St., 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| |
Collapse
|
3
|
Cho JA, Jeon S, Kwon Y, Roh YJ, Shin S, Lee CH, Kim SJ. Identification and comparison of protein composition of biofilms in response to EGCG from Enterococcus faecalis and Staphylococcus lugdunensis, which showed opposite patterns in biofilm-forming abilities. Biofilm 2024; 8:100232. [PMID: 39555139 PMCID: PMC11564074 DOI: 10.1016/j.bioflm.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Bacterial biofilm is resistant to conventional antibiotic treatments, leading to complications associated with many infection-related human diseases. Epigallocatechin Gallate (EGCG), a phenolic catechin enriched in green tea, is recognized for its anti-bacterial and anti-biofilm activities. In this study, we examined the protein components of the biofilms formed in the absence or presence of EGCG using Enterococcus faecalis and Staphylococcus lugdunensis, which had shown opposing patterns in biofilm formation. A clustering heatmap revealed that the two microorganisms expressed the different protein sets in response to EGCG. Proteins that were noticeably upregulated included those associated with stress responsiveness and gluconeogenesis in E. faecalis, and gene modification in S. lugdunensis. Conversely, downregulated proteins were related to tRNA-modifying enzyme activity in E. faecalis, and anabolic metabolism in S. lugdunensis. Among the proteins identified only in EGCG-responsive biofilms, enzymes involved in de novo purine biosynthesis were enriched in E. faecalis, while proteins likely to cause DNA instability and pathogenicity changes were abundantly present in S. lugdunensis. The classification based on gene ontology (GO) terms by microorganism exhibited that metabolic process or catabolic activity was at the top rank in E. faecalis with more than 33 proteins, and in S. lugdunensis, localization or transport was highly ranked with 4 proteins. These results support the hypothesis that EGCG might cause different cellular programs in each microorganism. Finally, comparison of the proteomes between two groups that form biofilms to similar extents discovered that 2 proteins were commonly found in the weak biofilm-forming groups (E. faecalis and EGCG-responding S. lugudunensis), whereas 9 proteins were common among the strong biofilm-forming groups (S. lugdunensis and EGCG-responding E. faecalis). It was suggested that these proteins could serve as potential indicators to detect the presence and predict the extent of biofilm formation by multiple microorganisms. Taken all together, proteomics data and analyses performed in this study provided useful and new information on the proteins embedded in the biofilms formed at the specific conditions, which can aid in diagnosis and the development of tailored treatment strategies.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sangsoo Jeon
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Youngmin Kwon
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| | - Yoo Jin Roh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sukjin Shin
- Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| |
Collapse
|
4
|
Higuchi M, Abiko Y, Washio J, Takahashi N. Antimicrobial effects of epigallocatechin-3-gallate, a catechin abundant in green tea, on periodontal disease-associated bacteria. Arch Oral Biol 2024; 167:106063. [PMID: 39128436 DOI: 10.1016/j.archoralbio.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Epigallocatechin-3-gallate (EGCG), a catechin abundant in green tea, exhibits antibacterial activity. In this study, the antimicrobial effects of EGCG on periodontal disease-associated bacteria (Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Fusobacterium nucleatum, and Fusobacterium periodontium) were evaluated and compared with its effects on Streptococcus mutans, a caries-associated bacterium. RESULTS Treatment with 2 mg/ml EGCG for 4 h killed all periodontal disease-associated bacteria, whereas it only reduced the viable count of S. mutans by about 40 %. Regarding growth, the periodontal disease-associated bacteria were more susceptible to EGCG than S. mutans, based on the growth inhibition ring test. As for metabolism, the 50 % inhibitory concentration (IC50) of EGCG for bacterial metabolic activity was lower for periodontal disease-associated bacteria (0.32-0.65 mg/ml) than for S. mutans (1.14 mg/ml). Furthermore, these IC50 values were negatively correlated with the growth inhibition ring (r = -0.73 to -0.86). EGCG induced bacterial aggregation at the following concentrations: P. gingivalis (>0.125 mg/ml), F. periodonticum (>0.5 mg/ml), F. nucleatum (>1 mg/ml), and P. nigrescens (>2 mg/ml). S. mutans aggregated at an EGCG concentration of > 1 mg/ml. CONCLUSION EGCG may help to prevent periodontal disease by killing bacteria, inhibiting bacterial growth by suppressing bacterial metabolic activity, and removing bacteria through aggregation.
Collapse
Affiliation(s)
- Mayu Higuchi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Japan
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Japan.
| |
Collapse
|
5
|
Okutani A, Morikawa S, Maeda K. Green Tea Catechin Epigallocatechin Gallate Inhibits Vegetative Cell Outgrowth and Expression of Beta-Lactamase Genes in Penicillin-Resistant Bacillus anthracis Strain PCr. Pathogens 2024; 13:699. [PMID: 39204299 PMCID: PMC11356866 DOI: 10.3390/pathogens13080699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The green tea catechin epigallocatechin gallate (EGCg) has antimicrobial effects on many bacteria. In this study, we investigated the inhibitory effects of EGCg on Bacillus anthracis spores and vegetative cells. The B. anthracis spores were insensitive to EGCg, but the growth of vegetative cells derived from germinated spores was inhibited by EGCg. Moreover, EGCg decreased the minimum inhibitory concentration of penicillin and meropenem for penicillin-resistant B. anthracis. In the penicillin-resistant B. anthracis strain, the transcription levels of the beta-lactamase genes (bla1 and bla2) decreased significantly following the treatment with 50 µg/mL EGCg. These results suggest that the appropriate application of EGCg may effectively control the penicillin-resistant B. anthracis growth and beta-lactamase production.
Collapse
Affiliation(s)
- Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (S.M.); (K.M.)
| | | | | |
Collapse
|
6
|
Riaz Z, Baddi S, Gao F, Qiu X, Feng C. Supramolecular Polymer Co-Assembled Multifunctional Chiral Hybrid Hydrogels with Adhesive, Self-Healing and Antibacterial Properties. Gels 2024; 10:489. [PMID: 39195018 DOI: 10.3390/gels10080489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Amino acid-derived self-assembled nanofibers comprising supramolecular chiral hydrogels with unique physiochemical characteristics are highly demanded biomaterials for various biological applications. However, their narrow functionality often limits practical use, necessitating the development of biomaterials with multiple features within a single system. Herein, chiral co-assembled hybrid hydrogel systems termed LPH-EGCG and DPH-EGCG were constructed by co-assembling L/DPFEG gelators with epigallocatechin gallate (EGCG) followed by cross-linking with polyvinyl alcohol (PVA) and hyaluronic acid (HA). The developed hybrid hydrogels exhibit superior mechanical strength, self-healing capabilities, and adhesive properties, owing to synergistic non-covalent interactions. Integrating hydrophilic polymers enhances the system's capacity to demonstrate favorable swelling characteristics. Furthermore, the introduction of EGCG facilitated the hybrid gels to display notable antibacterial properties against both Gram-positive and Gram-negative bacterial strains, alongside showcasing strong antioxidant capabilities. In vitro investigation demonstrated enhanced cell adhesion and migration with the LPH-EGCG system in comparison to DPH-EGCG, thus emphasizing the promising prospects of these hybrid hydrogels in advanced tissue engineering applications.
Collapse
Affiliation(s)
- Zakia Riaz
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| | - Sravan Baddi
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| | - Fengli Gao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| | - Xiaxin Qiu
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| |
Collapse
|
7
|
Feng C, Li J, Yang W, Chen Z. Study on the inactivation effect and mechanism of EGCG disinfectant on Bacillus subtilis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124364. [PMID: 38878811 DOI: 10.1016/j.envpol.2024.124364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The widespread use of chlorine-based disinfectants in drinking water treatment has led to the proliferation of chlorine-resistant bacteria and the risk of disinfection byproducts (DBPs), posing a serious threat to public health. This study aims to explore the effectiveness and potential applications of epigallocatechin gallate (EGCG) against chlorine-resistant Bacillus and its spores in water, providing new insights for the control of chlorine-resistant bacteria and improving the biological stability of distribution systems. The inactivation effects of EGCG on Bacillus subtilis (B. subtilis) and its spores were investigated using transmission electron microscopy, ATP measurement, and transcriptome sequencing analysis to determine changes in surface structure, energy metabolism, and gene expression levels, thereby elucidating the inactivation mechanism. The results demonstrate the potential application of EGCG in continuously inhibiting chlorine-resistant B. subtilis in water, effectively improving the biological stability of the distribution system. However, EGCG is not suitable for treating raw water with high spore content and is more suitable as a supplementary disinfectant for processes with strong spore removal capabilities, such as ozone, ultraviolet, or ultrafiltration. EGCG exhibits a disruptive effect on the morphological structure and energy metabolism of B. subtilis and suppresses the synthesis of substances, energy metabolism, and normal operation of the antioxidant system by inhibiting the expression of multiple genes, thereby achieving the inactivation of B. subtilis.
