1
|
Aboregela AM. Approaches based on natural products and miRNAs in pituitary adenomas: unveiling therapeutic intervention. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:69-88. [PMID: 39102032 DOI: 10.1007/s00210-024-03347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Pituitary adenomas (PAs) are tumors originating in the pituitary gland, a small gland located at the base of the brain. They are the most common type of pituitary tumor, affecting approximately 1 in 10 people over their lifetime. Common symptoms include headaches, vision problems, hormonal imbalances, and weight changes. Treatment options depend on the type and size of the adenoma and may consist of medication, surgery, radiation therapy, or a combination. PAs are typically benign and slow-growing, but they can cause significant health issues if left untreated. Proper diagnosis and management by an experienced multidisciplinary team is important for achieving the best outcomes. Natural compounds like celastrol, curcumin, quercetin, apigenin, resveratrol, epigallocatechin gallate (EGCG), and genistein have shown the ability to inhibit cell growth, promote cell death, and suppress hormone activity in pituitary tumor cells, suggesting their potential as alternative or complementary treatments for PAs. MicroRNAs (miRNAs) are a kind of tiny RNA molecules that do not code for proteins and have a vital function in controlling gene expression. These 21-23 nucleotide-long molecules regulate gene expression by binding to complementary sequences in mRNA molecules, leading to mRNA degradation. miRNAs participate in a wide range of biological activities, including apoptosis, metastasis, differentiation, and proliferation. The research indicates that miRNAs play a crucial role in the pathogenesis, therapeutic approaches, diagnosis, and prognosis of PAs. This review article will provide a comprehensive analysis of the current understanding of the efficacy of naturally derived anti-cancer agents in the treatment of PAs. Furthermore, the study provides a comprehensive assessment of the miRNAs in PAs, their role in the development of PAs, and their potential application in the treatment of the condition.
Collapse
Affiliation(s)
- Adel Mohamed Aboregela
- Anatomy Department, College of Medicine, University of Bisha, P.O Box 551, Bisha, 61922, Saudi Arabia.
| |
Collapse
|
2
|
Asaad W, Utkina M, Shcherbakova A, Popov S, Melnichenko G, Mokrysheva N. scRNA sequencing technology for PitNET studies. Front Endocrinol (Lausanne) 2024; 15:1414223. [PMID: 39114291 PMCID: PMC11303145 DOI: 10.3389/fendo.2024.1414223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are common, most likely benign tumors with complex clinical characteristics related to hormone hypersecretion and/or growing sellar tumor mass. PitNET types are classified according to their expression of specific transcriptional factors (TFs) and hormone secretion levels. Some types show aggressive, invasive, and reoccurrence behavior. Current research is being conducted to understand the molecular mechanisms regulating these high-heterogeneous neoplasms originating from adenohypophysis, and single-cell RNA sequencing (scRNA-seq) technology is now playing an essential role in these studies due to its remarkable resolution at the single-cell level. This review describes recent studies on human PitNETs performed with scRNA-seq technology, highlighting the potential of this approach in revealing these tumor pathologies, behavior, and regulatory mechanisms.
Collapse
Affiliation(s)
| | - Marina Utkina
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Moscow, Russia
| | | | | | | | | |
Collapse
|
3
|
Serioli S, Agostini L, Pietrantoni A, Valeri F, Costanza F, Chiloiro S, Buffoli B, Piazza A, Poliani PL, Peris-Celda M, Iavarone F, Gaudino S, Gessi M, Schinzari G, Mattogno PP, Giampietro A, De Marinis L, Pontecorvi A, Fontanella MM, Lauretti L, Rindi G, Olivi A, Bianchi A, Doglietto F. Aggressive PitNETs and Potential Target Therapies: A Systematic Review of Molecular and Genetic Pathways. Int J Mol Sci 2023; 24:15719. [PMID: 37958702 PMCID: PMC10650665 DOI: 10.3390/ijms242115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, advances in molecular biology and bioinformatics have allowed a more thorough understanding of tumorigenesis in aggressive PitNETs (pituitary neuroendocrine tumors) through the identification of specific essential genes, crucial molecular pathways, regulators, and effects of the tumoral microenvironment. Target therapies have been developed to cure oncology patients refractory to traditional treatments, introducing the concept of precision medicine. Preliminary data on PitNETs are derived from preclinical studies conducted on cell cultures, animal models, and a few case reports or small case series. This study comprehensively reviews the principal pathways involved in aggressive PitNETs, describing the potential target therapies. A search was conducted on Pubmed, Scopus, and Web of Science for English papers published between 1 January 2004, and 15 June 2023. 254 were selected, and the topics related to aggressive PitNETs were recorded and discussed in detail: epigenetic aspects, membrane proteins and receptors, metalloprotease, molecular pathways, PPRK, and the immune microenvironment. A comprehensive comprehension of the molecular mechanisms linked to PitNETs' aggressiveness and invasiveness is crucial. Despite promising preliminary findings, additional research and clinical trials are necessary to confirm the indications and effectiveness of target therapies for PitNETs.
