1
|
Du J, Wang H, Zhong L, Wei S, Min X, Deng H, Zhang X, Zhong M, Huang Y. Bioactivity and biomedical applications of pomegranate peel extract: a comprehensive review. Front Pharmacol 2025; 16:1569141. [PMID: 40206073 PMCID: PMC11979244 DOI: 10.3389/fphar.2025.1569141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Pomegranate peel is a by-product generated during the processing of pomegranate (Punica granatum L.) fruit, accounting for approximately 50% of the total mass of the fruit. Although pomegranate peel is usually regarded as waste, it is rich in various bioactive metabolites such as polyphenols, tannins, and flavonoids, demonstrating significant medicinal and nutritional value. In recent years, Pomegranate peel extract (PPE) has shown broad application prospects in the biomedical field due to its multiple effects, including antioxidant, anti-inflammatory, antibacterial, anti-apoptotic properties, and promotion of cell regeneration. This review consolidates the major bioactive metabolites of PPE and explores its applications in biomedical materials, including nanodrug carriers, hydrogels, and tissue engineering scaffolds. By synthesizing the existing literature, we delve into the potential value of PPE in biomedicine, the challenges currently encountered, and the future directions for research. The aim of this review is to provide a scientific basis for optimizing the utilization of PPE and to facilitate its broader application in the biomedical field.
Collapse
Affiliation(s)
- Jinsong Du
- School of Health Management, Zaozhuang University, Zaozhuang, China
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
| | - Heming Wang
- School of Nursing, Jilin University, Jilin, China
| | - Lingyun Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Shujie Wei
- Image Center, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Xiaoqiang Min
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
- Department of Geriatics, Shandong Healthcare Group Xinwen Central Hospital, Taian, China
| | - Hongyan Deng
- School of Health Management, Zaozhuang University, Zaozhuang, China
| | - Xiaoyan Zhang
- Magnetic Resonance Imaging Department, Shandong Healthcare Group Zaozhuang Central Hospital, Zaozhuang, China
| | - Ming Zhong
- Lanshu Cosmetics Co., Ltd., Huzhou, Zhejiang, China
| | - Yi Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Machado JCB, Cristina da Silva J, Leite GVB, Dos Santos Dantas T, Daniele-Silva A, de Freitas Fernandes-Pedrosa M, de Oliveira AM, Dantas da Cruz RC, de Souza IA, Weilack I, Schieber A, Ferreira MRA, Wagner KG, Lira Soares LA. Phytochemical Profile, Acute, and Subacute Toxicity of Spray-Dried Hydroethanolic Extract From Punica granatum Leaves. Chem Biodivers 2025:e202402429. [PMID: 39813285 DOI: 10.1002/cbdv.202402429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
This study aimed to provide a comprehensive understanding of the acute and subacute safety and phytochemical profile of pomegranate leaves, aligning with the growing interest in sustainable, plant-based therapeutics. The phytochemical composition and the acute and subacute toxicity of a spray-dried hydroethanolic extract from pomegranate leaves (SDE) were investigated using experimental animal models. Utilizing UV-visible spectrophotometry and liquid chromatography-mass spectrometry (LC-MS), a diverse array of tannins and flavonoids, totaling 38 compounds, was identified. The findings revealed that SDE exhibited no adverse effects across various tests, including macroscopic, biochemical, hematological, and histological evaluations, even at high doses (2000 mg/kg for single doses and 1000 mg/kg for repeated doses). Furthermore, SDE significantly (p < 0.05) reduced serum total cholesterol levels in both acute and subacute toxicity evaluations, suggesting a positive impact on lipid metabolism. This research not only confirms the safety of pomegranate leaf spray-dried hydroethanolic extract at significant concentrations but also highlights its potential as a source of bioactive compounds with therapeutic benefits. The absence of toxicity, coupled with its cholesterol-lowering properties, supports the use of pomegranate leaves in medicinal, nutritional, and food additive applications. Additionally, this study provides essential phytochemical and safety data, paving the way for future research exploring its potential as an active ingredient.
