1
|
Gorton MW, Goodarzi P, Lei X, Anderson M, Habibi M, Wilson N, Pezeshki A. Dietary Insulinogenic Amino Acid Restriction Improves Glucose Metabolism in a Neonatal Piglet Model. Nutrients 2025; 17:1675. [PMID: 40431415 PMCID: PMC12114165 DOI: 10.3390/nu17101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Dietary consumption of insulinogenic amino acids (IAA) is known to contribute to the development of insulin resistance. It remains to be studied whether dietary IAA restriction improves glucose metabolism and insulin sensitivity and whether this improvement is related to alterations in glucose metabolism in peripheral tissues. The objective of this study was to examine the effect of IAA restriction on glucose metabolism in a piglet model. Methods: Following the acclimation period, thirty-two seven-day-old male piglets were randomly assigned into one of three groups for three weeks as follows (n = 10-11/group): (1) NR (control): basal diet without IAA restriction; (2) R50: basal diet with IAA restricted by 50%; (3) R75: basal diet with IAA restricted by 75%. IAA were alanine (Ala), arginine (Arg), isoleucine (Ile), leucine (Leu), lysine (Lys), threonine (Thr), phenylalanine (Phe), and valine (Val) as suggested by previous studies. Thermal images, body weight, and growth parameters were recorded weekly, oral glucose tolerance tests were performed on week 2 of the study, and blood and tissue samples were collected on week 3 after a meal test. Results: R75 improved glucose tolerance and, together with R50, reduced blood insulin concentration and homeostatic model assessment for insulin resistance (HOMA-IR) value, which is suggestive of improved insulin sensitivity following IAA restriction. R75 increased thermal radiation and decreased adipocyte number in white adipose tissue (WAT). R75 had a greater transcript of glucose transporter 1 (GLUT1), phosphofructokinase, liver type (PFKL), and pyruvate kinase, liver, and RBC (PKLR) in the liver and glucokinase (GCK) in WAT indicating a higher uptake of glucose in the liver and greater glycolysis in both liver and WAT. R75 increased the mRNA abundance of insulin receptor substrate 1 (IRS1) and protein kinase B (AKT1) in skeletal muscle suggestive of enhanced insulin signaling. Further, R75 had a higher mRNA of fibroblast growth factor 21 (FGF-21) in both the liver and hypothalamus and its upstream molecules such as activating transcription factor 4 (ATF4) and inhibin subunit beta E (INHBE) which may contribute to increased energy expenditure and improved glucose tolerance during IAA restriction. Conclusions: IAA restriction improves glucose tolerance and insulin sensitivity in piglets while not reducing body weight, likely through improved hepatic glycolysis and insulin signaling in skeletal muscle, and induced FGF-21 signaling in both the liver and hypothalamus.
Collapse
Affiliation(s)
- Matthew W. Gorton
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (M.W.G.); (P.G.); (M.H.)
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (M.W.G.); (P.G.); (M.H.)
| | - Xia Lei
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Michael Anderson
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA; (M.A.); (N.W.)
| | - Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (M.W.G.); (P.G.); (M.H.)
| | - Nedra Wilson
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA; (M.A.); (N.W.)
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (M.W.G.); (P.G.); (M.H.)
| |
Collapse
|
2
|
Yang W, Sha Y, Chen X, Liu X, Wang F, Wang J, Shao P, Chen Q, Gao M, Huang W. Effects of the Interaction between Rumen Microbiota Density-VFAs-Hepatic Gluconeogenesis on the Adaptability of Tibetan Sheep to Plateau. Int J Mol Sci 2024; 25:6726. [PMID: 38928432 PMCID: PMC11203870 DOI: 10.3390/ijms25126726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
During the adaptive evolution of animals, the host and its gut microbiota co-adapt to different elevations. Currently, there are few reports on the rumen microbiota-hepato-intestinal axis of Tibetan sheep at different altitudes. Therefore, the purpose of this study was to explore the regulatory effect of rumen microorganism-volatile fatty acids (VFAs)-VFAs transporter gene interactions on the key enzymes and genes related to gluconeogenesis in Tibetan sheep. The rumen fermentation parameters, rumen microbial densities, liver gluconeogenesis activity and related genes were determined and analyzed using gas chromatography, RT-qPCR and other research methods. Correlation analysis revealed a reciprocal relationship among rumen microflora-VFAs-hepatic gluconeogenesis in Tibetan sheep at different altitudes. Among the microbiota, Ruminococcus flavefaciens (R. flavefaciens), Ruminococcus albus (R. albus), Fibrobactersuccinogenes and Ruminobacter amylophilus (R. amylophilus) were significantly correlated with propionic acid (p < 0.05), while propionic acid was significantly correlated with the transport genes monocarboxylate transporter 4 (MCT4) and anion exchanger 2 (AE2) (p < 0.05). Propionic acid was significantly correlated with key enzymes such as pyruvate carboxylase, phosphoenolpyruvic acid carboxylase and glucose (Glu) in the gluconeogenesis pathway (p < 0.05). Additionally, the expressions of these genes were significantly correlated with those of the related genes, namely, forkhead box protein O1 (FOXO1) and mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2) (p < 0.05). The results showed that rumen microbiota densities differed at different altitudes, and the metabolically produced VFA contents differed, which led to adaptive changes in the key enzyme activities of gluconeogenesis and the expressions of related genes.
