1
|
Vahora A, Singh H, Dan A, Puthenpurackel SS, Mishra NC, Dhanka M. Nanoengineered oxygen-releasing polymeric scaffold with sustained release of dexamethasone for bone regeneration. Biomed Mater 2024; 19:035007. [PMID: 38387063 DOI: 10.1088/1748-605x/ad2c17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Maintaining the continuous oxygen supply and proper cell growth before blood vessel ingrowth at the bone defect site are considerably significant issues in bone regeneration. Oxygen-producing scaffolds can supply oxygen and avoid hypoxia leading to expedited bone regeneration. Herein, first oxygen-producing calcium peroxide nanoparticles (CPO NPs) are synthesized, and subsequently, the various amounts of synthesized CPO NPs (0.1, 0.5, and 1 wt/v%) loaded in the scaffold composite, which is developed by simple physical blending of chitosan (CS) and polycaprolactone (PCL) polymers. To deliver the synergistic therapeutic effect, dexamethasone (DEX), known for its potential anti-inflammatory and osteogenic properties, is loaded into the nanocomposite scaffolds. The extensive physicochemical characterizations of nanocomposite scaffolds confirm the successful loading of CPO NPs, adequate porous morphology, pore size, hydrophilicity, and biodegradability.In vitro, biological studies support the antibacterial, hemocompatible, and cytocompatible (MG-63 and MC3T3-E1 cells) nature of the material when tested on respective cells. Field emission scanning electron microscopy and energy-dispersive x-ray spectroscopy confirm the successful biomineralization of the scaffolds. Scaffolds also exhibit the sustained release of DEX and efficient protein adsorption. This study revealed that a nanoengineered scaffold loaded with CPO NPs (PCL/CS/DEX/CPO 3) is a suitable candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Aatikaben Vahora
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Hemant Singh
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
- Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Aniruddha Dan
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Surya Suresh Puthenpurackel
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Narayan Chandra Mishra
- Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Zhou Z, Wang J, Jiang C, Xu K, Xu T, Yu X, Fang J, Yang Y, Dai X. Advances in Hydrogels for Meniscus Tissue Engineering: A Focus on Biomaterials, Crosslinking, Therapeutic Additives. Gels 2024; 10:114. [PMID: 38391445 PMCID: PMC10887778 DOI: 10.3390/gels10020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable microenvironment. Additionally, hydrogels can be minimally invasively injected and can be adjusted to match the shape of the implant site. They can conveniently and effectively deliver bioactive additives and demonstrate good compatibility with other functional materials. These inherent qualities have made hydrogel a promising candidate for therapeutic approaches in meniscus repair and regeneration. This article provides a comprehensive review of the advancements made in the research on hydrogel application for meniscus tissue engineering. Firstly, the biomaterials and crosslinking strategies used in the formation of hydrogels are summarized and analyzed. Subsequently, the role of therapeutic additives, including cells, growth factors, and other active products, in facilitating meniscus repair and regeneration is thoroughly discussed. Furthermore, we summarize the key issues for designing hydrogels used in MTE. Finally, we conclude with the current challenges encountered by hydrogel applications and suggest potential solutions for addressing these challenges in the field of MTE. We hope this review provides a resource for researchers and practitioners interested in this field, thereby facilitating the exploration of new design possibilities.
Collapse
Affiliation(s)
- Zhuxing Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Chaoqian Jiang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Xinning Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jinghua Fang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Yanyu Yang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
3
|
Bhushan S, Singh S, Maiti TK, Das A, Barui A, Chaudhari LR, Joshi MG, Dutt D. Cerium oxide nanoparticles disseminated chitosan gelatin scaffold for bone tissue engineering applications. Int J Biol Macromol 2023; 236:123813. [PMID: 36858088 DOI: 10.1016/j.ijbiomac.2023.123813] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
Cell-free and cell-loaded constructs are used to bridge the critical-sized bone defect. Oxidative stress at the site of the bone defects is a major interference that slows bone healing. Recently, there has been an increase in interest in enhancing the properties of three-dimensional scaffolds with free radical scavenging materials. Cerium oxide nanoparticles (CNPs) can scavenge free radicals due to their redox-modulating property. In this study, freeze-drying was used to fabricate CG-CNPs nanocomposite scaffolds using gelatin (G), chitosan (C), and cerium oxide nanoparticles. Physico-chemical, mechanical, and biological characterization of CG-CNPs scaffolds were studied. CG-CNPs scaffolds demonstrated better results in terms of physicochemical, mechanical, and biological properties as compared to CG-scaffold. CG-CNPs scaffolds were cyto-friendly to MC3T3-E1 cells studied by performing in-vitro and in-ovo studies. The scaffold's antimicrobial study revealed high inhibition zones against Gram-positive and Gram-negative bacteria. With 79 % porosity, 45.99 % weight loss, 178.25 kPa compressive modulus, and 1.83 Ca/P ratio, the CG-CNP2 scaffold displays the best characteristics. As a result, the CG-CNP2 scaffolds are highly biocompatible and could be applied to repair bone defects.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Tushar Kanti Maiti
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Leena R Chaudhari
- Department of Stem Cells and Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India.