Collapse
Affiliation(s)
- Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Jing Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Weiqi Yang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zexin Chen
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
8
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
9
|
Han J, Choi S, Hong J, Gang D, Lee S, Shin K, Ko J, Kim JU, Hwang NS, An YH, Gu M, Kim SH. Superoxide Dismutase-Mimetic Polyphenol-Based Carbon Dots for Multimodal Bioimaging and Treatment of Atopic Dermatitis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38686704 DOI: 10.1021/acsami.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Polyphenols have been investigated for their potential to mitigate inflammation in the context of atopic dermatitis (AD). In this study, epigallocatechin-3-gallate (EGCG)-based carbon dots (EGCG@CDs) were developed to enhance transdermal penetration, reduce inflammation, recapitulate superoxide dismutase (SOD) activity, and provide antimicrobial effects for AD treatment. The water-soluble EGCG@CDs in a few nanometers size exhibit a negative zeta potential, making them suitable for effective transdermal penetration. The fluorescence properties, including an upconversion effect, make EGCG@CDs suitable imaging probes for both in vitro and in vivo applications. By mimicking the SOD enzyme, EGCG@CDs scavenge reactive oxygen species (ROS) and actively produce hydrogen peroxide through a highly catalytic capability toward the oxygen reduction reaction, resulting in the inhibition of bacterial growth. The enhanced antioxidant properties, high charge mobility, and various functional groups of EGCG@CDs prove effective in reducing intracellular ROS in an in vitro AD model. In the mouse AD model, EGCG@CDs incorporated into a hydrogel actively penetrated the epidermal layer, leading to ROS scavenging, reduced mast cell activation, and histological recovery of skin barriers. This research represents the versatile potential of EGCG@CDs in addressing AD and advancing tissue engineering.
Collapse
Affiliation(s)
- Jeongmin Han
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Sumi Choi
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Jinwoo Hong
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Dayeong Gang
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Seunghoon Lee
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
- Department of Chemistry, Dong-A University, Busan 49315, Republic of Korea
| | - Kwangsoo Shin
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of Bioengineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of Bioengineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsu Gu
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
10
|
Sharma A, Anurag, Kaur J, Kesharwani A, Parihar VK. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med Chem 2024; 20:576-596. [PMID: 38584534 DOI: 10.2174/0115734064277579240328142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, 226002, UP, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| |
Collapse
|
11
|
Lazar V, Oprea E, Ditu LM. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness-Current State and Envisioned Solutions for the Near Future. Pathogens 2023; 12:pathogens12050746. [PMID: 37242416 DOI: 10.3390/pathogens12050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The current antibiotic crisis and the global phenomena of bacterial resistance, inherited and non-inherited, and tolerance-associated with biofilm formation-are prompting dire predictions of a post-antibiotic era in the near future. These predictions refer to increases in morbidity and mortality rates as a consequence of infections with multidrug-resistant or pandrug-resistant microbial strains. In this context, we aimed to highlight the current status of the antibiotic resistance phenomenon and the significance of bacterial virulence properties/fitness for human health and to review the main strategies alternative or complementary to antibiotic therapy, some of them being already clinically applied or in clinical trials, others only foreseen and in the research phase.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| |
Collapse
|
12
|
Treesuwan K, Jirapakkul W, Tongchitpakdee S, Chonhenchob V, Mahakarnchanakul W, Tongkhao K. Antimicrobial Mechanism of Salt/Acid Solution on Microorganisms Isolated from Trimmed Young Coconut. Microorganisms 2023; 11:microorganisms11040873. [PMID: 37110296 PMCID: PMC10140939 DOI: 10.3390/microorganisms11040873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
This study investigated the inhibitory activity of organic solutions containing 5, 10, 15, 20 and 30% (w/v) sodium chloride and citric acid solution and 15:10, 15:15, 15:20 and 15:30% (w/v) sodium chloride (NaCl) combined with citric acid (CA) solution (salt/acid solution) for 10 min against microorganisms isolated from trimmed young coconut: Bacillus cereus, B. subtilis, Staphylococcus aureus, S. epidermidis, Enterobacter aerogenes, Serratia marcescens, Candida tropicalis, Lodderromyces elongisporus, Aspergillus aculeatus and Penicillium citrinum. Commercial antimicrobial agents such as potassium metabisulfite and sodium hypochlorite (NaOCl) were used as the controls. Results showed that 30% (w/v) NaCl solution displayed antimicrobial properties against all microorganisms, with s reduction range of 0.00–1.49 log CFU/mL. Treatment of 30% (w/v) CA solution inhibited all microorganisms in the reduction range of 1.50–8.43 log CFU/mL, while 15:20% (w/v) salt/acid solution was the minimum concentration that showed a similar antimicrobial effect with NaOCl and strong antimicrobial effect against Gram-negative bacteria. The mode of action of this solution against selected strains including B. cereus, E. aerogenes and C. tropicalis was also determined by scanning electron microscopy and transmission electron microscopy. B. cereus and E. aerogenes revealed degradation and detachment of the outer layer of the cell wall and cytoplasm membrane, while cytoplasmic inclusion in treated C. tropicalis cells changed to larger vacuoles and rough cell walls. The results suggested that a 15:20% (w/v) salt/acid solution could be used as an alternative antimicrobial agent to eliminate microorganisms on fresh produce.
Collapse
|
13
|
Pavlik P, Jost P, Rehulka P, Vozandychova V, Link M, Spidlova P. Epigallocatechin gallate inhibits Francisella tularensis growth and suppresses the function of DNA-binding protein HU. Microb Pathog 2023; 176:105999. [PMID: 36702369 DOI: 10.1016/j.micpath.2023.105999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Francisella tularensis is a highly infectious intracellular bacterium causing tularemia disease and is regarded as a potential biological weapon. The development of a vaccine, effective treatment, or prophylactic substances targeted against tularemia is in the forefront of interest and could help to prevent or mitigate possible malevolent acts by bioterrorism utilizing F. tularensis. The viability of F. tularensis, and thus of a tularemia disease outbreak, might potentially be suppressed by simple commonly available natural substances. Epigallocatechin gallate (EGCG) is contained in green tea and its antimicrobial effect has been described. Here, we show that EGCG can suppress F. tularensis growth and is able to reduce the bacterium's ability to replicate inside mouse bone marrow-derived macrophages (BMMs) without side effects on BMMs' own viability. We suggest one (but not the only) mechanism of EGCG action. We demonstrate that EGCG can block the main functions of HU protein, the important regulator of F. tularensis virulence, leading to overall attenuation of F. tularensis viability. EGCG can delay death of mice infected by F. tularensis and can be used as a prophylactic agent against tularemia disease. Postponing death by up to 2 days can provide sufficient opportunity to administer another treatment agent.
Collapse
Affiliation(s)
- Pavla Pavlik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| |
Collapse
|
14
|
Buatong J, Mittal A, Mittraparp-arthorn P, Palamae S, Saetang J, Benjakul S. Bactericidal Action of Shrimp Shell Chitooligosaccharide Conjugated with Epigallocatechin Gallate (COS-EGCG) against Listeria monocytogenes. Foods 2023; 12:634. [PMID: 36766163 PMCID: PMC9914238 DOI: 10.3390/foods12030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The antibacterial effect of chitooligosaccharide conjugated with five different polyphenols, including catechin (COS-CAT), epigallocatechin gallate (COS-EGCG), gallic acid (COS-GAL), caffeic acid (COS-CAF), and ferulic acid (COS-FER), against Listeria monocytogenes was investigated. Among all the conjugates tested, COS-EGCG showed the highest inhibition toward Listeria monocytogenes, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 1024 and 1024 µg/mL, respectively. The COS-EGCG conjugate also had a bactericidal effect on the environmental and clinical strains of L. monocytogenes. The low concentration of COS-EGCG conjugate augmented the formation of biofilm and the growth of L. monocytogenes. Nevertheless, the inhibition of biofilm formation and bacterial growth was achieved when treated with the COS-EGCG conjugate at 2 × MIC for 48 h. In addition, the COS-EGCG conjugate at 2 × MIC had the potential to inactivate the pre-biofilm, and it reduced the production of the extracellular polysaccharides of L. monocytogenes. The COS-EGCG conjugate at the MIC/4 effectively impeded the motility (the swimming and swarming) of L. monocytogenes, with an 85.7-94.3% inhibition, while 100% inhibition was achieved with the MIC. Based on scanning electron microscopic (SEM) images, cell wall damage with numerous pores on the cell surface was observed. Such cell distortion resulted in protein leakage. As a result, COS-EGCG could penetrate into the cell and bind with the DNA backbone. Therefore, the COS-EGCG conjugate could be further developed as a natural antimicrobial agent for inhibiting or controlling L. monocytogenes.