Collapse
Affiliation(s)
| | | | | | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.Y.); (Y.S.); (X.C.); (F.W.); (J.W.); (P.S.); (Q.C.); (M.G.); (W.H.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Zhang L, Tan C, Xin Z, Huang S, Ma J, Zhang M, Shu G, Luo H, Deng B, Jiang Q, Deng J. UPLC-Orbitrap-MS/MS Combined With Biochemical Analysis to Determine the Growth and Development of Mothers and Fetuses in Different Gestation Periods on Tibetan Sow Model. Front Nutr 2022; 9:836938. [PMID: 35425793 PMCID: PMC9001880 DOI: 10.3389/fnut.2022.836938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pregnancy is a complex and dynamic process, the physiological and metabolite changes of the mother are affected by different pregnancy stages, but little information is available about their changes and potential mechanisms during pregnancy, especially in blood and amniotic fluid. Here, the maternal metabolism rules at different pregnancy stages were investigated by using a Tibetan sow model to analyze the physiological hormones and nutrient metabolism characteristics of maternal serum and amniotic fluid as well as their correlations with each other. Our results showed that amniotic fluid had a decrease (P < 0.05) in the concentrations of glucose, insulin and hepatocyte growth factor as pregnancy progressed, while maternal serum exhibited the highest concentrations of glucose and insulin at 75 days of gestation (P < 0.05), and a significant positive correlation (P < 0.05) between insulin and citric acid. Additionally, T4 and cortisol had the highest levels during late gestation (P < 0.05). Furthermore, metabolomics analysis revealed significant enrichment in the citrate cycle pathway and the phenylalanine/tyrosine/tryptophan biosynthesis pathway (P < 0.05) with the progress of gestation. This study clarified the adaptive changes of glucose, insulin and citric acid in Tibetan sows during pregnancy as well as the influence of aromatic amino acids, hepatocyte growth factor, cortisol and other physiological indicators on fetal growth and development, providing new clues for the normal development of the mother and the fetus, which may become a promising target for improving the well-being of pregnancy.
Collapse
Affiliation(s)
- Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Baichuan Deng,
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Qingyan Jiang,
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jinping Deng,
| |
Collapse
|
4
|
Goodarzi P, Habibi M, Roberts K, Sutton J, Shili CN, Lin D, Pezeshki A. Dietary Tryptophan Supplementation Alters Fat and Glucose Metabolism in a Low-Birthweight Piglet Model. Nutrients 2021; 13:2561. [PMID: 34444719 PMCID: PMC8399558 DOI: 10.3390/nu13082561] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Low birthweight (LBW) is associated with metabolic complications, such as glucose and lipid metabolism disturbances in early life. The objective of this study was to assess: (1) the effect of dietary tryptophan (Trp) on glucose and fat metabolism in an LBW piglet model, and (2) the role peripheral 5-hydroxytryptamine type 3 (5HT3) receptors in regulating the feeding behavior in LBW piglets fed with Trp-supplemented diets. Seven-day-old piglets were assigned to 4 treatments: normal birthweight-0%Trp (NBW-T0), LBW-0%Trp (LBW-T0), LBW-0.4%Trp (LBW-T0.4), and LBW-0.8%Trp (LBW-T0.8) for 3 weeks. Compared to LBW-T0, the blood glucose was decreased in LBW-T0.8 at 60 min following the meal test, and the triglycerides were lower in LBW-T0.4 and LBW-T0.8. Relative to LBW-T0, LBW-T0.8 had a lower transcript and protein abundance of hepatic glucose transporter-2, a higher mRNA abundance of glucokinase, and a lower transcript of phosphoenolpyruvate carboxykinase. LBW-T0.4 tended to have a lower protein abundance of sodium-glucose co-transporter 1 in the jejunum. In comparison with LBW-T0, LBW-T0.4 and LBW-T0.8 had a lower transcript of hepatic acetyl-CoA carboxylase, and LBW-T0.4 had a higher transcript of 3-hydroxyacyl-CoA dehydrogenase. Blocking 5-HT3 receptors with ondansetron reduced the feed intake in all groups, with a transient effect on LBW-T0, but more persistent effect on LBW-T0.8 and NBW-T0. In conclusion, Trp supplementation reduced the hepatic lipogenesis and gluconeogenesis, but increased the glycolysis in LBW piglets. Peripheral serotonin is likely involved in the regulation of feeding behavior, particularly in LBW piglets fed diets supplemented with a higher dose of Trp.