Collapse
Affiliation(s)
- Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Ludovico Agostini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | | | - Federico Valeri
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flavia Costanza
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Sabrina Chiloiro
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Amedeo Piazza
- Department of Neuroscience, Neurosurgery Division, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Pietro Luigi Poliani
- Pathology Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele, 20132 Milan, Italy;
| | - Maria Peris-Celda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Otolaryngology/Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy
| | - Simona Gaudino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Gessi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Schinzari
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pier Paolo Mattogno
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Laura De Marinis
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Alfredo Pontecorvi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Liverana Lauretti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Guido Rindi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Alessandro Olivi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Bianchi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Francesco Doglietto
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
4
|
Wang W, Ma L, Zhao Y, Liu M, Ye W, Li X. Research progress on the role of the Wnt signaling pathway in pituitary adenoma. Front Endocrinol (Lausanne) 2023; 14:1216817. [PMID: 37780610 PMCID: PMC10538627 DOI: 10.3389/fendo.2023.1216817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Pituitary adenoma (PA) is the third most common central nervous system tumor originating from the anterior pituitary, but its pathogenesis remains unclear. The Wnt signaling pathway is a conserved pathway involved in cell proliferation, Self-renewal of stem cells, and cell differentiation. It is related to the occurrence of various tumors, including PA. This article reviews the latest developments in Wnt pathway inhibitors and pathway-targeted drugs. It discusses the possibility of combining Wnt pathway inhibitors with immunotherapy to provide a theoretical basis for the combined treatment of PA.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianfeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Liang Q, Jin W, Huang Z, Yin H, Liu S, Liu L, Song X, Wang Z, Fei J. A plasma 3-marker microRNA biosignature distinguishes spinal tuberculosis from other spinal destructive diseases and pulmonary tuberculosis. Front Cell Infect Microbiol 2023; 13:1125946. [PMID: 36926516 PMCID: PMC10011472 DOI: 10.3389/fcimb.2023.1125946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Accurate spinal tuberculosis (TB) diagnosis is of utmost importance for adequately treating and managing the disease. Given the need for additional diagnostic tools, this study aimed to investigate the utility of host serum miRNA biomarkers for diagnosing and distinguishing spinal tuberculosis (STB) from pulmonary tuberculosis (PTB) and other spinal diseases of different origins (SDD). For a case-controlled investigation, a total of 423 subjects were voluntarily recruited, with 157 cases of STB, 83 cases of SDD, 30 cases of active PTB, and 153 cases of healthy controls (CONT) in 4 clinical centers. To discover the STB-specific miRNA biosignature, a high-throughput miRNA profiling study was performed in the pilot study with 12 cases of STB and 8 cases of CONT using the Exiqon miRNA PCR array platform. A bioinformatics study identified that the 3-plasma miRNA combination (hsa-miR-506-3p, hsa-miR-543, hsa-miR-195-5p) might serve as a candidate biomarker for STB. The subsequent training study developed the diagnostic model using multivariate logistic regression in training data sets, including CONT(n=100) and STB (n=100). Youden's J index determined the optimal classification threshold. Receiver Operating Characteristic (ROC) curve analysis showed that 3-plasma miRNA biomarker signatures have an area under the curve (AUC) = 0.87, sensitivity = 80.5%, and specificity = 80.0%. To explore the possible potential to distinguish spinal TB from PDB and other SDD, the diagnostic model with the same classification threshold was applied to the analysis of the independent validation data set, including CONT(n=45), STB(n=45), brucellosis spondylitis (BS, n=30), PTB (n=30), spinal tumor (ST, n=30) and pyogenic spondylitis (PS, n=23). The results showed diagnostic model based on three miRNA signatures could discriminate the STB from other SDD groups with sensitivity=80%, specificity=96%, Positive Predictive Value (PPV)=84%, Negative Predictive Value (NPV)=94%, the total accuracy rate of 92%. These results indicate that this 3-plasma miRNA biomarker signature could effectively discriminate the STB from other spinal destructive diseases and pulmonary tuberculosis. The present study shows that the diagnostic model based on 3-plasma miRNA biomarker signature (hsa-miR-506-3p, hsa-miR-543, hsa-miR-195-5p) may be used for medical guidance to discriminate the STB from other spinal destructive disease and pulmonary tuberculosis.