Collapse
Affiliation(s)
- Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Pimonsri Mittraparp-arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| |
Collapse
|
15
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Cho JA, Roh YJ, Son HR, Choi H, Lee JW, Kim SJ, Lee CH. Assessment of the biofilm-forming ability on solid surfaces of periprosthetic infection-associated pathogens. Sci Rep 2022; 12:18669. [PMID: 36333517 PMCID: PMC9636376 DOI: 10.1038/s41598-022-22929-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Biofilm formation is one of the leading causes of complications after surgery in clinical settings. In this study, we profiled the biofilm-forming ability of various periprosthetic infection-associated pathogens on medically relevant surfaces, polystyrene (PS) and titanium (Ti). We also explored how a specific environmental stressor, epigallocatechin gallate (EGCG), affected biofilm formation. First, Congo red tests revealed that all microorganisms formed biofilms within 72 h. Then, the amounts of biofilm formation on PS at 24, 48 and 72 h and also on a Ti plate for 72 h were determined. Some microbes preferred one surface over the other, whereas other microbes formed consistent levels of biofilm regardless of the surface material. Staphylococcus lugdunenensis was the most potent, while Enterococcus faecalis and Staphylococcus aureus were the weakest. Bacterial adhesion to hydrocarbon (BATH) tests indicated that the biofilm-forming abilities were not directly correlated with cell surface hydrophobicity (CSH). Finally, an external signal, EGCG, was applied to challenge the biofilm formation of each microorganism. EGCG regulated each microorganism's ability differently, though the change was consistent across surfaces for most pathogens. This study can help a better understanding of a broad spectrum of periprosthetic infection-associated pathogens by relative comparison of their biofilm-forming abilities.
Collapse
Affiliation(s)
- Jung-Ah Cho
- grid.417736.00000 0004 0438 6721School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Yoo Jin Roh
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hye Rim Son
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea ,grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hojung Choi
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Department of Chemistry, Hanyang University, Seoul, 04762 Republic of Korea
| | - Jeong-Won Lee
- grid.254187.d0000 0000 9475 8840Department of Mechanical Engineering, Chosun University, Gwangju, 61452 Republic of Korea
| | - Sung Jae Kim
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Chang-Hun Lee
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.417736.00000 0004 0438 6721New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| |
Collapse
|
17
|
Cellulose Nanofibers/Pectin/Pomegranate Extract Nanocomposite as Antibacterial and Antioxidant Films and Coating for Paper. Polymers (Basel) 2022; 14:polym14214605. [PMID: 36365599 PMCID: PMC9659057 DOI: 10.3390/polym14214605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bio-based polymer composites find increasing research and industrial interest in different areas of our life. In this study, cellulose nanofibers (CNFs) isolated from sugar beet pulp and nanoemulsion prepared from sugar beet pectin and pomegranate extract (PGE) were used for making films and used as coating with antioxidant and antimicrobial activities for paper. For Pectin/PGE nanoemulsion preparation, different ratios of PGE were mixed with pectin using ultrasonic treatment; the antibacterial properties were evaluated to choose the formula with the adequate antibacterial activity. The antioxidant activity of the nanoemulsion with the highest antimicrobial activity was also evaluated. The nanoemulsion with the optimum antibacterial activity was mixed with different ratios of CNFs. Mechanical, greaseproof, antioxidant activity, and antibacterial properties of the CNFs/Pectin/PGE films were evaluated. Finally, the CNFs/Pectin/PGE formulation with the highest antibacterial activity was tested as a coating material for paper. Mechanical, greaseproof, and air porosity properties, as well as water vapor permeability and migration of the coated layer from paper sheets in different media were evaluated. The results showed promising applicability of the CNFs/Pectin/PGE as films and coating material with antibacterial and antioxidant activities, as well as good stability for packaging aqueous, fatty, and acidic food products.
Collapse
|
18
|
Shishkova EA, Kraev IV, Rogachevsky VV. Evaluation of Oolong Tea Extract Staining of Brain Tissue with Special Reference to Smooth Endoplasmic Reticulum. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
19
|
Gao T, Ye F, Tan Y, Peng M, Yuan F, Liu Z, Zhou D, Yang K, Liu W, Guo R, Zhang T, Zheng L, Zhou R, Tian Y. Metabolomics and proteomics analyses revealed mechanistic insights on the antimicrobial activity of epigallocatechin gallate against Streptococcus suis. Front Cell Infect Microbiol 2022; 12:973282. [PMID: 36204637 PMCID: PMC9531131 DOI: 10.3389/fcimb.2022.973282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis (S. suis) is a highly virulent zoonotic pathogen and causes severe economic losses to the swine industry worldwide. Public health security is also threatened by the rapidly growing antimicrobial resistance in S. suis. Therefore, there is an urgent need to develop new and safe antibacterial alternatives against S. suis. The green tea polyphenol epigallocatechin gallate (EGCG) with a number of potential health benefits is known for its antibacterial effect; however, the mechanism of its bactericidal action remains unclear. In the present, EGCG at minimal inhibitory concentration (MIC) showed significant inhibitory effects on S. suis growth, hemolytic activity, and biofilm formation, and caused damage to S. suis cells in vitro. EGCG also reduced S. suis pathogenicity in Galleria mellonella larvae in vivo. Metabolomics and proteomics analyses were performed to investigate the underlying mechanism of antibacterial activity of EGCG at MIC. Many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and cell membrane, and virulence were down-regulated after the treatment of S. suis with EGCG. EGCG not only significantly reduced the hemolytic activity of S. suis but also down-regulated the expression of suilysin (Sly). The top three shared KEGG pathways between metabolomics and proteomics analysis were ABC transporters, glycolysis/gluconeogenesis, and aminoacyl-tRNA biosynthesis. Taken together, these data suggest that EGCG could be a potential phytochemical compound for treating S. suis infection.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yiqing Tan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Mingzheng Peng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lin Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Pig disease prevention and control center, Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Rui Zhou,
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Rui Zhou,
| |
Collapse
|
20
|
Mechanism of (−)-epigallocatechin gallate (EGCG) dimerization by low-temperature plasma. Sci Rep 2022; 12:15396. [PMID: 36100688 PMCID: PMC9470551 DOI: 10.1038/s41598-022-19806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/12/2022] Open
Abstract
The efficient dimerization of (−)-Epigallocatechin gallate (EGCG), which is the major bioactive constituent isolated from the leaves of Camellia sinensis, was initially reported without changes in its stereochemistry using low-temperature plasma. The contribution of plasma during the dimerization of EGCG in a methanolic solution was quantified using a major factor, with the major factor demonstrated based on the contents of newly generated products, in this case the sum of oolonghomobisflavans A and B depending on the plasma treatment method. Samples were treated in three methods: plasma direct treatment, an indirect treatment using only reactive species, and an indirect treatment using effects other than those by reactive species. Ozone was identified as a major factor during the plasma treatment, and the operating ranges of the ozone concentration for regulated dimerization were evaluated. The mechanism by which EGCG synthesizes dimers A and B during the treatment process using low-temperature plasma was investigated using the derived major factor and prior literature. The ozone generated by the plasma reacted with methanol to form formaldehyde, and dimers A and B were synthesized by oligomers through a methylene-bridge by the formaldehyde. A plausible pathway of regulated dimerization was deduced based on these results, and the mechanism of EGCG dimerization by plasma is described using this pathway.
Collapse
|
21
|
Stojkova P, Spidlova P. Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction. Front Cell Infect Microbiol 2022; 12:999737. [PMID: 36081771 PMCID: PMC9445418 DOI: 10.3389/fcimb.2022.999737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
HU protein is a member of nucleoid-associated proteins (NAPs) and is an important regulator of bacterial virulence, pathogenesis and survival. NAPs are mainly DNA structuring proteins that influence several molecular processes by binding the DNA. HU´s indispensable role in DNA-related processes in bacteria was described. HU protein is a necessary bacterial transcription factor and is considered to be a virulence determinant as well. Less is known about its direct role in host-pathogen interactions. The latest studies suggest that HU protein may be secreted outside bacteria and be a part of the extracellular matrix. Moreover, HU protein can be internalized in a host cell after bacterial infection. Its role in the host cell is not well described and further studies are extremely needed. Existing results suggest the involvement of HU protein in host cell immune response modulation in bacterial favor, which can help pathogens resist host defense mechanisms. A better understanding of the HU protein’s role in the host cell will help to effective treatment development.
