1
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Deciphering the function and evolution of the target of rapamycin signaling pathway in microalgae. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6993-7005. [PMID: 35710309 PMCID: PMC9664231 DOI: 10.1093/jxb/erac264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Microalgae constitute a highly diverse group of photosynthetic microorganisms that are widely distributed on Earth. The rich diversity of microalgae arose from endosymbiotic events that took place early in the evolution of eukaryotes and gave rise to multiple lineages including green algae, the ancestors of land plants. In addition to their fundamental role as the primary source of marine and freshwater food chains, microalgae are essential producers of oxygen on the planet and a major biotechnological target for sustainable biofuel production and CO2 mitigation. Microalgae integrate light and nutrient signals to regulate cell growth. Recent studies identified the target of rapamycin (TOR) kinase as a central regulator of cell growth and a nutrient sensor in microalgae. TOR promotes protein synthesis and regulates processes that are induced under nutrient stress such as autophagy and the accumulation of triacylglycerol and starch. A detailed analysis of representative genomes from the entire microalgal lineage revealed that the highly conserved central components of the TOR pathway are likely to have been present in the last eukaryotic common ancestor, and the loss of specific TOR signaling elements at an early stage in the evolution of microalgae. Here we examine the evolutionary conservation of TOR signaling components in diverse microalgae and discuss recent progress of this signaling pathway in these organisms.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
2
|
He J, Du M, Chen Y, Liu Y, Zhang J(K, Fu W, Lei A, Wang J. Fatty Acid Accumulations and Transcriptome Analyses Under Different Treatments in a Model Microalga Euglena gracilis. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.884451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the continuous growth of the world’s population and the increasing development of industrialization, the demand for energy by human beings has been expanding, resulting in an increasingly severe energy crisis. Microalgae are considered the most potential alternatives to traditional fossil fuels due to their many advantages, like fast growth rate, strong carbon sequestration capacity, and low growth environment requirements. Euglena can use carbon sources such as glucose, ethanol, and others for heterotrophic growth. Moreover, Euglena is highly adaptable to the environment and has a high tolerance to various environmental stresses, such as salinity, heavy metals, antibiotics, etc. Different treatments of Euglena cells could affect their growth and the accumulation of bioactive substances, especially fatty acids. To expand the industrial application of Euglena as a potential biodiesel candidate, we determine the physiological responses of Euglena against environmental stresses (antibiotics, heavy metals, salinity) or carbon resources (glucose and ethanol), and evaluate the potential for higher quality and yield of fatty acid with a high growth rate. Adding glucose into the culture media increases cell biomass and fatty acid production with high-quality biodiesel characters. The transcriptome analysis helped explore the possible regulation and biosynthesis of fatty acids under different treatments and exploited in the improvement of biodiesel production. This study provides insights for further improvement and various culture treatments for Euglena-based biodiesel and jet fuels.
Collapse
|
3
|
Li L, Zhu T, Huang L, Ren M. Target of Rapamycin Signaling Involved in the Regulation of Photosynthesis and Cellular Metabolism in Chlorella sorokiniana. Int J Mol Sci 2022; 23:ijms23137451. [PMID: 35806454 PMCID: PMC9266951 DOI: 10.3390/ijms23137451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Target of rapamycin (TOR) is a serine/threonine protein kinase that plays a central regulating role in cell proliferation, growth, and metabolism, but little is known about the TOR signaling pathway in Chlorella sorokiniana. In this study, a Chlorella sorokiniana DP-1 strain was isolated and identified, and its nutritional compositions were analyzed. Based on homologous sequence analysis, the conserved CsTOR protein was found in the genome of Chlorella sorokiniana. In addition, the key components of TOR complex 1 (TORC1) were present, but the components of TORC2 (RICTOR and SIN1) were absent in Chlorella sorokiniana. Pharmacological assays showed that Chlorella sorokiniana DP-1 was insensitive to rapamycin, Torin1 and KU0063794, whereas AZD8055 could significantly inhibit the growth of Chlorella sorokiniana. RNA-seq analysis showed that CsTOR regulated various metabolic processes and signal transduction pathways in AZD8055-treated Chlorella sorokiniana DP-1. Most genes involved in photosynthesis and carbon fixation in Chlorella sorokiniana DP-1 were significantly downregulated under CsTOR inhibition, indicating that CsTOR positively regulated the photosynthesis in Chlorella sorokiniana. Furthermore, CsTOR controlled protein synthesis and degradation by positively regulating ribosome synthesis and negatively regulating autophagy. These observations suggested that CsTOR plays an important role in photosynthesis and cellular metabolism, and provide new insights into the function of CsTOR in Chlorella sorokiniana.
