1
|
Kral Ö, Ilbasmis-Tamer S, Han S, Tirnaksiz F. Development of Dermal Lidocaine Nanosuspension Formulation by the Wet Milling Method Using Experimental Design: In Vitro/In Vivo Evaluation. ACS OMEGA 2024; 9:50992-51008. [PMID: 39758633 PMCID: PMC11696440 DOI: 10.1021/acsomega.4c05296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 01/07/2025]
Abstract
Lidocaine (LID), frequently used in dermal applications, is a nonpolar local anesthetic agent that is practically insoluble in water. The main aim of this study is to develop the nanosuspension formulation of LID using the design of experiments (DoE). The improved solubility and dissolution rate provided by nanosizing are expected to result in enhanced dermal bioavailability. Nanosuspension formulations were developed by a wet media milling method using different stabilizer types [poloxamer (POL) and poly(vinyl alcohol) (PVA)]. Characterization studies of the nanosuspensions were carried out using DSC, FTIR, XRD, and SEM in vitro release from the dialysis membrane and ex vivo permeation studies using rat skin were performed. Analgesic/anesthetic effects were evaluated using the tail-flick test in in vivo studies. Particle size (PS), polydispersity index (PDI), and zeta potential (ZP) values were found as 171.7 ± 3.52 nm, 0.251 ± 0.036, and -32.2 ± 0.907 mV for POL/LID nanosuspensions and 262.1 ± 29.42 nm, 0.453 ± 0.071, and -20.2 ± 3.50 mV for PVA/LID nanosuspensions, respectively. Compared to the coarse suspension of LID, it was determined that it accumulated in the skin approximately 1.81 times more in the POL/LID nanosuspension formulation and 1.79 times more in the PVA/LID nanosuspension formulation. According to analgesic effect and related AUC data, nanosuspension formulation was found to be statistically more effective than coarse suspension. It is concluded that DoE is a useful tool in determining process parameters when developing nanosuspensions by the wet media milling method, and POL is a suitable nonionic polymer to stabilize nanosuspensions.
Collapse
Affiliation(s)
- Özlem Kral
- Department
of Pharmaceutical Technology, Gazi University, Ankara 06560, Turkey
- Department
of Pharmaceutical Technology, Ağri
İbrahim Çeçen University, Agri 04100, Turkey
| | | | - Sevtap Han
- Department
of Pharmacology, Lokman Hekim University, Ankara 06510, Turkey
| | - Figen Tirnaksiz
- Department
of Pharmaceutical Technology, Gazi University, Ankara 06560, Turkey
| |
Collapse
|
2
|
Tripathi D, B H MP, Sahoo J, Kumari J. Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:79-99. [PMID: 38062659 DOI: 10.2174/0126673878271641231201065151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 08/30/2024]
Abstract
Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| | - Manjunatha Prabhu B H
- Department of Food Protection and Infestation Control, CSIR-CFTRI, Central Food Technological Research Institute, Mysore, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NIMMS, Mumbai, India
| | - Jyoti Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| |
Collapse
|
3
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
4
|
Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation Strategies of Nanosuspensions for Various Administration Routes. Pharmaceutics 2023; 15:pharmaceutics15051520. [PMID: 37242763 DOI: 10.3390/pharmaceutics15051520] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanosuspensions (NSs), which are nanosized colloidal particle systems, have recently become one of the most interesting substances in nanopharmaceuticals. NSs have high commercial potential because they provide the enhanced solubility and dissolution of low-water-soluble drugs by means of their small particle sizes and large surface areas. In addition, they can alter the pharmacokinetics of the drug and, thus, improve its efficacy and safety. These advantages can be used to enhance the bioavailability of poorly soluble drugs in oral, dermal, parenteral, pulmonary, ocular, or nasal routes for systemic or local effects. Although NSs often consist mainly of pure drugs in aqueous media, they can also contain stabilizers, organic solvents, surfactants, co-surfactants, cryoprotectants, osmogents, and other components. The selection of stabilizer types, such as surfactants or/and polymers, and their ratio are the most critical factors in NS formulations. NSs can be prepared both with top-down methods (wet milling, dry milling, high-pressure homogenization, and co-grinding) and with bottom-up methods (anti-solvent precipitation, liquid emulsion, and sono-precipitation) by research laboratories and pharmaceutical professionals. Nowadays, techniques combining these two technologies are also frequently encountered. NSs can be presented to patients in liquid dosage forms, or post-production processes (freeze drying, spray drying, or spray freezing) can also be applied to transform the liquid state into the solid state for the preparation of different dosage forms such as powders, pellets, tablets, capsules, films, or gels. Thus, in the development of NS formulations, the components/amounts, preparation methods, process parameters/levels, administration routes, and dosage forms must be defined. Moreover, those factors that are the most effective for the intended use should be determined and optimized. This review discusses the effect of the formulation and process parameters on the properties of NSs and highlights the recent advances, novel strategies, and practical considerations relevant to the application of NSs to various administration routes.
