1
|
Xu J, Wang Z, Niu Y, Tang Y, Wang Y, Huang J, Leung ELH. TRP channels in cancer: Therapeutic opportunities and research strategies. Pharmacol Res 2024; 209:107412. [PMID: 39303771 DOI: 10.1016/j.phrs.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The influence of gut microbiota on transient receptor potential (TRP) channels has been identified as an important element in the development of gastrointestinal conditions, yet its involvement in cancer progression is not as thoroughly understood. This review explores the multifaceted roles of TRP channels in oncogenesis and emphasizes their significance in cancer progression and therapeutic outcomes. Critical focus was placed on the influence of traditional medicines, such as traditional Chinese medicine (TCM) related aromatic medicines, on TRP channel functions. Moreover, we explored the interplay between the gut microbiota and TRP channels in cancer signaling, highlighting the therapeutic potential of targeting this axis in cancer treatment. The impact of current therapies on TRP channel function was examined, demonstrating the need for a comprehensive understanding of how different modalities affect TRP channels in cancer. Technological advancements, including artificial intelligence (AI) tools and computer-aided drug development (CADD), have been discussed in the context of leveraging TRP channels for innovative cancer therapies. Future directions emphasize the potential applications of TRP channel research in advancing cancer treatment and enhancing patients' well-being.
Collapse
Affiliation(s)
- Jiahui Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ziming Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Yuqing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China.
| |
Collapse
|
2
|
Meng X, Tang N, Su W, Chen W, Zhang Y, Li H. Fermentation of DaiDai fruit and its biological activity. Front Microbiol 2024; 15:1443283. [PMID: 39077743 PMCID: PMC11284028 DOI: 10.3389/fmicb.2024.1443283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
DaiDai fruit, a medicinal and edible plant fruit, is abundant in biologically active compounds and has a long history of use in traditional Chinese medicine. This research focuses on utilizing fermentation to develop a functional DaiDai fruit fermentation broth. Lactobacillus, Bacillus subtilis and Saccharomyces cerevisiae were employed in the fermentation process. By conducting screenings of bacterial strains, single factor experiments, and response surface methodology, the total flavonoids, polysaccharides, polyphenols, and 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) free radical scavenging rate were used as the index for selection, ultimately identifying Lactobacillus L-13 as the optimal fermentation strain. The optimal fermentation conditions were determined to be a time of 108 h, a temperature of 43.6°C, and a solid-liquid ratio of 1:15.157 (w/v). Under these conditions, the total flavonoid content reached 412.01 mg/g, representing a 36.71% increase compared to conventional extraction methods. The contents of polysaccharides and polyphenols and the DPPH scavenging rate were also increased. The fermentation broth of DaiDai fruit exhibited inhibitory effects on tyrosinase and melanin production in mouse melanoma cells B16-F10 induced by α-MSH and anti-inflammatory properties in a zebrafish inflammation model. These indicate that the DaiDai fruit fermentation broth possesses anti-melanoma, whitening, and anti-inflammatory properties, showcasing significant potential for applications in medicine, cosmetics, and other industries.