Collapse
|
4
|
Amino Acid Signaling for TOR in Eukaryotes: Sensors, Transducers, and a Sustainable Agricultural fuTORe. Biomolecules 2022; 12:biom12030387. [PMID: 35327579 PMCID: PMC8945916 DOI: 10.3390/biom12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells monitor and regulate metabolism through the atypical protein kinase target of rapamycin (TOR) regulatory hub. TOR is activated by amino acids in animals and fungi through molecular signaling pathways that have been extensively defined in the past ten years. Very recently, several studies revealed that TOR is also acutely responsive to amino acid metabolism in plants, but the mechanisms of amino acid sensing are not yet established. In this review, we summarize these discoveries, emphasizing the diversity of amino acid sensors in human cells and highlighting pathways that are indirectly sensitive to amino acids, i.e., how TOR monitors changes in amino acid availability without a bona fide amino acid sensor. We then discuss the relevance of these model discoveries to plant biology. As plants can synthesize all proteinogenic amino acids from inorganic precursors, we focus on the possibility that TOR senses both organic metabolites and inorganic nutrients. We conclude that an evolutionary perspective on nutrient sensing by TOR benefits both agricultural and biomedical science, contributing to ongoing efforts to generate crops for a sustainable agricultural future.
Collapse
|
5
|
Ogawa T, Nakamoto M, Tanaka Y, Sato K, Okazawa A, Kanaya S, Ohta D. Exploration and characterization of chemical stimulators to maximize the wax ester production by Euglena gracilis. J Biosci Bioeng 2021; 133:243-249. [PMID: 34952786 DOI: 10.1016/j.jbiosc.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Euglena gracilis, a phototrophic protist, is a valuable biomass producer that is often employed in sustainable development efforts. E. gracilis accumulates wax esters as byproducts during anaerobic ATP production via the reductive tricarboxylic acid cycle, utilizing the storage carbohydrate β-1,3-glucan paramylon as the carbon source. Here, we report a library screening for chemical stimulators that accelerate both wax ester production and paramylon consumption. Among the 115 compounds tested, we identified nine compounds that increased wax ester production by more than 2.0-fold relative to the solvent control. In the presence of these nine compounds, the paramylon content decreased compared with the control experiment, and the residual paramylon content varied between 7% and 26% of the initial level. The most active compound, 1,4-diaminoanthracene-9,10-dione (OATQ008), stimulated wax ester production up to 2.7-fold within 24 h, and 93% of the cellular paramylon was consumed. In terms of the structural features of the chemical stimulators, we discuss the potential target sites to stimulate wax ester production in mitochondria under anaerobic conditions.
Collapse
Affiliation(s)
- Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yuki Tanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuhiro Sato
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Center for the 21st Century, Research Institute for Bioeconomy, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan.
| |
Collapse
|
6
|
He J, Liu C, Du M, Zhou X, Hu Z, Lei A, Wang J. Metabolic Responses of a Model Green Microalga Euglena gracilis to Different Environmental Stresses. Front Bioeng Biotechnol 2021; 9:662655. [PMID: 34354984 PMCID: PMC8329484 DOI: 10.3389/fbioe.2021.662655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Euglena gracilis, a green microalga known as a potential candidate for jet fuel producers and new functional food resources, is highly tolerant to antibiotics, heavy metals, and other environmental stresses. Its cells contain many high-value products, including vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon as metabolites, which change contents in response to various extracellular environments. However, mechanism insights into the cellular metabolic response of Euglena to different toxic chemicals and adverse environmental stresses were very limited. We extensively investigated the changes of cell biomass, pigments, lipids, and paramylon of E. gracilis under several environmental stresses, such as heavy metal CdCl2, antibiotics paromomycin, and nutrient deprivation. In addition, global metabolomics by Ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was applied to study other metabolites and potential regulatory mechanisms behind the differential accumulation of major high-valued metabolites. This study collects a comprehensive update on the biology of E. gracilis for various metabolic responses to stress conditions, and it will be of great value for Euglena cultivation and high-value [154mm][10mm]Q7metabolite production.