Collapse
Affiliation(s)
- Janaina Carla Barbosa Machado
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Joyce Cristina da Silva
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriel Victor Batista Leite
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Thainá Dos Santos Dantas
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Alisson Macário de Oliveira
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Pernambuco, Brazil
| | | | | | - Ingrid Weilack
- Faculty of Agriculture, Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany
| | - Andreas Schieber
- Faculty of Agriculture, Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany
| | | | - Karl Gerhard Wagner
- Pharmaceutical Technology and Biopharmacy Institute, University of Bonn, Bonn, Germany
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
3
|
Yu M, Gouvinhas I, Chen J, Zhu Y, Deng J, Xiang Z, Oliveira P, Xia C, Barros A. Unlocking the therapeutic treasure of pomegranate leaf: A comprehensive review on phytochemical compounds, health benefits, and future prospects. Food Chem X 2024; 23:101587. [PMID: 39036478 PMCID: PMC11260341 DOI: 10.1016/j.fochx.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
The exploration of sustainable and valuable by-products from industrial and agricultural processes is increasingly recognized for its economic, environmental and health advantages. This review examines the phytochemical constituents, biological properties, current applications and future directions of pomegranate (Punica granatum L.) leaf (PGL). PGL exhibits broad biological activities, aiding in managing health conditions like chronic diseases, cancer, diabetes, obesity, and neurological disorders. Anti-cancer and anti-diabetic effects are demonstrated in vitro and in vivo using animal models. Anti-inflammatory and neuroprotective properties are also observed in cell cultures and animal studies. Its anti-microbial properties show efficacy against pathogens. However, variability in phytochemical composition due to different extraction methods and environmental conditions poses challenges for standardization. The review underscores the urgent need for comprehensive human clinical trials to confirm PGL's therapeutic benefits and safety, calling for future research to fully harness PGL's potential as a sustainable and bioactive compound in various industrial applications.
Collapse
Affiliation(s)
- Manyou Yu
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Paula Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China
| | - Ana Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Department of Agronomy, School of Agricultural and Veterinary Sciences, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Olchowik-Grabarek E, Sekowski S, Mierzwinska I, Zukowska I, Abdulladjanova N, Shlyonsky V, Zamaraeva M. Cell Type-Specific Anti- and Pro-Oxidative Effects of Punica granatum L. Ellagitannins. MEMBRANES 2024; 14:218. [PMID: 39452830 PMCID: PMC11509261 DOI: 10.3390/membranes14100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Pomegranate and its by-products contain a broad spectrum of phytochemicals, such as flavonoids, phenolic acids and tannins, having pleiotropic preventive and prophylactic properties in health disorders related to oxidative stress and microbial contamination. Here, we examined the biological effects of a pomegranate peel ellagitannins-enriched (>90%) extract, PETE. In vitro studies revealed that PETE has a strong antiradical action towards synthetic radicals and biologically relevant ROS surpassing or comparable to that of Trolox. In cellular models, it showed concentration-dependent (25-100 µg/mL) yet opposing effects depending on the cell membrane type and exposure conditions. In erythrocytes, PETE protected membrane integrity in the presence of the strong oxidant HClO and restored reduced glutathione levels to up to 85% of the control value while having much weaker acute and long-term intrinsic effects. Such protection persisted even after the removal of the extract from cells, indicating strong membrane interaction. In HeLa cancer cells, and at concentrations lower than those used for red blood cells, PETE induced robust potentiation of ROS production and mitochondrial potential dissipation, leading to autophagy-like membrane morphology changes and cell death. In S. aureus, the growth arrest and bacterial death in the presence of PETE (with MIC = 31.25 µg/mL and MBC = 125 µg/mL, respectively) can be linked to the tripled ROS induction by the extract in the same concentration range. This study indicates a specificity of ROS production by the pomegranate extract depending on the type of cell, the concentration of the extract and the time of incubation. This specificity witnesses a strong potential of the extract components as candidates in antioxidant and pro-oxidant therapy.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Iga Mierzwinska
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Izabela Zukowska
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100125, Uzbekistan;
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland; (E.O.-G.); (S.S.); (I.M.); (I.Z.); (M.Z.)