Collapse
Affiliation(s)
- Qiang Liang
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, China
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Weidong Jin
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhigang Huang
- Department of Orthopedics, The Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Huquan Yin
- Department of Biochemistry, Inteliex Biomedical Corp, Tampa, FL, United States
| | - Shengchun Liu
- Department of Orthopedics, The Tenth People’s Hospital of Shenyang, Shenyang, China
| | - Liehua Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangwei Song
- Department of Orthopaedics, First Affiliated Hospital of Xinxiang Medical College, Weihui, China
| | - Zili Wang
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Spine Surgery, Xi’an International Medical Center Hospital Affiliated to Northwest University, Xi’an, Shaanxi, China
- *Correspondence: Zili Wang, ; Jun Fei,
| | - Jun Fei
- Department of Orthopedics, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Zili Wang, ; Jun Fei,
| |
Collapse
|
6
|
Demarchi G, Valla S, Perrone S, Chimento A, Bonadeo N, Vitale DL, Spinelli FM, Cervio A, Sevlever G, Alaniz L, Berner S, Cristina C. β-Catenin is reduced in membranes of human prolactinoma cells and it is inhibited by temozolomide in prolactin secreting tumor models. Tumour Biol 2022; 44:85-105. [DOI: 10.3233/tub-211500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION: Prolactinomas are the most frequent pituitary tumor subtype. Despite most of them respond to medical treatment, a proportion are resistant and become a challenge in clinical management. Wnt/β-Catenin pathway has been implicated in several cancers including pituitary tumors and other sellar region malignancies. Interestingly, Wnt/β-Catenin inhibition augments the cytotoxicity of the chemotherapeutic agent Temozolomide (TMZ) in different cancers. TMZ is now being implemented as rescue therapy for aggressive pituitary adenoma treatment. However, the molecular mechanisms associated with TMZ action in pituitary tumors remain unclear. OBJECTIVES: Our aims in the present study were to evaluate differential β-Catenin expression in human resistant prolactinomas and Wnt/β-Catenin signaling activation and involvement in Prolactin (PRL) secreting experimental models treated with TMZ. RESULTS: We first evaluated by immunohistochemistry β-Catenin localization in human resistant prolactinomas in which we demonstrated reduced membrane β-Catenin in prolactinoma cells compared to normal pituitaries, independently of the Ki-67 proliferation indexes. In turn, in vivo 15 mg/kg of orally administered TMZ markedly reduced PRL production and increased prolactinoma cell apoptosis in mice bearing xenografted prolactinomas. Intratumoral β-Catenin strongly correlated with Prl and Cyclin D1, and importantly, TMZ downregulated both β-Catenin and Cyclin D1, supporting their significance in prolactinoma growth and as candidates of therapeutic targets. When tested in vitro, TMZ directly reduced MMQ cell viability, increased apoptosis and produced G2/M cell cycle arrest. Remarkably, β-Catenin activation and VEGF secretion were inhibited by TMZ in vitro. CONCLUSIONS: We concluded that dopamine resistant prolactinomas undergo a β-Catenin relocalization in relation to normal pituitaries and that TMZ restrains experimental prolactinoma tumorigenicity by reducing PRL production and β-Catenin activation. Together, our findings contribute to the understanding of Wnt/β-Catenin implication in prolactinoma maintenance and TMZ therapy, opening the opportunity of new treatment strategies for aggressive and resistant pituitary tumors.