Collapse
Affiliation(s)
- Xiangyu Meng
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Nan Tang
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Su
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiji Chen
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Zhang
- Qingdao Benyue Biological Technology Co., Ltd., Qingdao, China
| | - He Li
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Omoloye A, Weisenburger S, Lehner MD, Gronier B. Menthacarin treatment attenuates nociception in models of visceral hypersensitivity. Neurogastroenterol Motil 2024; 36:e14760. [PMID: 38361164 DOI: 10.1111/nmo.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Chronic visceral hypersensitivity is closely associated with irritable bowel syndrome (IBS), a very common disorder which significantly impairs quality of life, characterized by abdominal pain, and distension. Imaging studies have found that IBS patients show higher metabolic activities and functional differences from normal controls in the anterior cingulate cortex (ACC), in response to visceral pain stimulation. Non-clinical data and clinical data suggest that medicinal products containing essential oils such as peppermint or caraway oil exert beneficial effects on IBS symptoms. METHODS We assessed acute and long-term treatment effects of a mixture of peppermint and caraway essential oils (Menthacarin) on brain electrophysiological markers of gut pain sensitivity in two rat models of visceral hypersensitivity. KEY RESULTS Chronic administration of corticosteroids and acute repeated mechanical hyperstimulation under anesthesia induced hyperalgesia and hypersensitivity, characterized by an increase in electrophysiological excitatory responses of ACC neurons to colorectal distension (CRD) and an increase in the proportion of neurons responding to otherwise subthreshold stimulation, respectively. Long-term, but not acute, oral administration of Menthacarin (60 mg kg-1 day-1) significantly reduced the net excitatory response to CRD in normally responsive control animals and counteracted the development of visceral hyperalgesia and hypersensitivity induced by repeated corticosterone administration and acute mechanical stimulation. CONCLUSIONS & INFERENCES The present study shows that, using the CRD method, chronic Menthacarin administration at a clinically relevant dose attenuates the neuronal discharge associated with visceral pain stimuli in the rat ACC, particularly in models of hypersensitivity, suggesting a potential for treating exaggerated visceral pain sensitivity.
Collapse
Affiliation(s)
- Adesina Omoloye
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | - Martin D Lehner
- Preclinical R&D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Benjamin Gronier
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
4
|
Nagata A, Oishi S, Kirishita N, Onoda K, Kobayashi T, Terada Y, Minami A, Senoo N, Yoshioka Y, Uchida K, Ito K, Miura S, Miyoshi N. Allyl Isothiocyanate Maintains DHA-Containing Glycerophospholipids and Ameliorates the Cognitive Function Decline in OVX Mice. ACS OMEGA 2023; 8:43118-43129. [PMID: 38024702 PMCID: PMC10652735 DOI: 10.1021/acsomega.3c06622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature-induced fatty acid desaturation is highly conserved in animals, plants, and bacteria. Allyl isothiocyanate (AITC) is an agonist of the transient receptor potential ankyrin 1 (TRPA1), which is activated by various chemophysiological stimuli, including low temperature. However, whether AITC induces fatty acid desaturation remains unknown. We showed here that AITC increased levels of glycerophospholipids (GP) esterified with unsaturated fatty acids, especially docosahexaenoic acid (DHA) in TRPA1-expressing HEK cells. Additionally, GP-DHA including phosphatidylcholine (18:0/22:6) and phosphatidylethanolamine (18:0/22:6) was increased in the brain and liver of AITC-administered mice. Moreover, intragastrical injection of AITC in ovariectomized (OVX) female C57BL/6J mice dose-dependently shortened the Δlatency time determined by the Morris water maze test, indicating AITC ameliorated the cognitive function decline in these mice. Thus, the oral administration of AITC maintains GP-DHA in the liver and brain, proving to be a potential strategy for preventing cognitive decline.