Collapse
Affiliation(s)
- Sıla Gülbağ Pınar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, Isparta 32260, Turkey
| | - Ayşe Nur Oktay
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara 06018, Turkey
| | - Alptuğ Eren Karaküçük
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara 06050, Turkey
| | - Nevin Çelebi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Başkent University, Ankara 06790, Turkey
| |
Collapse
|
5
|
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. DISCOVER NANO 2023; 18:66. [PMID: 37382765 PMCID: PMC10409709 DOI: 10.1186/s11671-023-03849-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Malaria is a life-threatening, blood-borne disease with over two hundred million cases throughout the world and is more prevalent in Sub-Saharan Africa than anywhere else in the world. Over the years, several treatment agents have been developed for malaria; however, most of these active pharmaceutical ingredients exhibit poor aqueous solubility and low bioavailability and may result in drug-resistant parasites, thus increasing malaria cases and eventually, deaths. Factors such as these in therapeutics have led to a better appreciation of nanomaterials. The ability of nanomaterials to function as drug carriers with a high loading capacity and targeted drug delivery, good biocompatibility, and low toxicity renders them an appealing alternative to conventional therapy. Nanomaterials such as dendrimers and liposomes have been demonstrated to be capable of enhancing the efficacy of antimalarial drugs. This review discusses the recent development of nanomaterials and their benefits in drug delivery for the potential treatment of malaria.
Collapse
Affiliation(s)
- Linda N Kekani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
6
|
A Metabolomic and Transcriptomic Study Revealed the Mechanisms of Lumefantrine Inhibition of Toxoplasma gondii. Int J Mol Sci 2023; 24:ijms24054902. [PMID: 36902335 PMCID: PMC10003460 DOI: 10.3390/ijms24054902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Toxoplasma gondii is an obligate protozoon that can infect all warm-blooded animals including humans. T. gondii afflicts one-third of the human population and is a detriment to the health of livestock and wildlife. Thus far, traditional drugs such as pyrimethamine and sulfadiazine used to treat T. gondii infection are inadequate as therapeutics due to relapse, long treatment period, and low efficacy in parasite clearance. Novel, efficacious drugs have not been available. Lumefantrine, as an antimalarial, is effective in killing T. gondii but has no known mechanism of action. We combined metabolomics with transcriptomics to investigate how lumefantrine inhibits T. gondii growth. We identified significant alternations in transcripts and metabolites and their associated functional pathways that are attributed to lumefantrine treatment. RH tachyzoites were used to infect Vero cells for three hours and subsequently treated with 900 ng/mL lumefantrine. Twenty-four hours post-drug treatment, we observed significant changes in transcripts associated with five DNA replication and repair pathways. Metabolomic data acquired through liquid chromatography-tandem mass spectrometry (LC-MS) showed that lumefantrine mainly affected sugar and amino acid metabolism, especially galactose and arginine. To investigate whether lumefantrine damages T. gondii DNA, we conducted a terminal transferase assay (TUNEL). TUNEL results showed that lumefantrine significantly induced apoptosis in a dose-dependent manner. Taken together, lumefantrine effectively inhibited T. gondii growth by damaging DNA, interfering with DNA replication and repair, and altering energy and amino acid metabolisms.