Collapse
Affiliation(s)
- Gianina Demarchi
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - Sofía Valla
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - Sofía Perrone
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - Agustina Chimento
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - Nadia Bonadeo
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - Daiana Luján Vitale
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - Fiorella Mercedes Spinelli
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - Andrés Cervio
- Departamento de Neurocirugía/Departamento de Neuropatología, Instituto FLENI, Buenos Aires, Argentina
| | - Gustavo Sevlever
- Departamento de Neurocirugía/Departamento de Neuropatología, Instituto FLENI, Buenos Aires, Argentina
| | - Laura Alaniz
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| | - Silvia Berner
- Servicio de Neurocirugía, Clínica Santa Isabel, Buenos Aires, Argentina
| | - Carolina Cristina
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) – UNNOBA-UNSAdA-CONICET, Pergamino, Buenos Aires, Argentina
| |
Collapse
|
7
|
Liu F, Li T, Zhan X. Silencing circular RNAPTPN12 promoted the growth of keloid fibroblasts by activating Wnt signaling pathway via targeting microRNA-21-5p. Bioengineered 2022; 13:3503-3515. [PMID: 35068324 PMCID: PMC8974207 DOI: 10.1080/21655979.2022.2029108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Keloid is a skin disease marked by fibroplasia, and fibroblasts viability plays a considerable part in keloid. Our research was devoted to assessing the involvement and mechanism of circPTPN12 in keloid. The level of circPTPN12 and miR-21-5p was estimated by qRT-PCR in keloid tissues and cells. MTT analysis was devoted to evaluating the multiplication of keloid fibroblasts. Additionally, transwell assay was dedicated to verifying cell migration and invasion. Furthermore, keloid fibroblasts apoptosis level was assessed adopting flow cytometry, and the relevancy between miR-21-5p and circPTPN12, miR-21-5p, and SMAD7 was assessed by dual luciferase assay. Similarly, RIP and RNA pull-down assay verified the relevance between genes. Moreover, levels of SMAD7 and proteins concerned in Wnt signaling pathway were appraised by Western blot. The level of circPTPN12 declined in keloid. circPTPN12 knockout could enhance the multiplication, migration, invasion, and decline apoptosis of keloid fibroblasts. Indeed, miR-21-5p could be packed with circPTPN12 sponge, SMAD7 was downstream effect factor of miR-21-5p, and miR-21-5p inhibitors partially reversed the promoting effect of silencing circPTPN12 on keloid formation. Otherwise, the level of SMAD7 was adjusted by circPTPN12 and miR-21-5p. Silencing circPTPN12 targeted miR-21-5p and activated Wnt pathway to accelerate keloid fibroblasts growth. Taken together, silencing circPTPN12 promotes the growth of keloid fibroblasts by activating Wnt pathway targeting miR-21-5p. CircPTPN12 may play a considerable part in keloid formation, which supplies a reference for molecularly targeted therapy keloid.
Collapse
Affiliation(s)
- Fei Liu
- Department of Dermatology, Jinhua People’s Hospital, Jinhua, Zhejiang, China
| | - Tao Li
- Department of Dermatology, Cancer Hospital Affiliated to the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoan Zhan
- Oncology Surgery, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
8
|
Ghafouri-Fard S, Abak A, Hussen BM, Taheri M, Sharifi G. The Emerging Role of Non-Coding RNAs in Pituitary Gland Tumors and Meningioma. Cancers (Basel) 2021; 13:cancers13235987. [PMID: 34885097 PMCID: PMC8656547 DOI: 10.3390/cancers13235987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are non-coding transcripts which are involved in the pathogenesis of pituitary gland tumors. LncRNAs that participate in the pathogenesis of pituitary gland tumors mainly serve as sponges for miRNAs. CLRN1-AS1/miR-217, XIST/miR-424-5p, H19/miR-93a, LINC00473/miR-502-3p, SNHG7/miR-449a, MEG8/miR-454-3p, MEG3/miR-23b-3p, MEG3/miR-376B-3P, SNHG6/miR-944, PCAT6/miR-139-3p, lncRNA-m433s1/miR-433, TUG1/miR-187-3p, SNHG1/miR-187-3p, SNHG1/miR-302, SNHG1/miR-372, SNHG1/miR-373, and SNHG1/miR-520 are identified lncRNA/miRNA pairs that are involved in this process. Hsa_circ_0001368 and circOMA1 are two examples of circRNAs that contribute to the pathogenesis of pituitary gland tumors. Meanwhile, SNHG1, LINC00702, LINC00460, and MEG3 have been found to partake in the pathogenesis of meningioma. In the current review, we describe the role of non-coding RNAs in two types of brain tumors, i.e., pituitary tumors and meningioma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
- Correspondence: (M.T.); (G.S.)