| |
Collapse
|
5
|
George N, AbuKhader M, Al Balushi K, Al Sabahi B, Khan SA. An insight into the neuroprotective effects and molecular targets of pomegranate ( Punica granatum) against Alzheimer's disease. Nutr Neurosci 2023; 26:975-996. [PMID: 36125072 DOI: 10.1080/1028415x.2022.2121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that still has no permanent cure. The drugs prescribed in the present days are only for symptomatic relief for the patients. Many studies correlating the reduction in the incidence of AD with the diet consumed have been published. These studies showed that a diet rich in polyphenols is associated with a decrease in the incidence of AD. The present review is focused on the ability of pomegranate and its bioactive components to ameliorate the progression of AD and their ability to exert a neuroprotective effect. Various studies showing the ability of pomegranate in inhibiting enzymes, reducing reactive oxygen species, inhibition of microglial activation, inhibition of tau protein hyperphosphorylation, maintenance of synaptic plasticity, anti-inflammatory activity and its ability to inhibit Beta secretase-1 (BACE-1) has been reviewed in this article. In spite of the lack of studies on humans, there are compelling evidence indicating that pomegranate can reduce various risk factors involved in the causation of AD and thus can be used as a persistent nutraceutical to slow ageing and for providing neuroprotection for the treatment of AD.Highlights An overview of traditional and pharmacological uses of pomegranate (POM).Potential of POM in the treatment of neurodegenerative diseases especially in AD.Insight into the molecular mechanisms of neuroprotective effects of POM in AD.Clinical evaluation studies involving POM and its bioactive components.
Collapse
Affiliation(s)
- Namy George
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| | - Majed AbuKhader
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| | - Khalid Al Balushi
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| | - Bushra Al Sabahi
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| |
Collapse
|
6
|
Yu M, Gouvinhas I, Pires MJ, Neuparth MJ, Costa RMGD, Medeiros R, Bastos MMSM, Vala H, Félix L, Venâncio C, Barros AIRNA, Oliveira PA. Study on the antineoplastic and toxicological effects of pomegranate (Punica granatum L.) leaf infusion using the K14-HPV16 transgenic mouse model. Food Chem Toxicol 2023; 174:113689. [PMID: 36858299 DOI: 10.1016/j.fct.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Punica granatum L. (pomegranate) has been used in functional foods due to its various health benefits. However, the in vivo biological potential of its leaf remains little known. This study has aimed to characterize the antineoplastic and toxicological properties of using pomegranate leaf infusion (PLI) on transgenic mice carrying human papillomavirus (HPV) type 16 oncogenes. Thirty-eight mice were divided into 3 wild-type (WT) and 3 transgenic (HPV) groups, with exposure to 0.5% PLI, 1.0% PLI, and water. The animals' body weight, drink and food consumption were recorded. Internal organs, skin samples and intracardiac blood were collected to evaluate toxicological parameters, neoplastic lesions and oxidative stress. The results indicated that PLI was safe as no mortality, no behavioural disorders and no significant differences in the levels of microhematocrit, serum biochemical markers, internal organ histology, and oxidative stress was found among the WT groups. Histological analysis revealed that HPV animals that consumed PLI exhibited reduced hepatic, renal and cutaneous lesions compared with the HPV control group. Low-dose PLI consumption significantly diminished renal hydronephrosis lesions and relieved dysplasia and carcinoma lesions in the chest skin. Oxidative stress analysis showed that low-dose PLI consumption may have more benefits than high-dose PLI. These results suggest that oral administration of PLI has the potential to alleviate non-neoplastic and neoplastic lesions against HPV16-induced organ and skin injuries, though this requires further scientific research studies.