Collapse
|
7
|
Jain AK, Jain S, Abourehab MAS, Mehta P, Kesharwani P. An insight on topically applied formulations for management of various skin disorders. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2406-2432. [PMID: 35848901 DOI: 10.1080/09205063.2022.2103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various types of skin disorders across each age group and in each part of geographical world are very dreadful. Despite not being fatal each time they are always of social and mental concern for suffering individuals, causing complications in millions of patients every day and require comparatively longer duration of treatment. Off late, various topical/transdermal formulations have been widely explored for the treatment of various skin ailments. The efficiency of topical therapy depends on various physiochemical properties of drugs like particle size, particle size distribution, partition coefficient, viscosity of dosage form, skin permeability, skin condition and the site of application. Therefore, in plenty of examples, long-acting topical formulations have shown to be markedly excellent in comparison to conventional dosage forms. The major advantages of topical formulations accrue from their demonstrated ability: (i) Reduced serious side effects that may occur due to undesirably higher systemic absorption of drug. (ii) Enhancement of drug accumulation at the desired site. (iii) Easy incorporation of enormous range of hydrophilic and hydrophobic drugs and (iv) Reduced risk of dose dumping and comparatively easy termination of drug release. The prospective applications of topically applied formulations and the deposition of pharmaceuticals into the skin are examined.
Collapse
Affiliation(s)
- Amit K Jain
- School of Pharmacy, LNCT University, Bhopal, M.P., India
| | - Sakshi Jain
- Department of Pharmaceutical Sciences, , Bhagyoday Tirth Pharmacy College Sagar, M.P., India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Parul Mehta
- School of Pharmacy, LNCT University, Bhopal, M.P., India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
8
|
Frank DS, Prasad P, Iuzzolino L, Schenck L. Dissolution Behavior of Weakly Basic Pharmaceuticals from Amorphous Dispersions Stabilized by a Poly(dimethylaminoethyl Methacrylate) Copolymer. Mol Pharm 2022; 19:3304-3313. [PMID: 35985017 DOI: 10.1021/acs.molpharmaceut.2c00456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amorphous solid dispersions (ASDs) are a well-documented formulation approach to improve the rate and extent of dissolution for hydrophobic pharmaceuticals. However, weakly basic compounds can complicate standard approaches to ASDs due to pH-dependent solubility, resulting in uncontrolled drug release in gastric conditions and unstabilized supersaturated solutions prone to precipitation at neutral pH. This work examines the release mechanisms of amorphous dispersions containing model weakly basic pharmaceuticals posaconazole and lumefantrine from a basic poly(dimethylaminoethyl methacrylate) copolymer (Eudragit EPO) and compares their dissolution behavior with ASDs stabilized by acidic and neutral polymers to understand potential benefits to release from a basic polymeric stabilizer. It was found that dissolution of Eudragit EPO ASDs resulted in supersaturation under gastric conditions, which could be sustained upon adjustment to neutral pH. However, the dissolution behavior of Eudragit EPO ASDs was sensitive to the initial pH of the gastric media. For lumefantrine, elevated initial gastric pH resulted in precipitation of amorphous nanoparticles; for posaconazole, elevated gastric pH led to crystallization of the pharmaceutical from solution. This sensitivity to gastric pH was found to originate from the impact of Eudragit EPO on gastric pH and the solubility of each pharmaceutical in the first stage of dissolution. In total, these data illustrate benefits and liabilities for the use of Eudragit EPO for ASDs containing weak pharmaceutical bases to guide the design of robust pharmaceutical formulations.