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran
- Correspondence: (M.T.); (G.S.)
| |
Collapse
|
9
|
Bahreini F, Jabbari P, Gossing W, Aziziyan F, Frohme M, Rezaei N. The role of noncoding RNAs in pituitary adenoma. Epigenomics 2021; 13:1421-1437. [PMID: 34558980 DOI: 10.2217/epi-2021-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pituitary adenomas (PAs) are common cranial tumors that affect the quality of life in patients. Early detection of PA is beneficial for avoiding clinical complications of this disease and increasing the quality of life. Noncoding RNAs, including long noncoding RNA, miRNA and circRNA, regulate protein expression, mostly by inhibiting the translation process. Studies have shown that dysregulation of noncoding RNAs is associated with PA. Hence understanding the expression pattern of noncoding RNAs can be considered a promising method for developing biomarkers. This article reviews data on the expression pattern of dysregulated noncoding RNAs involved in PA. Possible molecular mechanisms by which the dysregulated noncoding RNA could possibly induce PA are also described.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Parnian Jabbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Genetics, Genomics & Bioinformatics, University of California, Riverside, CA, USA
| | - Wilhelm Gossing
- Division Molecular Biotechnology & Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marcus Frohme
- Division Molecular Biotechnology & Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
MicroRNAs as Potential Biomarkers in Pituitary Adenomas. Noncoding RNA 2021; 7:ncrna7030055. [PMID: 34564317 PMCID: PMC8482103 DOI: 10.3390/ncrna7030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas (PAs) are one of the most common lesions of intracranial neoplasms, occurring in approximately 15% of the general population. They are typically benign, although some adenomas show aggressive behavior, exhibiting rapid growth, drug resistance, and invasion of surrounding tissues. Despite ongoing improvements in diagnostic and therapeutic strategies, late first diagnosis is common, and patients with PAs are prone to relapse. Therefore, earlier diagnosis and prevention of recurrence are of importance to improve patient care. MicroRNAs (miRNAs) are short non-coding single stranded RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies indicate that a deregulation of their expression patterns is related with pituitary tumorigenesis, suggesting that these small molecules could play a critical role in contributing to tumorigenesis and the onset of these tumors by acting either as oncosuppressors or as oncogenes, depending on the biological context. This paper provides an overview of miRNAs involved in PA tumorigenesis, which might serve as novel potential diagnostic and prognostic non-invasive biomarkers, and for the future development of miRNA-based therapeutic strategies for PAs.
Collapse
|
11
|
Cohn DE, Barros-Filho MC, Minatel BC, Pewarchuk ME, Marshall EA, Vucic EA, Sage AP, Telkar N, Stewart GL, Jurisica I, Reis PP, Robinson WP, Lam WL. Reactivation of Multiple Fetal miRNAs in Lung Adenocarcinoma. Cancers (Basel) 2021; 13:2686. [PMID: 34072436 PMCID: PMC8199175 DOI: 10.3390/cancers13112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of normal developmental pathways. However, cancer cells can co-opt these miRNAs, and the pathways that they regulate, to drive pro-tumourigenic phenotypes. Characterization of the miRNA transcriptomes of fetal organs is essential for identifying these oncofetal miRNAs, but it has been limited by fetal sample availability. As oncofetal miRNAs are absent from healthy adult lungs, they represent ideal targets for developing diagnostic and therapeutic strategies. We conducted small RNA sequencing of a rare collection of 25 human fetal lung (FL) samples and compared them to two independent cohorts (n = 140, n = 427), each comprised of adult non-neoplastic lung (ANL) and lung adenocarcinoma (LUAD) samples. We identified 13 oncofetal miRNAs that were expressed in FL and LUAD but not in ANL. These oncofetal miRNAs are potential biomarkers for LUAD detection (AUC = 0.963). Five of these miRNAs are derived from the imprinted C14MC miRNA cluster at the 14q32 locus, which has been associated with cancer development and abnormal fetal and placental development. Additionally, we observed the pulmonary expression of 44 previously unannotated miRNAs. The sequencing of these fetal lung samples also provides a baseline resource against which aberrant samples can be compared.