| |
Collapse
|
4
|
Surgical cotton microfibers loaded with proteins and apatite: A potential platform for bone tissue engineering. Int J Biol Macromol 2023; 236:123812. [PMID: 36854368 DOI: 10.1016/j.ijbiomac.2023.123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Tissue engineering has emerged as the best alternative to replacing damaged tissue/organs. However, the cost of scaffold materials continues to be a significant obstacle; thus, developing inexpensive scaffolds is strongly encouraged. In this study, cellulose microfibers (C), gelatin (G), egg white (EW), and nanohydroxyapatite (nHA) were assembled into a quaternary scaffold using EDC-NHS crosslinking, followed by freeze-drying method. Cellulose microfibers as a scaffold have only received a limited amount of research due to the absence of an intrinsic three-dimensional structure. Gelatin, more likely to interact chemically with collagen, was used to provide a stable structure to the cellulose microfibers. EW was supposed to provide the scaffold with numerous cell attachment sites. nHA was chosen to enhance the scaffold's bone-bonding properties. Physico-chemical, mechanical, and biological characterization of scaffolds were studied. In-vitro using MG-63 cells and in-ovo studies revealed that all scaffolds were biocompatible. The results of the DPPH assay demonstrate the ability of CGEWnHA to reduce free radicals. The CGEWnHA scaffold exhibits the best properties with 56.84 ± 28.45 μm average pore size, 75 ± 1.4 % porosity, 39.23 % weight loss, 109.19 ± 0.98 kPa compressive modulus, and 1.72 Ca/P ratio. As a result, the constructed CGEWnHA scaffold appears to be a viable choice for BTE applications.
Collapse
|
5
|
Bhushan S, Singh S, Maiti TK, Sharma C, Dutt D, Sharma S, Li C, Tag Eldin EM. Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review. Bioengineering (Basel) 2022; 9:728. [PMID: 36550933 PMCID: PMC9774188 DOI: 10.3390/bioengineering9120728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Tushar Kanti Maiti
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Chhavi Sharma
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development, Chandigarh University, Mohali 140413, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changhe Li
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | |
Collapse
|
6
|
Singh H, Purohit SD, Bhaskar R, Yadav I, Bhushan S, Gupta MK, Mishra NC. Curcumin in decellularized goat small intestine submucosa for wound healing and skin tissue engineering. J Biomed Mater Res B Appl Biomater 2021; 110:210-219. [PMID: 34254427 DOI: 10.1002/jbm.b.34903] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/26/2021] [Accepted: 06/27/2021] [Indexed: 12/25/2022]
Abstract
Biomaterials derived from extracellular matrices (ECMs) were extensively used for skin tissue engineering and wound healing. ECM is a complex network of biomolecules (e.g., proteins), which provide organizational support to cells for growth. Thus, ECM could be an ideal biomaterial for fabricating the scaffold. However, oxidative stress and biofilm formation at the wound site remains a major challenge that could be neutralized using herbal ingredients (e.g., curcumin). In this study, ECM was extracted from the biowaste of the goat abattoir by using decellularization. The goat small intestine submucosa (G-SIS) is decellularized to obtain the decellularized G-SIS (DG-SIS) and curcumin (in different concentrations) was incorporated in the DG-SIS to fabricate curcumin-embedded DG-SIS scaffolds. Changes brought by increasing the concentrations of the curcumin in DG-SIS were observed in various properties, including free radical scavenging and antibacterial properties. Results depicted that the scaffolds are porous, biodegradable, biocompatible, antibacterial, and hydrophilic and showed sustained release of curcumin. Besides, it showed free radicals scavenging property. The porosity and hydrophilicity of the scaffolds were decreased with an increase in the curcumin content. However, biodegradability, free radical scavenging, biocompatibility, and antibacterial properties of the scaffolds increased with an increase in the curcumin content. The DG-SIS scaffold containing 1 wt % of curcumin may be a potential biomaterial for wound-healing and skin tissue engineering.