Collapse
Affiliation(s)
- Jiayi He
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - ChenChen Liu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mengzhe Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xiyi Zhou
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Pancha I, Takaya K, Tanaka K, Imamura S. The Unicellular Red Alga Cyanidioschyzon merolae, an Excellent Model Organism for Elucidating Fundamental Molecular Mechanisms and Their Applications in Biofuel Production. PLANTS 2021; 10:plants10061218. [PMID: 34203949 PMCID: PMC8232737 DOI: 10.3390/plants10061218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Microalgae are considered one of the best resources for the production of biofuels and industrially important compounds. Various models have been developed to understand the fundamental mechanism underlying the accumulation of triacylglycerols (TAGs)/starch and to enhance its content in cells. Among various algae, the red alga Cyanidioschyzonmerolae has been considered an excellent model system to understand the fundamental mechanisms behind the accumulation of TAG/starch in the microalga, as it has a smaller genome size and various biotechnological methods are available for it. Furthermore, C. merolae can grow and survive under high temperature (40 °C) and low pH (2–3) conditions, where most other organisms would die, thus making it a choice alga for large-scale production. Investigations using this alga has revealed that the target of rapamycin (TOR) kinase is involved in the accumulation of carbon-reserved molecules, TAGs, and starch. Furthermore, detailed molecular mechanisms of the role of TOR in controlling the accumulation of TAGs and starch were uncovered via omics analyses. Based on these findings, genetic engineering of the key gene and proteins resulted in a drastic increment of the amount of TAGs and starch. In addition to these studies, other trials that attempted to achieve the TAG increment in C. merolae have been summarized in this article.
Collapse
Affiliation(s)
- Imran Pancha
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522502, India
- Correspondence: (I.P.); (S.I.); Tel.: +81-422-59-6179 (S.I.)
| | - Kazuhiro Takaya
- NTT Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan;
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan;
| | - Sousuke Imamura
- NTT Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan;
- Correspondence: (I.P.); (S.I.); Tel.: +81-422-59-6179 (S.I.)
| |
Collapse
|
8
|
Identification of Transcription Factors and the Regulatory Genes Involved in Triacylglycerol Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050971. [PMID: 34068121 PMCID: PMC8152781 DOI: 10.3390/plants10050971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
Microalgal triacylglycerols (TAGs) are a good feedstock for liquid biofuel production. Improving the expression and/or function of transcription factors (TFs) involved in TAG accumulation may increase TAG content; however, information on microalgae is still lacking. In this study, 14 TFs in the unicellular red alga Cyanidioschyzon merolae were identified as candidate TFs regulating TAG accumulation using available transcriptome and phosphoproteome data under conditions driving TAG accumulation. To investigate the roles of these TFs, we constructed TF-overexpression strains and analyzed lipid droplet (LD) formation and TAG contents in the cells grown under standard conditions. Based on the results, we identified four TFs involved in LD and TAG accumulation. RNA-Seq analyses were performed to identify genes regulated by the four TFs using each overexpression strain. Among the TAG biosynthesis-related genes, only the gene encoding the endoplasmic reticulum-localized lysophosphatidic acid acyltransferase 1 (LPAT1) was notably increased among the overexpression strains. In the LPAT1 overexpression strain, TAG accumulation was significantly increased compared with the control strain under normal growth conditions. These results indicate that the four TFs positively regulate TAG accumulation by changing their target gene expression in C. merolae.
Collapse
|
9
|
Pancha I, Chokshi K, Tanaka K, Imamura S. Microalgal Target of Rapamycin (TOR): A Central Regulatory Hub for Growth, Stress Response and Biomass Production. PLANT & CELL PHYSIOLOGY 2020; 61:675-684. [PMID: 32105317 DOI: 10.1093/pcp/pcaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays an important role in the regulation of cell growth and the sensing of nutrient and energy status in eukaryotes. In yeasts and mammals, the roles of TOR have been very well described and various functions of TOR signaling in plant lineages have also been revealed over the past 20 years. In the case of microalgae, the functions of TOR have been primarily studied in the model green alga Chlamydomonas reinhardtii and were summarized in an earlier single review article. However, the recent development of tools for the functional analysis of TOR has helped to reveal the involvement of TOR in various functions, including autophagy, transcription, translation, accumulation of energy storage molecules, etc., in microalgae. In the present review, we discuss recent novel findings relating to TOR signaling and its roles in microalgae along with relevant information on land plants and also provide details of topics that must be addressed in future studies to reveal how TOR regulates various physiological functions in microalgae.