Collapse
Affiliation(s)
- Manyou Yu
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria J Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Maria J Neuparth
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports of the University of Porto (FADEUP), Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Rui M Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Morphology Department and University Hospital (HUUFMA), Federal University of Maranhão (UFMA), São Luís, Brazil; Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP)/RISEI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/ Porto Comprehensive Cancer Center (PortoCCC), Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP)/RISEI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/ Porto Comprehensive Cancer Center (PortoCCC), Porto, Portugal
| | - Margarida M S M Bastos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Helena Vala
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Luis Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Ana I R N A Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, UTAD, Vila Real, Portugal
| |
Collapse
|
7
|
Pantiora PD, Balaouras AI, Mina IK, Freris CI, Pappas AC, Danezis GP, Zoidis E, Georgiou CA. The Therapeutic Alliance between Pomegranate and Health Emphasizing on Anticancer Properties. Antioxidants (Basel) 2023; 12:187. [PMID: 36671048 PMCID: PMC9855163 DOI: 10.3390/antiox12010187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Pomegranate is a fruit bearing-plant that is well known for its medicinal properties. Pomegranate is a good source of phenolic acids, tannins, and flavonoids. Pomegranate juice and by-products have attracted the scientific interest due to their potential health benefits. Currently, the medical community has showed great interest in exploiting pomegranate potential as a protective agent against several human diseases including cancer. This is demonstrated by the fact that there are more than 800 reports in the literature reporting pomegranate's anticancer properties. This review is an update on the research outcomes of pomegranate's potential against different types of human diseases, emphasizing on cancer. In addition, perspectives of potential applications of pomegranate, as a natural additive aiming to improve the quality of animal products, are discussed.
Collapse
Affiliation(s)
- Panagiota D. Pantiora
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Ioanna K. Mina
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Christoforos I. Freris
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios P. Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
8
|
Potenza M, Giordano A, Chini MG, Saviano A, Kretzer C, Raucci F, Russo M, Lauro G, Terracciano S, Bruno I, Iorizzi M, Hofstetter RK, Pace S, Maione F, Werz O, Bifulco G. Identification of 2-Aminoacyl-1,3,4-thiadiazoles as Prostaglandin E 2 and Leukotriene Biosynthesis Inhibitors. ACS Med Chem Lett 2022; 14:26-34. [PMID: 36655121 PMCID: PMC9841589 DOI: 10.1021/acsmedchemlett.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The application of a multi-step scientific workflow revealed an unprecedented class of PGE2/leukotriene biosynthesis inhibitors with in vivo activity. Specifically, starting from a combinatorial virtual library of ∼4.2 × 105 molecules, a small set of compounds was identified for the synthesis. Among these, four novel 2-aminoacyl-1,3,4-thiadiazole derivatives (3, 6, 7, and 9) displayed marked anti-inflammatory properties in vitro by strongly inhibiting PGE2 biosynthesis, with IC50 values in the nanomolar range. The hit compounds also efficiently interfered with leukotriene biosynthesis in cell-based systems and modulated IL-6 and PGE2 biosynthesis in a lipopolysaccharide-stimulated J774A.1 macrophage cell line. The most promising compound 3 showed prominent in vivo anti-inflammatory activity in a mouse model, with efficacy comparable to that of dexamethasone, attenuating zymosan-induced leukocyte migration in mouse peritoneum with considerable modulation of the levels of typical pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Marianna Potenza
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,The
FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Assunta Giordano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,Institute
of Biomolecular Chemistry (ICB), Consiglio
Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy
| | - Maria G. Chini
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Anella Saviano
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Christian Kretzer
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Federica Raucci
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marina Russo
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gianluigi Lauro
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Stefania Terracciano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Ines Bruno
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Maria Iorizzi
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Robert K. Hofstetter
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Francesco Maione