Collapse
Affiliation(s)
- David E. Cohn
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Mateus C. Barros-Filho
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP 01525-001, Brazil
| | - Brenda C. Minatel
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Michelle E. Pewarchuk
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Erin A. Marshall
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Emily A. Vucic
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- NYU Langone Medical Center, New York, NY 10016, USA
| | - Adam P. Sage
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Nikita Telkar
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Patricia P. Reis
- Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil;
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| |
Collapse
|
12
|
Xu Y, Lin L, Lv D, Yan S, He S, Ge H. LncRNA-LINC01089 inhibits lung adenocarcinoma cell proliferation and promotes apoptosis via sponging miR-543. Tissue Cell 2021; 72:101535. [PMID: 33892399 DOI: 10.1016/j.tice.2021.101535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/22/2023]
Abstract
LINC01089, a newly discovered long non-coding RNA (lncRNA), has been reported to inhibit the progression of various types of cancers. This study aimed to characterize LINC01089 in the pathogenesis of lung adenocarcinoma (LUAD). LINC01089 expression in LUAD tissues or/and cells and its association with the overall survival of LUAD patients was analyzed in The Cancer Genome Atlas (TCGA)-LUAD database, by qRT-PCR or by Kaplan-Meier's curve. Databases of StarBase, LncBase, and DEmiRNA were used to predict and confirm the interaction between LINC01089 and potential LINC01089-targeted microRNAs (miRNAs). The expressions of these miRNAs in LUAD tissues or/and cells were determined by qRT-PCR, and dual-luciferase reporter assay was performed to validate lncRNA-miRNA interaction. The expressions of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and Cleaved caspase-3 in LUAD cells were analyzed by Western blot. LINC01089 improved overall survival of LUAD patients and was low-expressed in LUAD. Upregulating LINC01089 expression reduced LUAD cell viability, inhibited colony formation, enhanced apoptosis, accompanied by downregulated Bcl-2 and miR-543 and upregulated Bax and Cleaved caspase-3. MiR-543 was determined as a target gene of LINC01089, and was high-expressed in LUAD tissues. Upregulating miR-543 expression induced the opposite effects to LINC01089 upregulation on these cellular biological behaviors and the expressions of Bcl-2, Bax and Cleaved caspase-3. Moreover, the effects of miR-543 upregulation and LINC01089 upregulation were mutually counteracted by each other. LINC01089 inhibited lung adenocarcinoma cell proliferation and promoted apoptosis via sponging miR-543.
Collapse
Affiliation(s)
- Youwen Xu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), China
| | - Ling Lin
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, China
| | - Dongqing Lv
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, China
| | - Shuangquan Yan
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, China
| | - Susu He
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, China
| | - Hongfei Ge
- Department of Thoracic Surgery, Taizhou Hospital of Wenzhou Medical University, China.
| |
Collapse
|
13
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
14
|
Yuan W, Gao H, Wang G, Miao Y, Jiang K, Zhang K, Wu J. Higher miR-543 levels correlate with lower STK31 expression and longer pancreatic cancer survival. Cancer Med 2020; 9:9632-9640. [PMID: 33128354 PMCID: PMC7774731 DOI: 10.1002/cam4.3559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant gastrointestinal tumors and the 5‐year survival is only 9%. The expression of miRNAs in serum has been proved to be related to tumorigenesis and development of cancers. The miRNA targets and gene targets were predicted in microRNA.org, miRDB, TargetScan, and RNAInter. The expression data of STK31 (Serine/Threonine Kinase 31) and miRNAs generated from PC samples was from TCGA and the relationship of expression of STK31 and miR‐543 was confirmed in PC samples from our center. Double luciferase reporter gene assay was used to demonstrate the direct binding between miR‐543 and STK31. The effect of expression level of miRNAs on survival time was assessed by Kaplan–Meier curves. The Go Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of miR‐543‐related genes were performed. The results showed that miR‐543 had a statistically significant correlation with the expression of STK31 and contained the direct binding site with STK31. The expression level of miR‐543 may affect the survival of PC. The results of GO and KEGG pathway analysis showed that miR‐543 might play a key role in Insulin signaling pathway. MiR‐543 could be combined with STK31 and affect the expression of STK31. The expression of miR‐543 could also predict the survival of patients with PC, which suggested that miR‐543 might play an important role in PC. The GO and KEGG pathway analysis also displayed that miR‐543 was involved in several other pathways of pancreas.