Collapse
|
22
|
Meesaragandla B, Hayet S, Fine T, Janke U, Chai L, Delcea M. Inhibitory Effect of Epigallocatechin Gallate-Silver Nanoparticles and Their Lysozyme Bioconjugates on Biofilm Formation and Cytotoxicity. ACS APPLIED BIO MATERIALS 2022; 5:4213-4221. [PMID: 35977081 PMCID: PMC9490750 DOI: 10.1021/acsabm.2c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biofilms are multicellular communities of microbial cells that grow on natural and synthetic surfaces. They have become the major cause for hospital-acquired infections because once they form, they are very difficult to eradicate. Nanotechnology offers means to fight biofilm-associated infections. Here, we report on the synthesis of silver nanoparticles (AgNPs) with the antibacterial ligand epigallocatechin gallate (EGCG) and the formation of a lysozyme protein corona on AgNPs, as shown by UV-vis, dynamic light scattering, and circular dichroism analyses. We further tested the activity of EGCG-AgNPs and their lysozyme bioconjugates on the viability of Bacillus subtilis cells and biofilm formation. Our results showed that, although EGCG-AgNPs presented no antibacterial activity on planktonic B. subtilis cells, they inhibited B. subtilis biofilm formation at concentrations larger than 40 nM, and EGCG-AgNP-lysozyme bioconjugates inhibited biofilms at concentrations above 80 nM. Cytotoxicity assays performed with human cells showed a reverse trend, where EGCG-AgNPs barely affected human cell viability while EGCG-AgNP-lysozyme bioconjugates severely hampered viability. Our results therefore demonstrate that EGCG-AgNPs may be used as noncytotoxic antibiofilm agents.
Collapse
Affiliation(s)
- Brahmaiah Meesaragandla
- Institute
of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
- ZIK
HIKE—Zentrum für Innovationskompetenz “Humorale
Immunreaktionen bei kardiovaskulären Erkrankungen”, Fleischmannstraße 42, 17489 Greifswald, Germany
| | - Shahar Hayet
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Tamir Fine
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Una Janke
- Institute
of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
- ZIK
HIKE—Zentrum für Innovationskompetenz “Humorale
Immunreaktionen bei kardiovaskulären Erkrankungen”, Fleischmannstraße 42, 17489 Greifswald, Germany
| | - Liraz Chai
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Mihaela Delcea
- Institute
of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
- ZIK
HIKE—Zentrum für Innovationskompetenz “Humorale
Immunreaktionen bei kardiovaskulären Erkrankungen”, Fleischmannstraße 42, 17489 Greifswald, Germany
- DZHK
(Deutsches Zentrum für Herz-Kreislauf-Forschung), Partner Site
Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
23
|
Kar AK, Singh A, Singh D, Shraogi N, Verma R, Saji J, Jagdale P, Ghosh D, Patnaik S. Biopolymeric composite hydrogel loaded with silver NPs and epigallocatechin gallate (EGCG) effectively manages ROS for rapid wound healing in type II diabetic wounds. Int J Biol Macromol 2022; 218:506-518. [PMID: 35817241 DOI: 10.1016/j.ijbiomac.2022.06.196] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Abstract
Delayed wound healing in patients having type-II diabetes mellitus (T2DM) often results in a high rate of amputation. We report an innovative Guar Gum-based macroporous hydrogel (HG) infused with an antibacterial agent (Ag NPs), and antioxidant, epigallocatechin gallate (EGCG) to address rapid wound healing and interestingly could inhibit the associated pathophysical bone infection in a high-fat-diet-induced T2DM C57BL/6 mice model. The HG-Ag-EGCG elicits scar-free wound healing in subcutaneous wounds and histopathological evidence confirmed HG-Ag-EGCG hydrogel patch elicits better wound healing through enhanced cell proliferation, mature connecting tissue fiber formation, minimum void spaces formation, and better re-epithelialization when compared with a market available hydrogel patch material (Luofucon®). Supportive of the in vivo outcomes, in vitro experiments delineated better-wound closure due to improved management of ROS by the HG-Ag-EGCG. Additionally, a favorable non-toxicity outcome assessed through both in vitro and in vivo conditions confirmed its potential applicability in clinical wound care management.
Collapse
Affiliation(s)
- Aditya K Kar
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrita Singh
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Singh
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nikita Shraogi
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Verma
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Joel Saji
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pankaj Jagdale
- Regulatory Toxicology Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Debabrata Ghosh
- Immunotoxicology laboratory, Food, Drug, and Chemical Toxicology Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Satyakam Patnaik
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Ali IAA, Neelakantan P. Antibiofilm activity of phytochemicals against Enterococcus faecalis: A literature review. Phytother Res 2022; 36:2824-2838. [PMID: 35522168 DOI: 10.1002/ptr.7488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Enterococcus faecalis is a leading causative pathogen of recalcitrant infections affecting heart valves, urinary tract, surgical wounds and dental root canals. Its robust biofilm formation, production of virulence factors and antibiotic resistance contribute significantly to its pathogenicity in persistent infections. The decreased effectiveness of most of antibiotics in preventing and/or eradicating E. faecalis biofilms mandates the discovery of alternative novel antibiofilm agents. Phytochemicals are potential sources of antibiofilm agents due to their antivirulence activity, diversity of chemical structure and multiple mechanisms of action. In this review, we describe the phenotypic and genetic attributes that contribute to antimicrobial tolerance of E. faecalis biofilms. We illuminate the benefits of implementing the phytochemicals to tackle microbial pathogens. Finally, we report the antibiofilm activity of phytochemicals against E. faecalis, and explain their mechanisms of action. These compounds belong to different chemical classes such as terpenes, phenylpropenes, flavonoids, curcuminoids and alkaloids. They demonstrate the ability to inhibit the formation of and/or eradicate E. faecalis biofilms. However, the exact mechanisms of action of most of these compounds are not fully understood. Therefore, the future studies should elucidate the underlying mechanisms in detail.
Collapse
Affiliation(s)
- Islam A A Ali
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | | |
Collapse
|
25
|
Ahmad S, Ahmad HW, Bhatt P. Microbial adaptation and impact into the pesticide's degradation. Arch Microbiol 2022; 204:288. [PMID: 35482163 DOI: 10.1007/s00203-022-02899-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The imprudent use of agrochemicals to control agriculture and household pests is unsafe for the environment. Hence, to protect the environment and diversity of living organisms, the degradation of pesticides has received widespread attention. There are different physical, chemical, and biological methods used to remediate pesticides in contaminated sites. Compared to other methods, biological approaches and their associated techniques are more effective, less expensive and eco-friendly. Microbes secrete several enzymes that can attach pesticides, break down organic compounds, and then convert toxic substances into carbon and water. Thus, there is a lack of knowledge regarding the functional genes and genomic potential of microbial species for the removal of emerging pollutants. Here we address the knowledge gaps by highlighting systematic biology and their role in adaptation of microbial species from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Moreover, by co-metabolism, the microbial species fulfill their nutritional requirements and perform more efficiently than single microbial-free cells. But in an open environment, free cells of microbes are not much prominent in the degradation process due to environmental conditions, incompatibilities with mechanical equipment and difficulties associated with evenly distributing inoculum through the agroecosystem. This review highlights emerging techniques involving the removal of pesticides in a field-scale environment like immobilization, biobed, biocomposites, biochar, biofilms, and bioreactors. In these techniques, different microbial cells, enzymes, natural fibers, and strains are used for the effective biodegradation of xenobiotic pesticides.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Pankaj Bhatt
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
26
|
Nassarawa SS, Nayik GA, Gupta SD, Areche FO, Jagdale YD, Ansari MJ, Hemeg HA, Al-Farga A, Alotaibi SS. Chemical aspects of polyphenol-protein interactions and their antibacterial activity. Crit Rev Food Sci Nutr 2022; 63:9482-9505. [PMID: 35475717 DOI: 10.1080/10408398.2022.2067830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The hunt for novel antibiotics has become a global public health imperative due to the rise in multidrug-resistant microorganisms, untreatable infection cases, overuse, and inefficacy of modern antibiotics. Polyphenols are getting much attention in research due to their multiple biological effects; their use as antimicrobial agents is attributed to their activity and that microbes have a hard time developing resistance to these natural compounds. Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. This review focused on polyphenol-protein interactions and the creation of this complex as a possible antibacterial agent. Also, different phenolic interactions on bacterial proteins, efflux pump, cell membrane, bacterial adhesion, toxins, and other bacterial proteins will be explored; these interactions can work in a synergic combination with antibiotics or act alone to assure bacterial inhibition. Additionally, our review will focus on polyphenol-protein interaction as a possible strategy to eradicate bacteria because polyphenols have shown a robust enzyme-inhibitory characteristic and a high tendency to complex with proteins, a response that neutralizes any bactericidal potential.