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Oliver Werz
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany,
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,
| |
Collapse
|
9
|
Machado JCB, Ferreira MRA, Soares LAL. Punica granatum leaves as a source of active compounds: A review of biological activities, bioactive compounds, food, and technological application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Emami Kazemabad MJ, Asgari Toni S, Tizro N, Dadkhah PA, Amani H, Akhavan Rezayat S, Sheikh Z, Mohammadi M, Alijanzadeh D, Alimohammadi F, Shahrokhi M, Erabi G, Noroozi M, Karimi MA, Honari S, Deravi N. Pharmacotherapeutic potential of pomegranate in age-related neurological disorders. Front Aging Neurosci 2022; 14:955735. [PMID: 36118710 PMCID: PMC9476556 DOI: 10.3389/fnagi.2022.955735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Age-related neurological disorders [AND] include neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD] and Parkinson's disease [PD], which are the most prevalent types of dementia in the elderly. It also includes other illnesses such as migraine and epilepsy. ANDs are multifactorial, but aging is their major risk factor. The most frequent and vital pathological features of AND are oxidative stress, inflammation, and accumulation of misfolded proteins. As AND brain damage is a significant public health burden and its incidence is increasing, much has been done to overcome it. Pomegranate (Punica granatum L.) is one of the polyphenol-rich fruits that is widely mentioned in medical folklore. Pomegranate is commonly used to treat common disorders such as diarrhea, abdominal pain, wound healing, bleeding, dysentery, acidosis, microbial infections, infectious and noninfectious respiratory diseases, and neurological disorders. In the current review article, we aimed to summarize the data on the pharmacotherapeutic potentials of pomegranate in ANDs.
Collapse
Affiliation(s)
| | - Sara Asgari Toni
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Akhavan Rezayat
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Zahra Sheikh
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mohammadi
- Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Dorsa Alijanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnoosh Alimohammadi
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Noroozi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Honari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Chen XX, Khyeam S, Zhang ZJ, Zhang KYB. Granatin B and punicalagin from Chinese herbal medicine pomegranate peels elicit reactive oxygen species-mediated apoptosis and cell cycle arrest in colorectal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 97:153923. [PMID: 35026619 DOI: 10.1016/j.phymed.2022.153923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/18/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorectal cancer ranks among the most common cancers. 5-Fluorouracil (5-FU) based first-line chemotherapy for colorectal cancer treatment often leads to chemoresistance and gastrointestinal mucositis. PURPOSE This study aimed to find potential therapeutic agents from herbal medicine with anti-colorectal cancer and anti-mucositis activities. METHODS Chinese medicine theory, network pharmacology analyses, and antioxidant activity coupled with liquid chromatography tandem mass spectrometry analyses were used to identify potential bioactive compounds. HT-29 human colorectal cancer cell culture and xenograft tumor models were employed to study anti-colorectal cancer efficacy. Lipopolysaccharide-induced RAW 264.7 and 5-FU treated Dark Agouti rats were used to evaluate anti-inflammatory and anti-mucositis activities. Histological staining, immunofluorescence imaging, western blots, and flow cytometric analyses were employed to explore the underlying mechanisms. RESULTS Both Chinese medicine theory and network pharmacology analyses indicated pomegranate peels as a potential anti-colorectal cancer and anti-mucositis agent. Antioxidant activity coupled with liquid chromatography tandem mass spectrometry analyses revealed granatin B and punicalagin as the most potent antioxidant compounds in pomegranate peels. Granatin B and punicalagin demonstrated superior anti-colorectal cancer activities in both cell culture and xenograft tumor models. Granatin B and punicalagin also exhibited strong anti-inflammatory activities in lipopolysaccharide-induced RAW264.7 cells and anti-mucositis activities in 5-FU-treated rats. Mechanistic studies revealed that granatin B and punicalagin induced reactive oxygen species-mediated S-phase cell cycle arrest and apoptosis in HT-29 cells. Moreover, these compounds sensitized HT-29 cells to 5-FU-induced cell death and S-phase cell cycle arrest. CONCLUSION We report that granatin B and punicalagin exhibit superior anti-colorectal cancer and anti-mucositis activities. To the best of our knowledge, these results are novel and suggest that utilizing phenols from herbal medicine, such as granatin B and punicalagin, to target reactive oxygen species may be an innovative therapy to treat colorectal cancer and intestinal mucositis.