Collapse
Affiliation(s)
- Imran Pancha
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- Department of Biology, SRM University-AP, Amaravati, Andhra Pradesh 522502, India
| | - Kaumeel Chokshi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| |
Collapse
|
10
|
Kokabi K, Gorelova O, Zorin B, Didi-Cohen S, Itkin M, Malitsky S, Solovchenko A, Boussiba S, Khozin-Goldberg I. Lipidome Remodeling and Autophagic Respose in the Arachidonic-Acid-Rich Microalga Lobosphaera incisa Under Nitrogen and Phosphorous Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:614846. [PMID: 33329680 PMCID: PMC7728692 DOI: 10.3389/fpls.2020.614846] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
The green microalga Lobosphaera incisa accumulates triacylglycerols (TAGs) with exceptionally high levels of long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid (ARA) under nitrogen (N) deprivation. Phosphorous (P) deprivation induces milder changes in fatty acid composition, cell ultrastructure, and growth performance. We hypothesized that the resource-demanding biosynthesis and sequestration of ARA-rich TAG in lipid droplets (LDs) are associated with the enhancement of catabolic processes, including membrane lipid turnover and autophagic activity. Although this work focuses mainly on N deprivation, a comparative analysis of N and P deprivation responses is included. The results of lipidomic profiling showed a differential impact of N and P deprivation on the reorganization of glycerolipids. The formation of TAG under N deprivation was associated with the enhanced breakdown of chloroplast glycerolipids and the formation of lyso-lipids. N-deprived cells displayed a profound reorganization of cell ultrastructure, including internalization of cellular material into autophagic vacuoles, concomitant with the formation of LDs, while P-deprived cells showed better cellular ultrastructural integrity. The expression of the hallmark autophagy protein ATG8 and the major lipid droplet protein (MLDP) genes were coordinately upregulated, but to different extents under either N or P deprivation. The expression of the Δ5-desaturase gene, involved in the final step of ARA biosynthesis, was coordinated with ATG8 and MLDP, exclusively under N deprivation. Concanamycin A, the inhibitor of vacuolar proteolysis and autophagic flux, suppressed growth and enhanced levels of ATG8 and TAG in N-replete cells. The proportions of ARA in TAG decreased with a concomitant increase in oleic acid under both N-replete and N-deprived conditions. The photosynthetic apparatus's recovery from N deprivation was impaired in the presence of the inhibitor, along with the delayed LD degradation. The GFP-ATG8 processing assay showed the release of free GFP in N-replete and N-deprived cells, supporting the existence of autophagic flux. This study provides the first insight into the homeostatic role of autophagy in L. incisa and points to a possible metabolic link between autophagy and ARA-rich TAG biosynthesis.
Collapse
Affiliation(s)
- Kamilya Kokabi
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
| | - Boris Zorin
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Shoshana Didi-Cohen
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Tambov, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
11
|
Prioretti L, Carriere F, Field B, Avilan L, Montané MH, Menand B, Gontero B. Targeting TOR signaling for enhanced lipid productivity in algae. Biochimie 2019; 169:12-17. [PMID: 31265860 DOI: 10.1016/j.biochi.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023]
Abstract
Microalgae can produce large quantities of triacylglycerols (TAGs) and other neutral lipids that are suitable for making biofuels and as feedstocks for green chemistry. However, TAGs accumulate under stress conditions that also stop growth, leading to a trade-off between biomass production and TAG yield. Recently, in the model marine diatom Phaeodactylum tricornutum it was shown that inhibition of the target of rapamycin (TOR) kinase boosts lipid productivity by promoting TAG production without stopping growth. We believe that basic knowledge in this emerging field is required to develop innovative strategies to improve neutral lipid accumulation in oleaginous microalgae. In this minireview, we discuss current research on the TOR signaling pathway with a focus on its control on lipid homeostasis. We first provide an overview of the well characterized roles of TOR in mammalian lipogenesis, adipogenesis and lipolysis. We then present evidence of a role for TOR in controlling TAG accumulation in microalgae, and draw parallels between the situation in animals, plants and microalgae to propose a model of TOR signaling for TAG accumulation in microalgae.