Collapse
Affiliation(s)
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, Srinagar, Jammu and Kashmir, India
| | - S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Yash D Jagdale
- MIT School of Food Technology, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University), Bareilly, Uttar Pradesh, India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Monawra, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
27
|
Miyamoto T. Studies on ensuring the microbiological safety of food. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takahisa Miyamoto
- Laboratory of Food Hygienic Chemistry, Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
28
|
Efficacy of freeze-chilled storage combined with tea polyphenol for controlling melanosis, quality deterioration, and spoilage bacterial growth of Pacific white shrimp (Litopenaeus vannamei). Food Chem 2022; 370:130924. [PMID: 34555773 DOI: 10.1016/j.foodchem.2021.130924] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate melanosis, quality attributes, and bacterial growth of freeze-chilled Pacific white shrimp (Litopenaeus vannamei) during 6 days of chilled storage, as well as the preservative effects of tea polyphenol on shrimp. The results showed that freeze-chilled storage retarded the growth of bacteria and the accumulation of putrescine in shrimp. The growth of spoilage bacteria Photobacterium and Shewanella were inhibited. However, freeze-chilled storage aggravated melanosis and lipid oxidation. The total volatile basic nitrogen (TVB-N) slightly accumulated in the thawed shrimp. The incorporation of tea polyphenol preserved freeze-chilled shrimp. Melanosis and lipid oxidation of shrimp were alleviated. The accumulation of biogenic amines, TVB-N, hypoxanthine riboside, and hypoxanthine were retarded. Meanwhile, the growth of spoilage bacteria Pseudoalteromonas, Photobacterium, Psychrobacter, and Carnobacterium were inhibited. Based on sensory analysis, the shelf-life of chilled, freeze-chilled, and freeze-chilled tea polyphenol shrimp were 4 days, 3 days, and 6 days, respectively.
Collapse
|
29
|
Gao B, Honda Y, Yamada Y, Tanaka T, Takeda Y, Nambu T, Baba S. Utility of Thermal Cross-Linking in Stabilizing Hydrogels with Beta-Tricalcium Phosphate and/or Epigallocatechin Gallate for Use in Bone Regeneration Therapy. Polymers (Basel) 2021; 14:40. [PMID: 35012062 PMCID: PMC8747742 DOI: 10.3390/polym14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
β-tricalcium phosphate (β-TCP) granules are commonly used materials in dentistry or orthopedic surgery. However, further improvements are required to raise the operability and bone-forming ability of β-TCP granules in a clinical setting. Recently, we developed epigallocatechin gallate (EGCG)-modified gelatin sponges as a novel biomaterial for bone regeneration. However, there is no study on using the above material for preparing hydrogel incorporating β-TCP granules. Here, we demonstrate that vacuum heating treatment induced thermal cross-linking in gelatin sponges modified with EGCG and incorporating β-TCP granules (vhEc-GS-β) so that the hydrogels prepared from vhEc-GS-β showed high stability, β-TCP granule retention, operability, and cytocompatibility. Additionally, microcomputed tomography morphometry revealed that the hydrogels from vhEc-GS-β had significantly higher bone-forming ability than β-TCP alone. Tartrate-resistant acid phosphatase staining demonstrated that the number of osteoclasts increased at three weeks in defects treated with the hydrogels from vhEc-GS-β compared with that around β-TCP alone. The overall results indicate that thermal cross-linking treatment for the preparation of sponges (precursor of hydrogels) can be a promising process to enhance the bone-forming ability. This insight should provide a basis for the development of novel materials with good operativity and bone-forming ability for bone regenerative medicine.
Collapse
Affiliation(s)
- Beiyuan Gao
- Department of Implantology, Osaka Dental University, Osaka 573-1121, Japan; (B.G.); (Y.Y.); (Y.T.); (S.B.)
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan
| | - Yoichi Yamada
- Department of Implantology, Osaka Dental University, Osaka 573-1121, Japan; (B.G.); (Y.Y.); (Y.T.); (S.B.)
| | - Tomonari Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro Takeda
- Department of Implantology, Osaka Dental University, Osaka 573-1121, Japan; (B.G.); (Y.Y.); (Y.T.); (S.B.)
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Shunsuke Baba
- Department of Implantology, Osaka Dental University, Osaka 573-1121, Japan; (B.G.); (Y.Y.); (Y.T.); (S.B.)
| |
Collapse
|
30
|
Tallei TE, Fatimawali, Niode NJ, Idroes R, Zidan BMRM, Mitra S, Celik I, Nainu F, Ağagündüz D, Emran TB, Capasso R. A Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7170736. [PMID: 34899956 PMCID: PMC8664505 DOI: 10.1155/2021/7170736] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Green tea is produced from Camellia sinensis (L.) buds and leaves that have not gone through the oxidation and withering processes used to produce black and oolong teas. It was originated in China, but its cultivation and production have expanded to other Eastern Asian countries. Several polyphenolic compounds, including flavandiols, flavonols, flavonoids, and phenolic acids, are found in green tea and may constitute greater than 30% of the dry weight. Flavonols, especially catechins, represent the majority of green tea polyphenols. Green tea polyphenolic compounds have been reported to confer several health benefits. This review describes the potential use of green tea polyphenols in the management of coronavirus disease 2019 (COVID-19). The immunomodulatory, antibacterial, antioxidant, and anti-inflammatory effects of green tea polyphenols have also been considered in this review. In addition to describing the bioactivities associated with green tea polyphenols, this review discusses the potential delivery of these biomolecules using a nanoparticle drug delivery system. Moreover, the bioavailability and toxicity of green tea polyphenols are also evaluated.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | | | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| |
Collapse
|
31
|
Prophylactic Catechin-Rich Green Tea Extract Treatment Ameliorates Pathogenic Enterotoxic Escherichia coli-Induced Colitis. Pathogens 2021; 10:pathogens10121573. [PMID: 34959529 PMCID: PMC8704293 DOI: 10.3390/pathogens10121573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we explored the potential beneficial effects of green tea extract (GTE) in a pathogenic Escherichia coli (F18:LT:STa:Stx2e)-induced colitis model. The GTE was standardized with catechin and epigallocatechin-3-gallate content using chromatography analysis. Ten consecutive days of GTE (500 and 1000 mg/kg) oral administration was followed by 3 days of a pathogenic E. coli challenge (1 × 109 CFU/mL). In vitro antibacterial analysis showed that GTE successfully inhibited the growth of pathogenic E. coli, demonstrating over a 3-fold reduction under time- and concentration-dependent conditions. The in vivo antibacterial effect of GTE was confirmed, with an inhibition rate of approximately 90% when compared to that of the E. coli alone group. GTE treatment improved pathogenic E. coli-induced intestinal injury with well-preserved epithelial linings and villi. In addition, the increased expression of annexin A1 in GTE-treated jejunum tissue was detected, which was accompanied by suppressed inflammation-related signal expression, including TNFA, COX-2, and iNOS. Moreover, proliferation-related signals such as PCNA, CD44, and Ki-67 were enhanced in the GTE group compared to those in the E. coli alone group. Taken together, these results indicate that GTE has an antibacterial activity against pathogenic E. coli and ameliorates pathogenic E. coli-induced intestinal damage by modulating inflammation and epithelial cell proliferation.
Collapse
|
32
|
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021; 10:foods10102469. [PMID: 34681518 PMCID: PMC8536111 DOI: 10.3390/foods10102469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural alternatives replacing artificial additives have gained much attention in the consumer’s view because of the growing search for clean label products that are devoid of carcinogenic and toxic effects. Plant polyphenols are considered as suitable alternative natural preservatives with antioxidant and antimicrobial properties. However, their uses in the food industry are undermined by a series of limitations such as low solubility and stability during food processing and storage, lack of standardization, and undesirable organoleptic properties. Different approaches in the use of polyphenols have been proposed in order to overcome the current hurdles related to food preservation. This review article specifically focuses on the antibacterial activity of plant-derived polyphenols as well as their applications as food preservatives, main challenges, and other trends in the food industry.