Collapse
Affiliation(s)
- Akika Nagata
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shiori Oishi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanako Kirishita
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keita Onoda
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Takuma Kobayashi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yuko Terada
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Akira Minami
- Department
of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanami Senoo
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yasukiyo Yoshioka
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Kunitoshi Uchida
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keisuke Ito
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shinji Miura
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Noriyuki Miyoshi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| |
Collapse
|
5
|
Leventhal AM, Tackett AP, Whitted L, Jordt SE, Jabba SV. Ice flavours and non-menthol synthetic cooling agents in e-cigarette products: a review. Tob Control 2023; 32:769-777. [PMID: 35483721 PMCID: PMC9613790 DOI: 10.1136/tobaccocontrol-2021-057073] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/19/2022] [Indexed: 01/21/2023]
Abstract
E-cigarettes with cooling flavours have diversified in ways that complicate tobacco control with the emergence of: (1) Ice-hybrid flavours (eg, 'Raspberry Ice') that combine cooling and fruity/sweet properties; and (2) Products containing non-menthol synthetic cooling agents (eg, Wilkinson Sword (WS), WS-3, WS-23 (termed 'koolada')). This paper reviews the background, chemistry, toxicology, marketing, user perceptions, use prevalence and policy implications of e-cigarette products with ice-hybrid flavours or non-menthol coolants. Scientific literature search supplemented with industry-generated and user-generated information found: (a) The tobacco industry has developed products containing synthetic coolants since 1974, (b) WS-3 and WS-23 are detected in mass-manufactured e-cigarettes (eg, PuffBar); (c) While safe for limited oral ingestion, inhalational toxicology and health effects from daily synthetic coolant exposure are unknown and merit scientific inquiry and attention from regulatory agencies; (d) Ice-hybrid flavours are marketed with themes incorporating fruitiness and/or coolness (eg, snow-covered raspberries); (e) WS-23/WS-3 concentrates also are sold as do-it-yourself additives, (f) Pharmacology research and user-generated and industry-generated information provide a premise to hypothesise that e-cigarette products with ice flavours or non-menthol cooling agents generate pleasant cooling sensations that mask nicotine's harshness while lacking certain aversive features of menthol-only products, (g) Adolescent and young adult use of e-cigarettes with ice-hybrid or other cooling flavours may be common and cross-sectionally associated with more frequent vaping and nicotine dependence in convenience samples. Evidence gaps in the epidemiology, toxicology, health effects and smoking cessation-promoting potential of using these products exist. E-cigarettes with ice flavours or synthetic coolants merit scientific and regulatory attention.
Collapse
Affiliation(s)
- Adam M Leventhal
- Institute for Addiction Science, University of Southern California, Los Angeles, California, USA
| | - Alayna P Tackett
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Lauren Whitted
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Sven Eric Jordt
- Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sairam V Jabba
- Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
6
|
Hashimoto M, Takahashi K, Ohta T. Inhibitory effects of linalool, an essential oil component of lavender, on nociceptive TRPA1 and voltage-gated Ca 2+ channels in mouse sensory neurons. Biochem Biophys Rep 2023; 34:101468. [PMID: 37102121 PMCID: PMC10123348 DOI: 10.1016/j.bbrep.2023.101468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Linalool, an essential oil component of lavender is commonly used in fragrances. It is known that linalool has anxiolytic, sedative, and analgesic actions. However, the mechanism of its analgesic action has not yet been fully clarified. Pain signals elicited by the activation of nociceptors on peripheral neurons are transmitted to the central nervous system. In the present study, we investigated the effects of linalool on transient receptor potential (TRP) channels and voltage-gated channels, both of which are important for pain signaling via nociceptors in somatosensory neurons. For detection of channel activity, the intracellular Ca2+ concentration ([Ca2+]i) was measured using a Ca2+-imaging system, and membrane currents were recorded using the whole-cell patch-clamp technique. Analgesic actions were also examined in vivo. In mouse sensory neurons linalool at concentrations that did not induce [Ca2+]i increases did not affect [Ca2+]i responses to capsaicin and acids, TRPV1 agonists, but suppressed those induced by allyl isothiocyanate (AITC) and carvacrol, TRPA1 agonists. Similar inhibitory effects of linalool were observed in cells that heterologously expressed TRPA1. Linalool attenuated the [Ca2+]i increases induced by KCl and voltage-gated Ca2+ currents but only slightly suppressed voltage-gated Na+currents in mouse sensory neurons. Linalool diminished TRPA1-mediated nociceptive behaviors. The present data suggest that linalool exerts an analgesic action via the suppression of nociceptive TRPA1 and voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- Miho Hashimoto
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
| |