Collapse
Affiliation(s)
- Laura Prioretti
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Frédéric Carriere
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Marie-Hélène Montané
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France
| | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France.
| |
Collapse
|
12
|
Montané MH, Menand B. TOR inhibitors: from mammalian outcomes to pharmacogenetics in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2297-2312. [PMID: 30773593 DOI: 10.1093/jxb/erz053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/05/2019] [Indexed: 05/19/2023]
Abstract
Target of rapamycin (TOR) is a conserved eukaryotic phosphatidylinositol 3-kinase-related kinase that regulates growth and metabolism in response to environment in plants and algae. The study of the plant and algal TOR pathway has largely depended on TOR inhibitors first developed for non-photosynthetic eukaryotes. In animals and yeast, fundamental work on the TOR pathway has benefited from the allosteric TOR inhibitor rapamycin and more recently from ATP-competitive TOR inhibitors (asTORis) that circumvent the limitations of rapamycin. The asTORis, developed for medical application, inhibit TOR complex 1 (TORC1) more efficiently than rapamycin and also inhibit rapamycin-resistant TORCs. This review presents knowledge on TOR inhibitors from the mammalian field and underlines important considerations for plant and algal biologists. It discusses the use of rapamycin and asTORis in plants and algae and concludes with guidelines for physiological studies and genetic screens with TOR inhibitors.
Collapse
Affiliation(s)
- Marie-Hélène Montané
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de génétique et biophysique des plantes, Marseille, F-13009, France
| | - Benoît Menand
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de génétique et biophysique des plantes, Marseille, F-13009, France
| |
Collapse
|
13
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
14
|
Harchouni S, Field B, Menand B. AC-202, a highly effective fluorophore for the visualization of lipid droplets in green algae and diatoms. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:120. [PMID: 29713379 PMCID: PMC5913787 DOI: 10.1186/s13068-018-1117-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/12/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Lipid-specific live cell dyes are an important tool for the study of algal lipid metabolism, the monitoring of lipid production, and the identification of algal strains with high lipid yields. Nile Red and BODIPY have emerged as the principal dyes for these purposes. However, they suffer from a number of shortcomings including for specificity, penetration, interference from chlorophyll autofluorescence, and incompatibility with widely used genetically encoded reporters in the green and blue regions of the spectrum such as the green fluorescent protein and the red fluorescent protein. RESULTS We tested a new blue fluorescent dye, AC-202, in both the green algae Chlamydomonas reinhardtii and the pennate diatom Phaeodactylum tricornutum. We show that AC-202 is effective in both algae and that after minimal sample preparation, it can label lipid droplets induced by nitrogen starvation or by inhibitors of the TOR (target of rapamycin) kinase. We found that AC-202 benefits from a low background signal and is therefore more sensitive than BODIPY for semiquantitative in vivo fluorescence measurements. Finally, a co-staining experiment indicated that AC-202 can be used for multicolor imaging in combination with both red and green fluorophores. CONCLUSIONS AC-202 is an alternative and highly effective fluorophore for algal research that resolves drawbacks encountered with other neutral lipid dyes. AC-202 can be used to rapidly and sensitively visualize lipid droplets, and will contribute to the identification of metabolic and signaling pathways involved in lipid droplet formation, monitoring lipid production, and in the development of screens for algal strains suitable for biofuel production.
Collapse
Affiliation(s)
- Seddik Harchouni
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| |
Collapse
|
15
|
Roustan V, Weckwerth W. Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2018; 9:1590. [PMID: 30546371 PMCID: PMC6280106 DOI: 10.3389/fpls.2018.01590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/15/2018] [Indexed: 05/13/2023]
Abstract
Rapamycin is an inhibitor of the evolutionary conserved Target of Rapamycin (TOR) kinase which promotes and coordinates translation with cell growth and division. In heterotrophic organisms, TOR regulation is based on intra- and extracellular stimuli such as amino acids level and insulin perception. However, how plant TOR pathways have evolved to integrate plastid endosymbiosis is a remaining question. Despite the close association of the TOR signaling with the coordination between protein turn-over and growth, proteome and phosphoproteome acclimation to a rapamycin treatment have not yet been thoroughly investigated in Chlamydomonas reinhardtii. In this study, we have used in vivo label-free phospho-proteomic analysis to profile both protein and phosphorylation changes at 0, 24, and 48 h in Chlamydomonas cells treated with rapamycin. Using multivariate statistics we highlight the impact of TOR inhibition on both the proteome and the phosphoproteome. Two-way ANOVA distinguished differential levels of proteins and phosphoproteins in response either to culture