Collapse
|
33
|
Chen Y, Cheng S, Dai J, Wang L, Xu Y, Peng X, Xie X, Peng C. Molecular mechanisms and applications of tea polyphenols: A narrative review. J Food Biochem 2021; 45:e13910. [PMID: 34426979 DOI: 10.1111/jfbc.13910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
Tea is a worldwide popular drink with high nutritional and medicinal values as it is rich in nutrients, such as polyphenols, amino acids, vitamins, glycosides, and so on. Among them, tea polyphenols (TPs) are the current research hotspot. TPs are known to have multiple biological activities such as anti-oxidation, anti-tumor, anti-inflammation, anti-bacteria, lowering lipid, and liver protection. By reviewing a large number of literatures, we explained the mechanism of TPs exerting biological activity and a wide range of applications. We also discussed the deficiencies and development potential of TPs, in order to provide theoretical reference and scientific basis for the subsequent development and utilization of TPs. PRACTICAL APPLICATIONS: We summarized the bioactivity mechanisms of TPs in anti-tumor, anti-oxidation, antibacterial, anti-inflammatory, lipid-lowering, and liver protection, focused on its application fields in food and medicine, and discussed the deficiency and development potential of current research on TPs, so as to provide a certain convenient way for scholars studying TPs. It is expected to contribute to the subsequent discovery of biological activity and the broadening of the field of TPs.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Cheng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangang Dai
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Xu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Peng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Buchmann D, Schultze N, Borchardt J, Böttcher I, Schaufler K, Guenther S. Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3-hydroxy-6-methoxyflavone and genistein combined with antibiotics against ESKAPE pathogens. J Appl Microbiol 2021; 132:949-963. [PMID: 34365707 DOI: 10.1111/jam.15253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
AIM To verify synergistic effects, we investigated the antimicrobial activity of seven phenolic phytochemicals (gallic acid; epicatechin; epigallocatechin gallate; daidzein; genistein; myricetin; 3-hydroxy-6-methoxyflavone) in combination with six antibiotics against multidrug-resistant isolates from the ESKAPE group. METHODS AND RESULTS To investigate single phytochemicals and combinations, initial microdilution and checkerboard assays were used, followed by time-kill assays to evaluate the obtained results. The research revealed that phenolic compounds on their own resulted in little or no inhibitory effects. During preliminary tests, most of the combinations resulted in indifference (134 [71.3%]). In all, 30 combinations led to antagonism (15.9%); however, 24 showed synergistic effects (12.8%). The main tests resulted in nine synergistic combinations for the treatment of four different bacteria strains, including two substances (3-hydroxy-6-methoxyflavone, genistein) never tested before in such setup. Time-kill curves for combinations with possible synergistic effects confirmed the results against Acinetobacter baumannii as the one with the greatest need for research. CONCLUSIONS The results highlight the potential use of antibiotic-phytocompound combinations for combating infections with multi-resistant pathogens. Synergistic combinations could downregulate the resistance mechanisms of bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY The aim of this study is to demonstrate the potential use of phenolic natural compounds in combination with conventional antibiotics against multidrug-resistant bacteria of the ESKAPE group. Due to synergistic effects of natural phenolic compounds combined with antibiotics, pathogens that are already resistant to antibiotics could be resensitized as we were able to reduce their MICs back to sensitive. In addition, combination therapies could prevent the development of resistance by reducing the dose of antibiotics. This approach opens up the basis for future development of antimicrobial therapy strategies, which are so urgently needed in the age of multidrug-resistant pathogens.
Collapse
|
35
|
Yang Y, Han X, Chen Y, Wu J, Li M, Yang H, Xu W, Wei L. EGCG Induces Pro-inflammatory Response in Macrophages to Prevent Bacterial Infection through the 67LR/p38/JNK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5638-5651. [PMID: 33993695 DOI: 10.1021/acs.jafc.1c01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive studies focused on the therapeutic efficacy of epigallocatechin-3-gallate (EGCG) against bacterial infection. However, little is known about its prophylactic efficacy against bacterial infection. Herein, we found that EGCG showed an effective prophylactic efficacy against bacterial infection with a broad spectrum, including Gram-negative, Gram-positive, and drug-resistant bacteria. Pretreatment with EGCG through intraperitoneal injection, intravenous injection, or intragastric administration significantly reduced the bacterial load, inflammatory response, and mortality in mouse abdominal infection models induced by bacterial inoculation or cecal ligation and puncture. Pretreatment with EGCG by intraperitoneal injection significantly increased the numbers of neutrophils and monocytes/macrophages in the abdominal cavity and peripheral blood of mice, and depletion of neutrophils and monocytes/macrophages by specific antibodies or chemical drugs obviously increased the bacterial load in mice. Of note, EGCG did not directly induce neutrophil and macrophage migration, and it just induced phagocyte migration in the presence of macrophages in a co-cultured system, implying that EGCG-induced phagocyte migration relies on its immunoregulatory effects on macrophages. EGCG markedly induced the production of cytokines and chemokines in macrophages and mouse peritoneal lavage, including tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), IL-6, CXC chemokine ligands 1 and 2 (CXCL1 and 2), and monocyte chemotactic protein-1 (MCP-1). EGCG significantly induced the phosphorylation of p38 and JNK mitogen-activated protein kinases (MAPKs) in macrophages, and inhibition of p38 and JNK MAPKs markedly reduced EGCG-induced chemokine and cytokine production. Anti-67-kDa laminin receptor (67LR) antibody treatment significantly reduced EGCG-induced chemokine production and p38 and JNK phosphorylation in macrophages. Together, EGCG showed an obvious prophylactic efficacy against bacterial infection by inducing a pro-inflammatory response in macrophages through the 67LR/p38/JNK signaling pathway, supporting the further development of EGCG as a potent prophylaxis for bacterial infection and providing new clues to understand the healthcare function of green tea.
Collapse
Affiliation(s)
- Yang Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoyang Han
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
36
|
Han S, Abiko Y, Washio J, Luo Y, Zhang L, Takahashi N. Green Tea-Derived Epigallocatechin Gallate Inhibits Acid Production and Promotes the Aggregation of Streptococcus mutans and Non-Mutans Streptococci. Caries Res 2021; 55:205-214. [PMID: 34010838 DOI: 10.1159/000515814] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/07/2021] [Indexed: 11/19/2022] Open
Abstract
It has been suggested that green tea-derived epigallocatechin gallate (EGCG), which has antimicrobial properties, might help prevent dental caries. However, the detailed properties of EGCG remain unclear. In this study, the antimicrobial properties of EGCG were evaluated by examining its bactericidal activity, its inhibitory effects against bacterial growth, acid production, acidic end-product formation, and sugar uptake (phosphoenolpyruvate-dependent phosphotransferase system, PEP-PTS activity), and its effects on bacterial aggregation, using monocultured planktonic cells of Streptococcus mutans and non-mutans streptococci. Coincubating S. mutans with EGCG (1 mg/mL) for 4 h had no bactericidal effects, while it decreased the growth and acid production of S. mutans by inhibiting the activity of the PEP-PTS. EGCG (2 mg/mL) caused rapid bacterial cell aggregation and had reduced the optical density of S. mutans cell suspension by 86.7% at pH 7.0 and 90.7% at pH 5.5 after 2 h. EGCG also reduced the acid production of non-mutans streptococci, including S. sanguinis, S. gordonii, and S. salivarius, and promoted the aggregation of these non-mutans streptococci. Furthermore, these antimicrobial effects of short-term EGCG treatment persisted in the presence of saliva. These results suggest that EGCG might have short-term antibacterial effects on caries-associated streptococci in the oral cavity.
Collapse
Affiliation(s)
- Sili Han
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Cariology and Endodontics, Sichuan University West China School of Stomatology, Chengdu, China
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yufang Luo
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Cariology and Endodontics, Fujian Medical University School of Stomatology, Fuzhou, China
| | - Linglin Zhang
- Department of Cariology and Endodontics, Sichuan University West China School of Stomatology, Chengdu, China
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
37
|
Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct 2021; 11:9370-9396. [PMID: 33094767 DOI: 10.1039/d0fo02054k] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.