Collapse
|
7
|
Torres KV, Pantke S, Rudolf D, Eberhardt MM, Leffler A. The coumarin osthole is a non-electrophilic agonist of TRPA1. Neurosci Lett 2022; 789:136878. [PMID: 36115537 DOI: 10.1016/j.neulet.2022.136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
The naturally occurring coumarin osthole has antipruritic properties, and recent reports suggest that this effect is due an inhibition or desensitization of the cation channels TRPV1 and TRPV3. Osthole was also suggested to activate TRPA1, an effect that should rather be pruritic than antipruritic. Here we characterized the effects of osthole on TRPA1 by means of ratiometric calcium imaging and patch clamp electrophysiology. In HEK 293 expressing human (h) TRPA1, osthole induced a concentration-dependent increase in intracellular calcium that was inhibited by the TRPA1-inhibitor A967079. In mouse dorsal root ganglion (DRG) cells, osthole induced a strong calcium-influx that was partly mediated by TRPA1. Osthole evoked fully reversible membrane currents in whole-cell as well as cell-free inside-out recordings on hTRPA1. Osthole failed to activate the mutant hTRPA1-S873V/T874L, a previously described binding site for the non-electrophilic TRPA1-agonists menthol and carvacrol. The combined application of osthole and carvacrol diminished channel activation, suggesting a competitive binding. Finally, osthole failed to activate TRPM8 and TRPV4 but induced a modest activation of hTRPV1 expressed in HEK 293 cells. We conclude that osthole is a potent non-electrophilic agonist of TRPA1. The relevance of this property for the antipruritic effects needs to be further explored.
Collapse
Affiliation(s)
- Karen V Torres
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Sebastian Pantke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Daniel Rudolf
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Mirjam M Eberhardt
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
8
|
Koyama S, Heinbockel T. Chemical Constituents of Essential Oils Used in Olfactory Training: Focus on COVID-19 Induced Olfactory Dysfunction. Front Pharmacol 2022; 13:835886. [PMID: 35721200 PMCID: PMC9201274 DOI: 10.3389/fphar.2022.835886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The recent increase in the number of patients with post-viral olfactory dysfunction (PVOD) following the outbreak of COVID-19 has raised the general interest in and concern about olfactory dysfunction. At present, no clear method of treatment for PVOD has been established. Currently the most well-known method to improve the symptoms of olfactory dysfunction is "olfactory training" using essential oils. The essential oils used in olfactory training typically include rose, lemon, clove, and eucalyptus, which were selected based on the odor prism hypothesis proposed by Hans Henning in 1916. He classified odors based on six primary categories or dimensions and suggested that any olfactory stimulus fits into his smell prism, a three-dimensional space. The term "olfactory training" has been used based on the concept of training olfactory sensory neurons to relearn and distinguish olfactory stimuli. However, other mechanisms might contribute to how olfactory training can improve the recovery of the olfactory sense. Possibly, the essential oils contain chemical constituents with bioactive properties that facilitate the recovery of the olfactory sense by suppressing inflammation and enhancing regeneration. In this review, we summarize the chemical constituents of the essential oils of rose, lemon, clove, and eucalyptus and raise the possibility that the chemical constituents with bioactive properties are involved in improving the symptoms of olfactory dysfunction. We also propose that other essential oils that contain chemical constituents with anti-inflammatory effects and have binding affinity with SARS-CoV-2 can be new candidates to test their efficiencies in facilitating the recovery.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
9
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
10
|
Collection of Data Variation Using a High-Throughput Image-Based Assay Platform Facilitates Data-Driven Understanding of TRPA1 Agonist Diversity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because transient receptor potential ankyrin 1 (TRPA1) is involved in various physiological functions, TRPA1-targeting drugs have been energetically developed. Although TRPA1 is considered a multimodal receptor, the structural diversity of TRPA1 agonists is not fully elucidated. We hypothesized that collecting a wider variation of TRPA1–compound interaction data would aid the understanding of its complex mechanism and aimed to challenge such data collection using an “image-based TRPA1 assay system combined with an in silico chemical space clustering concept.” Our library was clustered with 27 physicochemical molecular descriptors in silico, and structurally diverse compounds from each cluster were selected for a detailed kinetic assay to investigate variations of agonist structural rules. Through two sets of assays evaluating various compounds in parallel with validating effects of the previously established structural rules, we discovered that different chemical groups contribute to agonist activity, indicating that there are multiple agonist design concepts. A novel core structure for a TRPA1 agonist has been also proposed. Our new approach, “collection of TRPA1 activity data on compounds with physicochemical diversity,” will not only facilitate the understanding of the structural diversity of TRPA1 agonists but also contribute to the development of a new type of TRPA1-targeting drug.