duration and rapamycin treatment or combined effects. Finally, protein-protein interaction networks and functional enrichment analysis underlined the relation between plastid and mitochondrial metabolism. Prominent changes of proteins involved in sulfur, cysteine, and methionine as well as nucleotide metabolism on the one hand, and changes in the TCA cycle on the other highlight the interplay of chloroplast and mitochondria metabolism. Furthermore, TOR inhibition revealed changes in the endomembrane trafficking system. Phosphoproteomics data, on the other hand, highlighted specific differentially regulated phosphorylation sites for calcium-regulated protein kinases as well as ATG7, S6K, and PP2C. To conclude we provide a first combined Chlamydomonas proteomics and phosphoproteomics dataset in response to TOR inhibition, which will support further investigations.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- *Correspondence: Wolfram Weckwerth,
| |
Collapse
|
16
|
Prioretti L, Avilan L, Carrière F, Montané MH, Field B, Grégori G, Menand B, Gontero B. The inhibition of TOR in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Seed Metabolome Analysis of a Transgenic Rice Line Expressing Cholera Toxin B-subunit. Sci Rep 2017; 7:5196. [PMID: 28701756 PMCID: PMC5507873 DOI: 10.1038/s41598-017-04701-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Plant-based human vaccines have been actively developed in recent years, and rice (Oryza sativa L.) is one of the best candidate crops for their production and delivery. By expressing a modified cholera toxin B (CTB) subunit, we previously developed MucoRice-CTB, a rice-based vaccine against cholera, which is caused by infection of the intestine with the bacteria Vibrio cholerae. MucoRice-CTB lines have been extensively characterized by whole-genome sequencing and proteome analyses to evaluate the mutation profiles and proteome status, respectively. Here, we report non-targeted metabolomic profiling of the MucoRice-CTB transgenic rice line 51A (MR-CTB51A), MucoRice-RNAi (MR-RNAi), and their non-transgenic parent line by using gas chromatography-time-of-flight mass spectrometry. The levels of several amino acids, organic acids, carbohydrates, lipids, and secondary metabolites were significantly increased in MR-CTB51A compared with the non-transgenic parent line. These metabolomics results complement essential information obtained by genome sequencing and proteomics approaches, thereby contributing to comprehensive understanding of the properties of MucoRice-CTB as a plant-based vaccine.
Collapse
|
18
|
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Biomolecules 2017; 7:biom7030054. [PMID: 28704927 PMCID: PMC5618235 DOI: 10.3390/biom7030054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.
Collapse
|
19
|
Bracharz F, Redai V, Bach K, Qoura F, Brück T. The effects of TORC signal interference on lipogenesis in the oleaginous yeast Trichosporon oleaginosus. BMC Biotechnol 2017; 17:27. [PMID: 28270203 PMCID: PMC5341401 DOI: 10.1186/s12896-017-0348-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Oleaginous organisms are a promising, renewable source of single cell oil. Lipid accumulation is mainly induced by limitation of nutrients such as nitrogen, phosphorus or sulfur. The oleaginous yeast Trichosporon oleaginosus accumulates up to 70% w/w lipid under nitrogen stress, while cultivation in non-limiting media only yields 9% w/w lipid. Uncoupling growth from lipid accumulation is key for the industrial process applicability of oleaginous yeasts. This study evaluates the effects of rapamycin on TOR specific signaling pathways associated with lipogenesis in Trichosporon oleaginosus for the first time. RESULTS Supplementation of rapamycin to nutrient rich cultivation medium led to an increase in lipid yield of up to 38% g/L. This effect plateaued at 40 μM rapamycin. Interestingly, the fatty acid spectrum resembled that observed with cultivation under nitrogen limitation. Significant changes in growth characteristics included a 19% increase in maximum cell density and a 12% higher maximum growth rate. T. oleaginosus only has one Tor gene much like the oleaginous yeast Rhodosporidium toruloides. Consequently, we analyzed the effect of rapamycin on T. oleaginosus specific TORC signaling using bioinformatic methodologies. CONCLUSIONS We confirm, that target of rapamycin complex 1 (TORC1) is involved in control of lipid production and cell proliferation in T. oleaginosus and present a homology based signaling network. Signaling of lipid induction by TORC1 and response to carbon depletion to this complex appear to be conserved, whereas response to nitrogen limitation and autophagy are not. This work serves as a basis for further investigation regarding the control and induction of lipid accumulation in oil yeasts.
Collapse
Affiliation(s)
- Felix Bracharz
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Veronika Redai
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kathrin Bach
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Farah Qoura
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Brück
- Industrial Biocatalysis Group, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
20
|
Dai Z, Huang J, Lei X, Yan Y, Lu P, Zhang H, Lin W, Chen W, Ma J, Xie Q. Efficacy of an autophagy-targeted DNA vaccine against avian leukosis virus subgroup J. Vaccine 2017; 35:808-813. [DOI: 10.1016/j.vaccine.2016.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 01/03/2023]
|