Collapse
Affiliation(s)
- Xiao-Xin Chen
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong; Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, CA, USA.
| | - Sheamin Khyeam
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, CA, USA
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong
| | - Kalin Yan-Bo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
12
|
Alsughayyir J, Alshaiddi W, Alsubki R, Alshammary A, Basudan AM, Alfhili MA. Geraniin inhibits whole blood IFN-γ and IL-6 and promotes IL-1β and IL-8, and stimulates calcium-dependent and sucrose-sensitive erythrocyte death. Toxicol Appl Pharmacol 2022; 436:115881. [PMID: 35026210 DOI: 10.1016/j.taap.2022.115881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Correlations between circulating cytokine levels and disease states are well established, and pharmacological modulation of the immune response is thus an important aspect of the assessment of investigational new drugs. Moreover, chemotherapy-related anemia is a major obstacle in cancer treatment. Geraniin (GRN), a tannin extracted from Geranium and other plants, possesses promising antitumor potential. However, the effect of GRN on whole blood (WB) cytokine response and RBC physiology remains unexplored. Heparinized blood from consented, healthy adults was challenged with 100 ng/mL of lipopolysaccharide (LPS) with and without pretreatment with 10 μM of GRN for 24 h at 37 °C, and tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, and IL-10 were assayed by ELISA. Moreover, single-cell RBC suspensions were treated with 5-100 μM of GRN for 24 or 48 h at 37 °C and cytotoxicity and canonical eryptotic markers were examined by flow cytometry. It was revealed that GRN significantly attenuated LPS-induced IFN-γ levels, increased IL-1β, decreased IL-6 only in absence of LPS, and aggravated LPS-induced IL-8 while together with LPS significantly diminished IL-10. Furthermore, GRN induced dose-responsive, Ca2+-dependent, and sucrose-sensitive hemolysis, along with phosphatidylserine exposure and Ca2+ accumulation with no appreciable cell shrinkage or oxidative damage. GRN was also selectively toxic to platelets, significantly delayed reticulocyte maturation, and significantly disrupted leukocyte proportions. In conclusion, GRN regulates the WB cytokine response and promotes premature hemolysis and eryptosis. This study provides insights into the therapeutic utility of GRN in a highly relevant cellular model system.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Wafa Alshaiddi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Roua Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Amal Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed M Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia.
| |
Collapse
|
13
|
Fedotcheva TA, Sheichenko OP, Fedotcheva NI. New Properties and Mitochondrial Targets of Polyphenol Agrimoniin as a Natural Anticancer and Preventive Agent. Pharmaceutics 2021; 13:pharmaceutics13122089. [PMID: 34959369 PMCID: PMC8703553 DOI: 10.3390/pharmaceutics13122089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Agrimoniin is a polyphenol from the group of tannins with antioxidant and anticancer activities. It is assumed that the anticancer action of agrimoniin is associated with the activation of mitochondria-dependent apoptosis, but its mitochondrial targets have not been estimated. We examined the direct influence of agrimoniin on different mitochondrial functions, including the induction of the mitochondrial permeability transition pore (MPTP) as the primary mechanism of mitochondria-dependent apoptosis. Agrimoniin was isolated from Agrimonia pilosa Ledeb by multistep purification. The content of agrimoniin in the resulting substance reached 80%, as determined by NMR spectroscopy. The cytotoxic effect of purified agrimoniin was confirmed on the cultures of K562 and HeLa cancer cells by the MTT assay. When tested on isolated rat liver mitochondria, agrimoniin at a low concentration (10 µM) induced the low-amplitude swelling, which was inhibited by the MPTP inhibitors ADP and cyclosporine A, activated the opening of MPTP by calcium ions and stimulated the respiration supported by succinate oxidation. Also, agrimoniin reduced the electron acceptor DCPIP in a concentration-dependent manner and chelated iron ions. Owing to all these properties, agrimoniin can stimulate apoptosis or activate mitochondrial functions, which can be helpful in the prevention and elimination of stagnant pathological states.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia;
| | - Olga P. Sheichenko
- All-Russian Research Institute of Medicinal and Aromatic Plants, Gryna St. 7, Moscow 117216, Russia;
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino142290, Russia
- Correspondence:
| |
Collapse
|
14
|