Collapse
|
11
|
Mahajan N, Khare P, Kondepudi KK, Bishnoi M. TRPA1: Pharmacology, natural activators and role in obesity prevention. Eur J Pharmacol 2021; 912:174553. [PMID: 34627805 DOI: 10.1016/j.ejphar.2021.174553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is a calcium permeable, non-selective cation channel, expressed in the sensory neurons and non-neuronal cells of different tissues. Initially studied for its role in pain and inflammation, TRPA1 has now functionally involved in multiple other physiological functions. TRPA1 channel has been extensively studied for modulation by pungent compounds present in the spices and herbs. In the last decade, the role of TRPA1 agonism in body weight reduction, secretion of hunger and satiety hormones, insulin secretion and thermogenesis, has unveiled the potential of the TRPA1 channel to be used as a preventive target to tackle obesity and associated comorbidities including insulin resistance in type 2 diabetes. In this review, we summarized the recent findings of TRPA1 based dietary/non-dietary modulation for its role in obesity prevention and therapeutics.
Collapse
Affiliation(s)
- Neha Mahajan
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Pragyanshu Khare
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
12
|
The Beneficial Effects of Essential Oils in Anti-Obesity Treatment. Int J Mol Sci 2021; 22:ijms222111832. [PMID: 34769261 PMCID: PMC8584325 DOI: 10.3390/ijms222111832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Obesity is a complex disease caused by an excessive amount of body fat. Obesity is a medical problem and represents an important risk factor for the development of serious diseases such as insulin resistance, type 2 diabetes, cardiovascular disease, and some types of cancer. Not to be overlooked are the psychological issues that, in obese subjects, turn into very serious pathologies, such as depression, phobias, anxiety, and lack of self-esteem. In addition to modifying one’s lifestyle, the reduction of body mass can be promoted by different natural compounds such as essential oils (EOs). EOs are mixtures of aromatic substances produced by many plants, particularly in medicinal and aromatic ones. They are odorous and volatile and contain a mixture of terpenes, alcohols, aldehydes, ketones, and esters. Thanks to the characteristics of the various chemical components present in them, EOs are used in the food, cosmetic, and pharmaceutical fields. Indeed, it has been shown that EOs possess great antibiotic, anti-inflammatory, and antitumor powers. Emerging results also demonstrate the anti-obesity effects of EOs. We have examined the main data obtained in experimental studies and, in this review, we summarize the effect of EOs in obesity and obesity-related metabolic diseases.
Collapse
|
13
|
Ikeya T, Terada Y, Morimitsu Y, Kubota K, Ito K, Watanabe T. 1'-Acetoxychavicol acetate, a potent transient receptor potential ankyrin 1 agonist derived from Thai ginger, prevents visceral fat accumulation in mice fed with a high-fat and high-sucrose diet. Biosci Biotechnol Biochem 2021; 85:2191-2194. [PMID: 34279595 DOI: 10.1093/bbb/zbab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022]
Abstract
1'-Acetoxychavicol acetate (ACA) is found in Thai ginger (Alpinia galanga) and is a powerful agonist of transient receptor potential ankyrin 1 (TRPA1). In a diet-induced obesity mouse model, ACA reduced fat deposition. Sympathetic nerve activation was also indicated in the ACA-fed group. This study is expected to promote the utilization of food containing TRPA1 agonists to treat obesity.