Collapse
Affiliation(s)
- Weizhong Yuan
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
- Department of General SurgeryNanjing Meishan HospitalNanjingJiangsuChina
| | - Hao Gao
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Guangfu Wang
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yi Miao
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Kuirong Jiang
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Kai Zhang
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| | - Junli Wu
- Pancreatic Center & Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Pancreas Institute of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
15
|
de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55:691-715. [PMID: 33081543 DOI: 10.1080/10409238.2020.1828260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | - Maureen Spit
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
16
|
Donati S, Ciuffi S, Marini F, Palmini G, Miglietta F, Aurilia C, Brandi ML. Multiple Endocrine Neoplasia Type 1: The Potential Role of microRNAs in the Management of the Syndrome. Int J Mol Sci 2020; 21:ijms21207592. [PMID: 33066578 PMCID: PMC7589704 DOI: 10.3390/ijms21207592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare inherited tumor syndrome, characterized by the development of multiple neuroendocrine tumors (NETs) in a single patient. Major manifestations include primary hyperparathyroidism, gastro-entero-pancreatic neuroendocrine tumors, and pituitary adenomas. In addition to these main NETs, various combinations of more than 20 endocrine and non-endocrine tumors have been described in MEN1 patients. Despite advances in diagnostic techniques and treatment options, which are generally similar to those of sporadic tumors, patients with MEN1 have a poor life expectancy, and the need for targeted therapies is strongly felt. MEN1 is caused by germline heterozygous inactivating mutations of the MEN1 gene, which encodes menin, a tumor suppressor protein. The lack of a direct genotype–phenotype correlation does not permit the determination of the exact clinical course of the syndrome. One of the possible causes of this lack of association could be ascribed to epigenetic factors, including microRNAs (miRNAs), single-stranded non-coding small RNAs that negatively regulate post-transcriptional gene expression. Some miRNAs, and their deregulation, have been associated with MEN1 tumorigenesis. Recently, an extracellular class of miRNAs has also been identified (c-miRNAs); variations in their levels showed association with various human diseases, including tumors. The aim of this review is to provide a general overview on the involvement of miRNAs in MEN1 tumor development, to be used as possible targets for novel molecular therapies. The potential role of c-miRNAs as future non-invasive diagnostic and prognostic biomarkers of MEN1 will be discussed as well.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Francesca Miglietta
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
- Unit of Bone and Mineral Diseases, University Hospital of Florence, Largo Palagi 1, 50139 Florence, Italy
- Fondazione Italiana Ricerca Sulle Malattie Dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence: ; Tel.: +39-055-7946304
| |
Collapse
|
17
|
Zhou C, Zhao X, Duan S. The role of miR-543 in human cancerous and noncancerous diseases. J Cell Physiol 2020; 236:15-26. [PMID: 32542683 DOI: 10.1002/jcp.29860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) is a noncoding single-stranded RNA molecule that can regulate the posttranscriptional expression level of a gene by binding to the 3'-untranslated region (3'-UTR) of the target messenger RNA. miR-543 is a kind of miRNA, which plays an important role in the occurrence and development of various human cancerous and noncancerous diseases. miR-543 directly or indirectly regulates a large number of downstream target genes and plays an important role in cellular components, biological processes, and molecular functions. In addition, many studies have verified the regulatory mechanism, physiological role, biological function, and prognostic value of miR-543. Therefore, this article reviews the papers published in the past decade and elaborates on the research progress of miR-543 from the aspects of physiology and pathology, especially in cancerous and other noncancerous diseases. In particular, we pay attention to the expression patterns, direct targets, biological functions, related pathways, and prognostic value of miR-543 reported in experimental articles. And by comparing similar research articles, we point out existing controversies in this field to date, so as to facilitate further research in the future.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xin Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
18
|