The Kinetics of Two-Step Ellagitannin Extraction from the By-products of Selected Processed Fruits of the family Rosaceae. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThe paper presents the kinetics of two-step ellagitannin (ET) extraction with an aqueous acetone solution from two technological types of pomace from selected berry fruits of the Rosaceae family. ETs were identified and quantified using HPLC–MS and HPLC–DAD. The results revealed the extraction kinetics of total ETs, their high and low molecular weight fractions (≤ 1569 Da and > 1569 Da), and individual ETs characteristic of the examined fruits. ET extraction proceeded at a faster rate in the first step, regardless of the tested pomace. For all pomace variants, the mean extraction half time t1/2 was 48 min in the first step and 70 min in the second step. The fruit species and the technological type of pomace were not found to exert a definite effect on the kinetics of ET extraction. Statistical analysis demonstrated that the molecular weight of ETs did not influence the kinetics of their extraction, either. It was shown that the technological type of pomace had a significant impact on the extraction rate of both low molecular weight (LMW) and high molecular weight (HMW) ETs in the first extraction step, with the mean t1/2 being 44 min for pomace from juice production and 63 min for pomace from puree production.
Collapse
|
15
|
Rajasekar N, Sivanantham A, Ravikumar V, Rajasekaran S. An overview on the role of plant-derived tannins for the treatment of lung cancer. PHYTOCHEMISTRY 2021; 188:112799. [PMID: 33975161 DOI: 10.1016/j.phytochem.2021.112799] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Lung cancer is the leading cause of cancer-related death globally. Despite many advanced approaches to treat cancer, they are often ineffective due to resistance to classical anti-cancer drugs and distant metastases. Currently, alternative medicinal agents derived from plants are the major interest due to high bioavailability and fewer adverse effects. Tannins are polyphenolic compounds existing as specialized products in a wide variety of vegetables, fruits, and nuts. Many tannins have been found to possess protective properties, such as anti-inflammatory, anti-fibrotic, anti-microbial, anti-diabetic, and so on. This review aims to summarize the current knowledge addressing the anti-cancer effects of dietary tannins and their underlying molecular mechanisms. In vivo and in vitro studies provide evidences that anti-cancer effects of various tannins are predominantly mediated through negative regulation of transcription factors, growth factors, receptor kinases, and many oncogenic molecules. In addition, we also discussed the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of tannins, clinical trial results as well as our perspective on future research with tannins.
Collapse
Affiliation(s)
- Nandhine Rajasekar
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ayyanar Sivanantham
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Vilwanathan Ravikumar
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
16
|
Farooqi AA. Regulation of deregulated cell signaling pathways by pomegranate in different cancers: Re-interpretation of knowledge gaps. Semin Cancer Biol 2021; 73:294-301. [DOI: 10.1016/j.semcancer.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022]
|
17
|
Yu M, Gouvinhas I, Barros A. Variation of the Polyphenolic Composition and Antioxidant Capacity of Freshly Prepared Pomegranate Leaf Infusions over One-Day Storage. Antioxidants (Basel) 2021; 10:antiox10081187. [PMID: 34439435 PMCID: PMC8388870 DOI: 10.3390/antiox10081187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
In recent decades, an intensive search for natural and novel types of antioxidant polyphenolics has been carried out on numerous plant materials. However, the current literature has very little information on their storage stability in the form of freshly prepared infusions. This study aims to characterize the polyphenolic composition and the antioxidant capacity of pomegranate (Punica granatum L.) leaf infusions over one-day storage (analyzed at 0, 2, 4, 6, 8, and 24 h). Spectrophotometric evaluation demonstrated that the infusion presented no significant changes in the content of total phenols (131.40–133.47 mg gallic acid g−1) and ortho-diphenols (239.91–244.25 mg gallic acid g−1). The infusion also maintained high stability (over 98% and 82%, respectively) for flavonoids (53.30–55.84 mg rutin g−1) and condensed tannins (102.15–124.20 mg epicatechin g−1), with stable (>90%) potent antioxidant capacity (1.5–2.2 mmol Trolox g−1) throughout 0–24 h storage. The main decrease was observed during 0–2 h storage of flavonoids, 8–24 h storage of tannins, and 0–4 h storage of antioxidant capacity. Chromatographic analysis further revealed that 7 decreased and 11 increased compounds were found within 0–24 h storage. The good stability of the total polyphenolics and antioxidant properties might be related to the complex conversion and activity compensation among these compounds. The findings suggest that pomegranate leaf infusion could be of great interest in the valorization of high added-value by-products and in the application of green and functional alternatives in the food-pharma and nutraceutical industries.