Collapse
Affiliation(s)
- Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Kennedy Roberts
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Julia Sutton
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Cedrick Ndhumba Shili
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| |
Collapse
|
5
|
Wu P, Chen L, Cheng J, Pan Y, Zhu X, Bao L, Chu W, Zhang J. The miRNA expression profile directly reflects the energy metabolic differences between slow and fast muscle with nutritional regulation of the Chinese perch (Siniperca chuatsi). Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111003. [PMID: 34118407 DOI: 10.1016/j.cbpa.2021.111003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Fish skeletal muscles are composed of two distinct types, slow and fast muscles, and they play important roles in maintaining the body's movement and energy metabolism. The two types of muscle are easy to separate, so they are often used as the model system for studies on their physiological and functional characteristics. In this study, we revealed that the carbohydrate and lipid metabolic KEGG pathways are different between slow and fast muscles of Chinese perch with transcriptome analysis. In fast muscle, glucose metabolism was catabolic with higher glycolysis capacity, while in slow muscle, glucose metabolism was anabolic with more glycogen synthesis. In addition, oxidative metabolism in slow muscle was stronger than that in fast muscle. By analyzing the expression levels of 40 miRNAs involved in metabolism in the muscles of Chinese perch, 18 miRNAs were significantly upregulated and 7 were significantly downregulated in slow muscle compared with fast muscle. Based on functional enrichment analysis of their target genes, the differential expression levels of 17 miRNAs in slow and fast muscles were reflected in their carbohydrate and lipid metabolism. Among these, 15 miRNAs were associated with carbohydrate metabolism, and 6 miRNAs were associated with lipid metabolism. After 3 days of starvation, the expression levels of 15 miRNAs involved in glucose metabolism in fast and slow muscles increased. However, after 7 days of starvation, the mRNA levels of miR-22a, miR-23a, miR-133a-3p, miR-139, miR-143, miR-144, miR-181a and miR-206 decreased to basal levels. Our data suggest that the possible reason for the difference in glucose and lipid metabolism is that more miRNAs inhibit the expression of target genes in slow muscle.
Collapse
Affiliation(s)
- Ping Wu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lin Chen
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jia Cheng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yaxiong Pan
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Lingsheng Bao
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
6
|
Son DH, Hwang NH, Chung WH, Seong HS, Lim H, Cho ES, Choi JW, Kang KS, Kim YM. Whole-genome resequencing analysis of 20 Micro-pigs. Genes Genomics 2019; 42:263-272. [PMID: 31833050 DOI: 10.1007/s13258-019-00891-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Miniature pigs have been increasingly used as mammalian model animals for biomedical research because of their similarity to human beings in terms of their metabolic features and proportional organ sizes. However, despite their importance, there is a severe lack of genome-wide studies on miniature pigs. OBJECTIVE In this study, we performed whole-genome sequencing analysis of 20 Micro-pigs obtained from Medi Kinetics to elucidate their genomic characteristics. RESULTS Approximately 595 gigabase pairs (Gb) of sequence reads were generated to be mapped to the swine reference genome assembly (Sus scrofa 10.2); on average, the sequence reads covered 99.15% of the reference genome at an average of 9.6-fold coverage. We detected a total of 19,518,548 SNPs, of which 8.7% were found to be novel. With further annotation of all of the SNPs, we retrieved 144,507 nonsynonymous SNPs (nsSNPs); of these, 5968 were found in all 20 individuals used in this study. SIFT prediction for these SNPs identified that 812 nsSNPs in 402 genes were deleterious. Among these 402 genes, we identified some genes that could potentially affect traits of interest in Micro-pigs, such as RHEB and FRAS1. Furthermore, we performed runs of homozygosity analysis to locate potential selection signatures in the genome, detecting several loci that might be involved in phenotypic characteristics in Micro-pigs, such as MSTN, GDF5, and GDF11. CONCLUSION In this study, we identified numerous nsSNPs that could be used as candidate genetic markers with involvement in traits of interest. Furthermore, we detected putative selection footprints that might be associated with recent selection applied to miniature pigs.
Collapse
Affiliation(s)
- Da-Hye Son
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nam-Hyun Hwang
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Won-Hyong Chung
- Research Division of Food Functionality, Research Group of Healthcare, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Ha-Seung Seong
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyungbum Lim
- Medikinetics Co., Ltd, 4 Hansan-gil, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17792, Republic of Korea
| | - Eun-Seok Cho
- Division of Swine Science, National Institute of Animal Science, RDA, Cheonan, 31000, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Kyung-Soo Kang
- Medikinetics Co., Ltd, 4 Hansan-gil, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17792, Republic of Korea.
| | - Yong-Min Kim
- Division of Swine Science, National Institute of Animal Science, RDA, Cheonan, 31000, Republic of Korea.
| |
Collapse
|