Collapse
Affiliation(s)
- Derek S Frank
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Prateek Prasad
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luca Iuzzolino
- Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
9
|
Wei F, Wang Q, Liu H, Yang X, Cao W, Zhao W, Li Y, Zheng L, Ma T, Wang Q. High Efficacy Combined Microneedles Array with Methotrexate Nanocrystals for Effective Anti-Rheumatoid Arthritis. Int J Nanomedicine 2022; 17:2397-2412. [PMID: 35637840 PMCID: PMC9148202 DOI: 10.2147/ijn.s365523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methotrexate (MTX) is the first-line drug for the treatment of rheumatoid arthritis (RA) in several countries. However, MTX has an extremely low solubility in water, and the side effects caused by its delivery mode restrict its curative effect. In this study, we designed a dissolving microneedles array (DMNA) containing MTX nanocrystals (MTX-NCs) (MTX-NC@DMNA) to improve the treatment of RA. DMNA-based drug delivery combines the advantages of patient compliance with the use of transdermal drug delivery systems and high-efficiency injection administration; thus, it can mitigate the side effects that result from current administration routes. Carrier-free and surfactant-free MTX-NCs were prepared to overcome bioavailability limitations and poor drug loading problems. Methods The MTX-NCs prepared by reverse solvent precipitation method was encapsulated in the DMNA. The morphology, mechanical properties, safety, stability and in vivo dissolution were evaluated, and its pharmacodynamic characteristics were assessed in a rat model of RA. Results The particle size of the MTX-NCs was 148.1 ± 10.1 nm. The MTX-NC@DMNA were found to be rigid enough to penetrate the skin and deliver the drug successfully. The results indicated effective skin recovery after removal of the DMNA. It was found that the MTX-NC@DMNA significantly reduced foot swelling in the rats and regulated the balance in the levels of related cytokines. It also reduced pathological damage to the synovium, joint, and cartilage, and effectively alleviated organ injury in the rats. Conclusion Transdermal administration of MTX-NC@DMNA may be an effective approach for treating RA.
Collapse
Affiliation(s)
- Fang Wei
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Qiuyue Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Hang Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Xuejing Yang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Wenyu Cao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Weiman Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Yingying Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Lijie Zheng
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China.,Engineering Research Center for Biochemical Pharmaceuticals of Anhui Province, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China.,Engineering Research Center for Biochemical Pharmaceuticals of Anhui Province, Bengbu Medical College, Bengbu, Anhui Province, 233030, People's Republic of China.,Bengbu BBCA Medical Science Co., Ltd., Bengbu, Anhui Province, 233030, People's Republic of China
| |
Collapse
|
10
|
|
11
|
Singh V, Kesharwani P. Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1882-1909. [PMID: 34078252 DOI: 10.1080/09205063.2021.1938859] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendrimers are macromolecules with high-polymeric branching capable of undergoing major modifications. These characteristics make them an efficient nanocarrier capable of encapsulating and delivering drug, antibodies, or any therapeutic gene. The failure of conventional techniques to deliver drug with higher efficacy and reduced side effects has led to the use of nanomedicines including dendrimers. Dendrimers are novel drug carriers that are modified, complexed, and conjugated with different ligands and receptors to target the delivery of drug at the specific site without impacting any of the normal cells in surrounding. Moreover, the biocompatibility and safety of the dendrimers can be altered accordingly by the process of functionalization by PEGylation, acetylation, or amination. Various dendrimers have been designed to incorporate and deliver anticancer drug either in free form or as codelivery in conjugation with other drugs or therapeutic siRNA/DNA. Doxorubicin (DOX) is one such chemotherapeutic drug that acts by disrupting the process of DNA repair in tumor cells and hence is, since long been used for anticancer therapy. Certain adverse effects such as cardiotoxicity has limited the use of conventional DOX and has shifted the focus on use of safe nanodelivery systems viz dendrimers. DOX either in free or salt form can be loaded or encapsulated accordingly within the core of the dendrimers and linked with different receptors expressed over tumor cells to improve targeting in any cancerous organ site. Positive results obtained after cytotoxicity assay and in vivo/in vitro studies on different cancerous cell lines, and grafted models suggested the potential use of multifunctional DOX-dendrimers characterized with controlled release, better penetration, improved bioavailability, and reduced organ toxicity. This review consolidates studies on different types of DOX-loaded dendrimers that were synthesized, investigated, and are currently being explored for better cancer targeting. Foreseeing the prospects of dendrimers and their compatibility with DOX (free/salt), the article was updated with all current insights.
Collapse
Affiliation(s)
- Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|