Collapse
Affiliation(s)
- Andrea Renzetti
- Global Education Institute, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | |
Collapse
|
38
|
Feature-Based Molecular Network-Guided Dereplication of Natural Bioactive Products from Leaves of Stryphnodendron pulcherrimum (Willd.) Hochr. Metabolites 2021; 11:metabo11050281. [PMID: 33946668 PMCID: PMC8147077 DOI: 10.3390/metabo11050281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Stryphnodendron pulcherrimum is a species known to have a high content of tannins. Accordingly, its preparations are used in southern Pará, Brazil, for their anti-inflammatory and antimicrobial activities, but so far, its chemical profile composition remains essentially unknown. We herein describe the compounds present in a hydro-acetonic extract from S. pulcherrimum leaves as revealed by dereplication via ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry. The data were combined with spectral organization, spectral matching through the Global Natural Products Social platform, in silico annotation and taxonomical ponderation. Several types of phenolic compounds were identified such as gallic acids, flavan-3-ols and flavone-like compounds. From these, 5 have been recently reported by our group, whereas 44 are reported here for the first time in this tree species, and 41 (out of 49) for this genus. The results highlight the possible role of Stryphnodendron pulcherrimum as a renewable source for natural bioactive products with potential pharmaceutical applications.
Collapse
|
39
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
40
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
41
|
Xi Q, Hoth-Hannig W, Deng S, Jin X, Fu B, Hannig M. The effect of polyphenol-containing solutions on in situ biofilm formation on enamel and dentin. J Dent 2020; 102:103482. [PMID: 32980427 DOI: 10.1016/j.jdent.2020.103482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES To investigate the effects of Chinese gallnut extracts and pure tannic acid on in situ biofilm formation on enamel and dentin samples over 24 h. METHODS Bovine enamel and dentin samples were buccally fixed on maxillary splints. Six volunteers wore the splints for 24 h, and rinsed their mouths with tap water (control), 1% tannic acid- and 1% Chinese gallnut extracts-containing solution twice a day, 3 min after the splints were placed in the mouth and before night sleep. Live/dead staining was used for fluorescence microscopic (FM) visualization and quantification of bacteria viability of biofilms formed on enamel and dentin samples. Biofilm coverage was evaluated and recorded by FM and scanning electron microscopy (SEM). In addition, biofilms were analyzed by transmission electron microscopy (TEM). The Kruskal-Wallis test was used to analyze biofilm data. RESULTS Rinsing with tannic acid- and Chinese gallnut extracts-containing solutions significantly reduced in situ biofilm coverage on enamel and dentin samples (P < 0.05). The bacterial viability of biofilms formed on enamel samples was significantly reduced compared to the control (P < 0.05). TEM analysis revealed an increase in pellicle's electron density and thickness and only few or no bacteria adherent to the pellicle in the experimental samples. CONCLUSIONS Rinsing with tannic acid- and Chinese gallnut extracts-containing solutions can effectively inhibit in situ biofilm formation, modify the ultrastructure of biofilms on enamel and dentin surfaces and significantly reduce the bacterial viability of biofilm on enamel surfaces. CLINICAL SIGNIFICANCE Tannic acid- and Chinese gallnut extracts-containing solutions might be used for dental biofilm management.
Collapse
Affiliation(s)
- Qingping Xi
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road 395, 310006, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Kaixuan Road 268, 310020, Hangzhou, China; Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Building 73, Saarland University, D-66421, Homburg, Germany
| | - Wiebke Hoth-Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Building 73, Saarland University, D-66421, Homburg, Germany
| | - Shuli Deng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road 395, 310006, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Kaixuan Road 268, 310020, Hangzhou, China
| | - Xiaoting Jin
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road 395, 310006, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Kaixuan Road 268, 310020, Hangzhou, China
| | - Baiping Fu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road 395, 310006, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Kaixuan Road 268, 310020, Hangzhou, China.
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Building 73, Saarland University, D-66421, Homburg, Germany.
| |
Collapse
|
42
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Micol V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem 2020; 27:2576-2606. [PMID: 30295182 DOI: 10.2174/0929867325666181008115650] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multi-drug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) disseminate rapidly amongst patients in healthcare facilities and suppose an increasingly important cause of community-associated infections and associated mortality. The development of effective therapeutic options against resistant bacteria is a public health priority. Plant polyphenols are structurally diverse compounds that have been used for centuries for medicinal purposes, including infections treatment and possess, not only antimicrobial activity, but also antioxidant, anti-inflammatory and anticancer activities among others. Based on the existing evidence on the polyphenols' antibacterial capacity, polyphenols may be postulated as an alternative or complementary therapy for infectious diseases. OBJECTIVE To review the antimicrobial activity of plant polyphenols against Gram-positive bacteria, especially against S. aureus and its resistant strains. Determine the main bacterial molecular targets of polyphenols and their potential mechanism of action. METHODOLOGY The most relevant reports on plant polyphenols' antibacterial activity and their putative molecular targets were studied. We also performed virtual screening of thousand different polyphenols against proteins involved in the peptidoglycan biosynthesis to find potential valuable bioactive compounds. The bibliographic information used in this review was obtained from MEDLINE via PubMed. RESULTS Several polyphenols: phenolic acids, flavonoids (especially flavonols), tannins, lignans, stilbenes and combinations of these in botanical mixtures, have exhibited significant antibacterial activity against resistant and non-resistant Gram-positive bacteria at low μg/mL range MIC values. Their mechanism of action is quite diverse, targeting cell wall, lipid membrane, membrane receptors and ion channels, bacteria metabolites and biofilm formation. Synergic effects were also demonstrated for some combinations of polyphenols and antibiotics. CONCLUSION Plant polyphenols mean a promising source of antibacterial agents, either alone or in combination with existing antibiotics, for the development of new antibiotic therapies.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - José Antonio Encinar
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - Juan Carlos Rodríguez-Díaz
- Microbiology Section, University General Hospital of Alicante, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante 03010, Spain
| | - Vicente Micol
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain.,CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| |
Collapse
|
43
|
Kim SH, Kim K, Kim BS, An YH, Lee UJ, Lee SH, Kim SL, Kim BG, Hwang NS. Fabrication of polyphenol-incorporated anti-inflammatory hydrogel via high-affinity enzymatic crosslinking for wet tissue adhesion. Biomaterials 2020; 242:119905. [PMID: 32145505 DOI: 10.1016/j.biomaterials.2020.119905] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
Epigallocatechin gallates (EGCGs), isolated from green tea, have intrinsic properties such as anti-oxidant, anti-inflammation, and radical scavenger effects. In this study, we report a tissue adhesive and anti-inflammatory hydrogel formed by high-affinity enzymatic crosslinking of polyphenolic EGCGs. A mixture of EGCG conjugated hyaluronic acids (HA_E) and tyramine conjugated hyaluronic acids (HA_T) was reacted with tyrosinase isolated from Streptomyces avermitillis (SA_Ty) to form that displayed fast enzyme kinetic to form a crosslinked adhesive hydrogel. A 1,2,3-trihydroxyphenyl group in EGCG displayed a high affinity to SA_Ty that allowed HA_E to be quickly oxidized and crosslinked with HA_T to form HA_T and HA_E mixed hydrogel (HA_TE). We then compared the HA_TE hydrogel with commercially available tissue adhesives, such as cyanoacrylate and fibrin glue. We report that the HA_TE exhibited the highest tissue adhesiveness both in wet and dry conditions. Furthermore, HA_TE successfully closed a skin wound and displayed insignificant host tissue responses. This demonstrates that polyphenol-incorporated anti-inflammatory hydrogel may provide a robust tissue adhesive platform for clinical applications.
Collapse
Affiliation(s)
- Su-Hwan Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Institute of Engineering Research, Seoul National University, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea
| | - Kyungmin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea
| | - Beom Seok Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea
| | - Sang-Hyuk Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea
| | - Seunghyun L Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea
| | - Byung-Gee Kim
- Institute of Engineering Research, Seoul National University, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea; Institute of Bioengineering, Seoul National University, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea; Institute of Bioengineering, Seoul National University, Republic of Korea.
| |
Collapse
|
44
|
Sato J, Nakayama M, Tomita A, Sonoda T, Miyamoto T. Difference in the antibacterial action of epigallocatechin gallate and theaflavin 3,3'-di-O-gallate on Bacillus coagulans. J Appl Microbiol 2020; 129:601-611. [PMID: 32281733 DOI: 10.1111/jam.14662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 11/28/2022]
Abstract
AIMS To study the mechanism of the antibacterial action of tea polyphenols such as catechins and theaflavins against Bacillus coagulans, and the interaction of epigallocatechin gallate (EGCg) or theaflavin 3,3'-di-O-gallate (TFDG) with the surface of B. coagulans cells was investigated. METHODS AND RESULTS The antibacterial activities of EGCg and TFDG against B. coagulans cells were measured by counting of the viable cells after the mixing with each polyphenol. Bactericidal effect of TFDG was shown at the concentration of greater than or equal to 62·5 mg l-1 ; however, at the same concentration, EGCg did not. According to the results of two dimensional (2D)-electrophoresis analysis, TFDG seemed to interact with cytoplasmic membrane proteins. The activity of the glucose transporters of the cells decreased 40% following the treatment with TFDG of 62·5 mg l-1 ; however, this decrease was only slight in case of EGCg. This result was in accordance with the strength of their bactericidal activities. CONCLUSION Our results suggest that the direct interaction between membrane proteins and TFDG is an important factor in the antibacterial activity of polymerized catechins, affecting their functions and leading to cell death. SIGNIFICANCE AND IMPACT OF THE STUDY Tea polyphenols can effectively use the prevention of product spoilage in the food and beverage industry.