Collapse
Affiliation(s)
- Manyou Yu
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.G.); (A.B.)
- Correspondence:
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.G.); (A.B.)
| | - Ana Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Inov4Agro (Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.G.); (A.B.)
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
18
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Sun PM, Zhang T, Sun HW, Zhou JL, Yang JW, Yang HM, Li ZP, Cui Y. Autophagy in Gastric Mucosa: The Dual Role and Potential Therapeutic Target. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2648065. [PMID: 34195260 PMCID: PMC8214476 DOI: 10.1155/2021/2648065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
The incidence of stomach diseases is very high, which has a significant impact on human health. Damaged gastric mucosa is more vulnerable to injury, leading to bleeding and perforation, which eventually aggravates the primary disease. Therefore, the protection of gastric mucosa is crucial. However, existing drugs that protect gastric mucosa can cause nonnegligible side effects, such as hepatic inflammation, nephritis, hypoacidity, impotence, osteoporotic bone fracture, and hypergastrinemia. Autophagy, as a major intracellular lysosome-dependent degradation process, plays a key role in maintaining intracellular homeostasis and resisting environmental pressure, which may be a potential therapeutic target for protecting gastric mucosa. Recent studies have demonstrated that autophagy played a dual role when gastric mucosa exposed to biological and chemical factors. More indepth studies are needed on the protective effect of autophagy in gastric mucosa. In this review, we focus on the mechanisms and the dual role of various biological and chemical factors regulating autophagy, such as Helicobacter pylori, virus, and nonsteroidal anti-inflammatory drugs. And we summarize the pathophysiological properties and pharmacological strategies for the protection of gastric mucosa through autophagy.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - He-Ming Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| |
Collapse
|
19
|
Tan Z, Xue H, Sun Y, Zhang C, Song Y, Qi Y. The Role of Tumor Inflammatory Microenvironment in Lung Cancer. Front Pharmacol 2021; 12:688625. [PMID: 34079469 PMCID: PMC8166205 DOI: 10.3389/fphar.2021.688625] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common and fatal malignant tumor in the world. The tumor microenvironment (TME) is closely related to the occurrence and development of lung cancer, in which the inflammatory microenvironment plays an important role. Inflammatory cells and inflammatory factors in the tumor inflammatory microenvironment promote the activation of the NF-κB and STAT3 inflammatory pathways and the occurrence, development, and metastasis of lung cancer by promoting immune escape, tumor angiogenesis, epithelial-mesenchymal transition, apoptosis, and other mechanisms. Clinical and epidemiological studies have also shown a strong relationship among chronic infection, inflammation, inflammatory microenvironment, and lung cancer. The relationship between inflammation and lung cancer can be better understood through the gradual understanding of the tumor inflammatory microenvironment, which is advantageous to find more therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Zhaofeng Tan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haibin Xue
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yuli Sun
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonglei Song
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanfu Qi
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
ZHAO M, ZHAN Q. Rehabilitation treatment of enteral nutrition whey protein in lung cancer patients in southern China. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.22620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Qingqing ZHAN
- Taizhou Vocational College of Science and Technology, China
| |
Collapse
|