Wang D, Cai L, Tian X, Li W. MiR-543 promotes tumorigenesis and angiogenesis in non-small cell lung cancer via modulating metastasis associated protein 1. Mol Med 2020; 26:44. [PMID: 32410569 PMCID: PMC7222519 DOI: 10.1186/s10020-020-00175-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study is aimed to explore the role of miR-543 in non-small cell lung cancer (NSCLC), and verify whether miR-543 targets metastasis associated protein 1 (MTA1) to affect tumorigenesis and angiogenesis in NSCLC. METHODS Firstly, miR-543 mimic and inhibitor were transfected into A549 cells and H1299 cells. The cells proliferation was tested by MTT and clone formation. The cells apoptosis was analyzed by cytometry. Tube formation assay was used to measure the vascularization of cells. qRT-PCR and Western Blot were used to measure the MTA1 expression. Dual-luciferase assay was used to analyze whether miR-543 targets MTA1. Secondly, MTA1 mimic and inhibitor were transfected into cells to analyze the effect of MTA1 on proliferation and angiogenesis in NSCLC cells. Lastly, the nude mice were used to verify the effect of miR-543 on tumorigenesis and angiogeneisis in NSCLC via modulating MATA1. RESULTS miR-543 overexpression could apparently promote cells proliferation and angiogeneisis in NSCLC cells. Meanwhile, the MTA1 expression was increased after transfecting miR-543 mimic. Dual luciferase reporter assay revealed MTA1 was a downstream target of miR-543. Further studies showed that inhibition of MTA1 weakened the role of miR-543 overexpression in NSCLC cells. Vivo experiments revealed that miR-543 promoted cells proliferation and angiogenesis in tumor tissues via modulating MTA1. CONCLUSION miR-543 could target MTA1 to promote tumorigenesis and angiogenesis in NSCLC via targeting MTA1.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Apoptosis/genetics
- Biomarkers
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- MicroRNAs/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- RNA Interference
- Repressor Proteins/genetics
- Trans-Activators/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Dawei Wang
- Department of Thoracic Surgery, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Li Cai
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xudong Tian
- Department of Thoracic Surgery, Liaocheng People's Hospital and Liaocheng Clinical School, No. 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Wenjun Li
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhungding East Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
19
|
Liu G, Liu W, Guo J. Clinical significance of miR-181a in patients with neonatal sepsis and its regulatory role in the lipopolysaccharide-induced inflammatory response. Exp Ther Med 2020; 19:1977-1983. [PMID: 32104257 DOI: 10.3892/etm.2020.8408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Neonatal sepsis (NS) poses a serious threat to the health of neonates worldwide. The present study aimed to investigate the diagnostic value of microRNA (miR)-181a in patients with NS and the regulatory role of miR-181a in lipopolysaccharide (LPS)-induced inflammation. A total of 102 neonates with NS and 50 neonates without sepsis were enrolled in the present study. The serum levels of miR-181a were estimated using reverse transcription-quantitative PCR. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic value of miR-181a for NS. The effect of miR-181a on the expression of Toll-like receptor (TLR)4 was assessed after modification of the expression of miR-181a in monocytes isolated from the blood of neonates in vitro. An ELISA was used to measure the concentration of inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-8 in the supernatant of monocytes. The serum levels of miR-181a were decreased in patients with NS compared with those in the controls. The area under the ROC curve of miR-181a was 0.893 with a sensitivity of 83.3% and a specificity of 84.0%. LPS stimulation in monocytes also led to a decrease in the expression of miR-181a. TLR4 was proven to be a direct target gene of miR-181a, according to the results of a luciferase reporter assay, and overexpression of miR-181a suppressed TLR4 expression in monocytes. Regarding LPS-induced inflammation, it was revealed that the upregulated levels of TNF-α and IL-8 induced by LPS were reduced by overexpression of miR-181a in monocytes. In conclusion, decreased serum levels of miR-181a may serve as a diagnostic biomarker in patients with NS and overexpression of miR-181a inhibits the LPS-induced inflammatory response at least partially by targeting TLR4. Aberrant miR-181a may be a non-invasive biomarker for NS patients, and provide a novel insight into the pathologic mechanisms of action behind the development of NS.
Collapse
Affiliation(s)
- Guozhi Liu
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Wei Liu
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Jie Guo
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
20
|
miR-543 promoted the cell proliferation and invasion of nasopharyngeal carcinoma by targeting the JAM-A. Hum Cell 2019; 32:477-486. [DOI: 10.1007/s13577-019-00274-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
|