Collapse
Affiliation(s)
- J Sato
- Safety Science Research, R&D, Kao Corporation, Ichikai, Tochigi, Japan.,Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - M Nakayama
- Safety Science Research, R&D, Kao Corporation, Ichikai, Tochigi, Japan
| | - A Tomita
- Safety Science Research, R&D, Kao Corporation, Ichikai, Tochigi, Japan
| | - T Sonoda
- Safety Science Research, R&D, Kao Corporation, Ichikai, Tochigi, Japan
| | - T Miyamoto
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
45
|
Taylor PW. Interactions of Tea-Derived Catechin Gallates with Bacterial Pathogens. Molecules 2020; 25:E1986. [PMID: 32340372 PMCID: PMC7221614 DOI: 10.3390/molecules25081986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
Green tea-derived galloylated catechins have weak direct antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens and are able to phenotypically transform, at moderate concentrations, methicillin-resistant Staphylococcus aureus (MRSA) clonal pathogens from full β-lactam resistance (minimum inhibitory concentration 256-512 mg/L) to complete susceptibility (~1 mg/L). Reversible conversion to susceptibility follows intercalation of these compounds into the bacterial cytoplasmic membrane, eliciting dispersal of the proteins associated with continued cell wall peptidoglycan synthesis in the presence of β-lactam antibiotics. The molecules penetrate deep within the hydrophobic core of the lipid palisade to force a reconfiguration of cytoplasmic membrane architecture. The catechin gallate-induced staphylococcal phenotype is complex, reflecting perturbation of an essential bacterial organelle, and includes prevention and inhibition of biofilm formation, disruption of secretion of virulence-related proteins, dissipation of halotolerance, cell wall thickening and cell aggregation and poor separation of daughter cells during cell division. These features are associated with the reduction of capacity of potential pathogens to cause lethal, difficult-to-treat infections and could, in combination with β-lactam agents that have lost therapeutic efficacy due to the emergence of antibiotic resistance, form the basis of a new approach to the treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Peter W Taylor
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
46
|
Feng J, Leone J, Schweig S, Zhang Y. Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of B. burgdorferi. Front Med (Lausanne) 2020; 7:6. [PMID: 32154254 PMCID: PMC7050641 DOI: 10.3389/fmed.2020.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Lyme disease is the most common vector-borne disease in the US and Europe. Although the current recommended Lyme antibiotic treatment is effective for the majority of Lyme disease patients, about 10-20% of patients continue to suffer from persisting symptoms. There have been various anecdotal reports on the use of herbal extracts for treating patients with persisting symptoms with varying degree of improvements. However, it is unclear whether the effect of the herb products is due to their direct antimicrobial activity or their effect on host immune system. In the present study, we investigated the antimicrobial effects of 12 commonly used botanical medicines and three other natural antimicrobial agents for potential anti-Borrelia burgdorferi activity in vitro. Among them, 7 natural product extracts at 1% were found to have good activity against the stationary phase B. burgdorferi culture compared to the control antibiotics doxycycline and cefuroxime. These active botanicals include Cryptolepis sanguinolenta, Juglans nigra (Black walnut), Polygonum cuspidatum (Japanese knotweed), Artemisia annua (Sweet wormwood), Uncaria tomentosa (Cat's claw), Cistus incanus, and Scutellaria baicalensis (Chinese skullcap). In contrast, Stevia rebaudiana, Andrographis paniculata, Grapefruit seed extract, colloidal silver, monolaurin, and antimicrobial peptide LL37 had little or no activity against stationary phase B. burgdorferi. The minimum inhibitory concentration (MIC) values of Artemisia annua, Juglans nigra, and Uncaria tomentosa were quite high for growing B. burgdorferi, despite their strong activity against the non-growing stationary phase B. burgdorferi. On the other hand, the top two active herbs, Cryptolepis sanguinolenta and Polygonum cuspidatum, showed strong activity against both growing B. burgdorferi (MIC = 0.03-0.06% and 0.25-0.5%, respectively) and non-growing stationary phase B. burgdorferi. In subculture studies, only 1% Cryptolepis sanguinolenta extract caused complete eradication, while doxycycline and cefuroxime and other active herbs could not eradicate B. burgdorferi stationary phase cells as many spirochetes were visible after 21-day subculture. Further studies are needed to identify the active constituents of the effective botanicals and evaluate their combinations for more effective eradication of B. burgdorferi in vitro and in vivo. The implications of these findings for improving treatment of persistent Lyme disease are discussed.
Collapse
Affiliation(s)
- Jie Feng
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jacob Leone
- FOCUS Health Group, Naturopathic, Novato, CA, United States
| | - Sunjya Schweig
- California Center for Functional Medicine, Kensington, CA, United States
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
47
|
Shelf-life of shucked oyster in epigallocatechin-3-gallate with slightly acidic electrolyzed water washing under refrigeration temperature. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Kar AK, Singh A, Dhiman N, Purohit MP, Jagdale P, Kamthan M, Singh D, Kumar M, Ghosh D, Patnaik S. Polymer-Assisted In Situ Synthesis of Silver Nanoparticles with Epigallocatechin Gallate (EGCG) Impregnated Wound Patch Potentiate Controlled Inflammatory Responses for Brisk Wound Healing. Int J Nanomedicine 2019; 14:9837-9854. [PMID: 31849472 PMCID: PMC6913939 DOI: 10.2147/ijn.s228462] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction An ideal wound dressing material needs to be predisposed with desirable attributes like anti-infective effect, skin hydration balance, adequate porosity and elasticity, high mechanical strength, low wound surface adherence, and enhanced tissue regeneration capability. In this work, we have synthesized hydrogel-based wound patches having antibacterial silver nanoparticles and antioxidant epigallocatechin gallate (EGCG) and showed fast wound closure through their synergistic interaction without any inherent toxicity. Methods and results Wound patches were synthesized from modified guar gum polymer and assessed to determine accelerated wound healing. The modified polymer beget chemical-free in-situ synthesis of monodispersed silver NPs (~12 nm), an antimicrobial agent, besides lending ionic surface charges. EGCG impregnated during ionotropic gelation process amplified the efficacy of wound patches that possess apt tensile strength, porosity, and swellability for absorbing wound exudates. Further, in vitro studies endorsed them as non-cytotoxic and the post agent effect following exposure to the patch showed an unbiased response to E coli K12 and B. subtilis. In vivo study using sub-cutaneous wounds in Wistar rats validated its accelerated healing properties when compared to a commercially available wound dressing material (skin graft; Neuskin-F®) through better wound contraction, promoted collagen deposition and enhanced vascularization of wound region by modulating growth factors and inflammatory cytokines. Conclusion Synthesized wound patches showed all the desired attributes of a clinically effective dressing material and the results were validated in various in vitro and in vivo assays.
Collapse
Affiliation(s)
- Aditya K Kar
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Amrita Singh
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Mahaveer P Purohit
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Pankaj Jagdale
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Mohan Kamthan
- CITAR, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Debabrata Ghosh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Immunotoxicology Laboratory, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
49
|
Betts JW, Hornsey M, Higgins PG, Lucassen K, Wille J, Salguero FJ, Seifert H, La Ragione RM. Restoring the activity of the antibiotic aztreonam using the polyphenol epigallocatechin gallate (EGCG) against multidrug-resistant clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2019; 68:1552-1559. [DOI: 10.1099/jmm.0.001060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jonathan W. Betts
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Michael Hornsey
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Paul G. Higgins
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 38124 Braunschweig, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Kai Lucassen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | | | - Harald Seifert
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 38124 Braunschweig, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
50
|
Nampuak C, Tongkhao K. Okra mucilage powder: a novel functional ingredient with antioxidant activity and antibacterial mode of action revealed by scanning and transmission electron microscopy. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chatmanee Nampuak
- Department of Food Science and Technology, Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| | - Kullanart Tongkhao
- Department of Food Science and Technology, Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|