Collapse
Affiliation(s)
- Tatsunori Ikeya
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Yuko Terada
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Yasujiro Morimitsu
- Department of Nutrition and Food Science, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Kikue Kubota
- Department of Nutrition and Food Science, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Tatsuo Watanabe
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
14
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
15
|
Tsuchiya S, Terada Y, Matsuyama M, Yamazaki-Ito T, Ito K. A new screening method for identifying chemosensory receptors responding to agonist. Biosci Biotechnol Biochem 2021; 85:1521-1525. [PMID: 33693463 DOI: 10.1093/bbb/zbab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Humans sense taste and smell of various chemical substances through approximately 430 chemosensory receptors. The overall picture of ligand-chemosensory receptor interactions has been partially clarified because of numerous interactions. This study presents a new method that enables a rapid and simple screening of chemosensory receptors. It would be useful for identifying chemosensory receptors activated by taste and odor substances.
Collapse
Affiliation(s)
- Sakura Tsuchiya
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Yuko Terada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Minami Matsuyama
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Toyomi Yamazaki-Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
16
|
A Luminescence-Based Human TRPV1 Assay System for Quantifying Pungency in Spicy Foods. Foods 2021; 10:foods10010151. [PMID: 33450820 PMCID: PMC7828264 DOI: 10.3390/foods10010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/02/2023] Open
Abstract
The quantitation of pungency is difficult to achieve using sensory tests because of persistence, accumulation, and desensitization to the perception of pungency. Transient receptor vanilloid 1 (TRPV1), which is a chemosensory receptor, plays a pivotal role in the perception of many pungent compounds, suggesting that the activity of this receptor might be useful as an index for pungency evaluation. Although Ca2+-sensitive fluorescence dyes are commonly used for measuring human TRPV1 (hTRPV1) activity, their application is limited, as foods often contain fluorescent substances that interfere with the fluorescent signals. This study aims to design a new pungency evaluation system using hTRPV1. Instead of employing a fluorescent probe as the Ca2+ indicator, this assay system uses the luminescent protein aequorin. The luminescence assay successfully evaluated the hTRPV1 activity in foods without purification, even for those containing fluorescent substances. The hTRPV1 activity in food samples correlated strongly with the pungency intensity obtained by the human sensory test. This luminescence-based hTRPV1 assay system will be a powerful tool for objectively quantifying the pungency of spicy foods in both laboratory and industrial settings.
Collapse
|
17
|
Ito K, Koike M, Kuroda Y, Yamazaki-Ito T, Terada Y, Ishii T, Nakamura Y, Watanabe T, Kawarasaki Y. Bitterness-masking peptides for epigallocatechin gallate identified through peptide array analysis. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Keisuke Ito
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Mayu Koike
- School of Food and Nutritional Sciences, University of Shizuoka
| | - Yuki Kuroda
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Toyomi Yamazaki-Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Yuko Terada
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | | | | | - Tatsuo Watanabe
- School of Food and Nutritional Sciences, University of Shizuoka
| | - Yasuaki Kawarasaki
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
18
|
Leherbauer I, Stappen I. Selected essential oils and their mechanisms for therapeutic use against public health disorders. An overview. Z NATURFORSCH C 2020; 75:205-223. [PMID: 32623381 DOI: 10.1515/znc-2020-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022]
Abstract
Today, the numbers of people suffering from lifestyle diseases like diabetes, obesity, allergies and depression increases mainly in industrialised states. That does not only lower patients' quality of life but also severely stresses the health care systems of these countries. Essential oils (EO) have been in use as therapeutic remedies for centuries against various complaints, but still their effectiveness is being underestimated. In the last decades, a great number of controlled studies have supported efficacy of these volatile secondary plant metabolites for various therapeutic indications. Besides others, EO has antidepressant, anti-obesity, antidiabetic, antifirogenic and antiallergic effects. In this review the pharmacological mechanisms for selected EO are summarised and discussed with the main attention on their impact against public health disorders. Additionally, toxicity of these oils as well as possible drug interactions is presented.
Collapse
Affiliation(s)
- Ingrid Leherbauer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Iris Stappen
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|