Collapse
Affiliation(s)
- Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sakchi Bhushan
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Chen ZJ, Shi HH, Zheng L, Zhang H, Cha YY, Ruan HX, Zhang Y, Zhang XC. A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. Int J Biol Macromol 2021; 182:286-297. [PMID: 33838188 DOI: 10.1016/j.ijbiomac.2021.03.204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022]
Abstract
Composites materials comprised of biopolymeric aerogel matrices and inorganic nano-hydroxyapatite (n-HA) fillers have received considerable attention in bone engineering. Although with significant progress in aerogel-based biomaterials, the brittleness and low strengths limit the application. The improvements in toughness and mechanical strength of aerogel-based biomaterials are in great need. In this work, an alkali urea system was used to dissolve, regenerate and gelate cellulose and silk fibroin (SF) to prepare composite aerosol. A dual network structure was shaped in the composite aerosol materials interlaced by sheet-like SF and reticular cellulose wrapping n-HA on the surface. Through uniaxial compression, the density of the composite aerogel material was close to the one of natural bone, and mechanical strength and toughness were high. Our work indicates that the composite aerogel has the same mechanical strength range as cancellous bone when the ratio of cellulose, n-HA and SF being 8:1:1. In vitro cell culture showed HEK-293T cells cultured on composite aerogels had high ability of adhesion, proliferation and differentiation. Totally, the presented biodegradable composite aerogel has application potential in bone tissue engineering.
Collapse
Affiliation(s)
- Zong-Ju Chen
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Hong Shi
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Liang Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Hua Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Yu-Ying Cha
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Xian Ruan
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Yi Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Xiu-Cheng Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China.
| |
Collapse
|
8
|
Rizal S, H. P. S. AK, Oyekanmi AA, Gideon ON, Abdullah CK, Yahya EB, Alfatah T, Sabaruddin FA, Rahman AA. Cotton Wastes Functionalized Biomaterials from Micro to Nano: A Cleaner Approach for a Sustainable Environmental Application. Polymers (Basel) 2021; 13:1006. [PMID: 33805242 PMCID: PMC8037842 DOI: 10.3390/polym13071006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential increase in textile cotton wastes generation and the ineffective processing mechanism to mitigate its environmental impact by developing functional materials with unique properties for geotechnical applications, wastewater, packaging, and biomedical engineering have become emerging global concerns among researchers. A comprehensive study of a processed cotton fibres isolation technique and their applications are highlighted in this review. Surface modification of cotton wastes fibre increases the adsorption of dyes and heavy metals removal from wastewater. Cotton wastes fibres have demonstrated high adsorption capacity for the removal of recalcitrant pollutants in wastewater. Cotton wastes fibres have found remarkable application in slope amendments, reinforcement of expansive soils and building materials, and a proven source for isolation of cellulose nanocrystals (CNCs). Several research work on the use of cotton waste for functional application rather than disposal has been done. However, no review study has discussed the potentials of cotton wastes from source (Micro-Nano) to application. This review critically analyses novel isolation techniques of CNC from cotton wastes with an in-depth study of a parameter variation effect on their yield. Different pretreatment techniques and efficiency were discussed. From the analysis, chemical pretreatment is considered the most efficient extraction of CNCs from cotton wastes. The pretreatment strategies can suffer variation in process conditions, resulting in distortion in the extracted cellulose's crystallinity. Acid hydrolysis using sulfuric acid is the most used extraction process for cotton wastes-based CNC. A combined pretreatment process, such as sonication and hydrolysis, increases the crystallinity of cotton-based CNCs. The improvement of the reinforced matrix interface of textile fibres is required for improved packaging and biomedical applications for the sustainability of cotton-based CNCs.
Collapse
Affiliation(s)
- Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Abdul Khalil H. P. S.
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (O.N.G.); (C.K.A.); (E.B.Y.); (T.A.); (F.A.S.)
| | - Adeleke A. Oyekanmi
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (O.N.G.); (C.K.A.); (E.B.Y.); (T.A.); (F.A.S.)
| | - Olaiya N. Gideon
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (O.N.G.); (C.K.A.); (E.B.Y.); (T.A.); (F.A.S.)
| | - Che K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (O.N.G.); (C.K.A.); (E.B.Y.); (T.A.); (F.A.S.)
| | - Esam B. Yahya
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (O.N.G.); (C.K.A.); (E.B.Y.); (T.A.); (F.A.S.)
| | - Tata Alfatah
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (O.N.G.); (C.K.A.); (E.B.Y.); (T.A.); (F.A.S.)
| | - Fatimah A. Sabaruddin
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (O.N.G.); (C.K.A.); (E.B.Y.); (T.A.); (F.A.S.)
| | - Azhar A. Rahman
- School of Physics, Universiti Sains Malaysia (USM), Penang 11800, Malaysia;
| |
Collapse
|
9
|
Singh S, Dutt D, Mishra NC. Cotton pulp for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2094-2113. [DOI: 10.1080/09205063.2020.1793872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sandhya Singh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Narayan Chand Mishra
- Polymer & Process Department, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|