1
|
Kopinski-Grünwald O, Schandl S, Gusev J, Chamalaki OE, Ovsianikov A. Surface functionalization of microscaffolds produced by high-resolution 3D printing: A new layer of freedom. Mater Today Bio 2025; 31:101452. [PMID: 39896295 PMCID: PMC11783114 DOI: 10.1016/j.mtbio.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Scaffolded-spheroids represent novel building blocks for bottom-up tissue assembly, allowing to produce constructs with high initial cell density. Previously, we demonstrated the successful differentiation of such building blocks, produced from immortalized human adipose-derived stem cells, towards different phenotypes, and the possibility of creating macro-sized tissue-like constructs in vitro. The culture of cells in vitro depends on the supply of various nutrients and biomolecules, such as growth factors, usually supplemented in the culture medium. Another means for growth factor delivery (in vitro and in vivo) is the release from the scaffold to alter the biological response of surrounding cells (e.g. by release of VEGF).1 As a proof of concept for this approach, we sought to biofunctionalize the surface of the microscaffolds with heparin as a "universal linker" that would allow binding a variety of growth factors/biomolecules. An aminolysis step in an organic solvent made it possible to generate a hydrophilic and charged surface. The backbone of the amine, as well as reaction conditions, led to an adjustable surface modification. The amount of heparin on the surface was increased with an ethylene glycol-based diamine backbone and varied between 8 and 40 ng per microscaffold. Choosing a suitable linker allows easy adjustment of the loading of VEGF and other heparin-binding proteins. Initial results indicated that up to 5 ng VEGF could be loaded per microscaffold, generating a steady VEGF release for 16 days. We report an easy-to-perform, scalable surface modification approach of polyester-based resin that leads to adjustable surface concentrations of heparin. The successful surface aminolysis opens the route to various modifications and broadens the spectrum of biomolecules which can be delivered.
Collapse
Affiliation(s)
| | | | - Jegor Gusev
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria
| | - Ourania Evangelia Chamalaki
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria
| | | |
Collapse
|
2
|
Wu J, Chen Y, Liu X, Liu S, Deng L, Tang K. Human acellular amniotic membrane/polycaprolactone vascular grafts prepared by electrospinning enable vascular remodeling in vivo. Biomed Eng Online 2024; 23:112. [PMID: 39506815 PMCID: PMC11542409 DOI: 10.1186/s12938-024-01302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Vascular transplantation is an effective treatment for severe vascular lesions. The design of the bioactive and mechanical properties of small-caliber vascular grafts is critical for their application in tissue engineering. In this study, we sought to develope a small-caliber vascular graft by electrospinning a mixture of a human acellular amniotic membrane (HAAM) and polycaprolactone (PCL). RESULTS Mechanical tests showed that the vascular grafts were strong enough to endure stress from adjacent blood vessels and blood pressure. The biocompatibility of the HAAM/PCL vascular grafts was evaluated based on cell proliferation in vitro. The tubular formation test demonstrated that vascular grafts containing HAAM could improve human umbilical vein endothelial cell function, and in vivo implantation was performed by replacing the rat abdominal aorta. The HAAM/PCL vascular graft was found to promote attachment and endothelial cell retention. The regenerated smooth muscle layer was similar to native arteries' smooth muscle layer and the endothelium coverage was complete. CONCLUSIONS These results suggest that our constructs may be promising vascular graft candidates and can potentially be used to develop vascular grafts that can endothelialize rapidly in vivo.
Collapse
Affiliation(s)
- Jiayi Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yixin Chen
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Xiaoxi Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Shun Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Long Deng
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Kai Tang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China.
| |
Collapse
|
3
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
4
|
Crago M, Lee A, Hoang TP, Talebian S, Naficy S. Protein adsorption on blood-contacting surfaces: A thermodynamic perspective to guide the design of antithrombogenic polymer coatings. Acta Biomater 2024; 180:46-60. [PMID: 38615811 DOI: 10.1016/j.actbio.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. Thrombosis is fundamentally initiated by the nonspecific adsorption of proteins to the material surface, which is strongly governed by thermodynamic factors established by the nature of the interaction between the material surface, surrounding water molecules, and the protein itself. Along these lines, different surface materials (such as polymeric, metallic, ceramic, or composite) induce different entropic and enthalpic changes at the surface-protein interface, with material wettability significantly impacting this behavior. Consequently, protein adsorption on medical devices can be modulated by altering their wettability and surface energy. A plethora of polymeric coating modifications have been utilized for this purpose; hydrophobic modifications may promote or inhibit protein adsorption determined by van der Waals forces, while hydrophilic materials achieve this by mainly relying on hydrogen bonding, or unbalanced/balanced electrostatic interactions. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications. STATEMENT OF SIGNIFICANCE: Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. A plethora of polymeric coating modifications have been utilized for addressing this issue. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications.
Collapse
Affiliation(s)
- Matthew Crago
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Aeryne Lee
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Thanh Phuong Hoang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Sepehr Talebian
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| |
Collapse
|
5
|
Fahad MAA, Lee HY, Park S, Choi M, Shanto PC, Park M, Bae SH, Lee BT. Small-diameter vascular graft composing of core-shell structured micro-nanofibers loaded with heparin and VEGF for endothelialization and prevention of neointimal hyperplasia. Biomaterials 2024; 306:122507. [PMID: 38367300 DOI: 10.1016/j.biomaterials.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Despite the significant progress made in recent years, clinical issues with small-diameter vascular grafts related to low mechanical strength, thrombosis, intimal hyperplasia, and insufficient endothelialization remain unresolved. This study aims to design and fabricate a core-shell fibrous small-diameter vascular graft by co-axial electrospinning process, which will mechanically and biologically meet the benchmarks for blood vessel replacement. The presented graft (PGHV) comprised polycaprolactone/gelatin (shell) loaded with heparin-VEGF and polycaprolactone (core). This study hypothesized that the shell structure of the fibers would allow rapid degradation to release heparin-VEGF, and the core would provide mechanical strength for long-term application. Physico-mechanical evaluation, in vitro biocompatibility, and hemocompatibility assays were performed to ensure safe in vivo applications. After 25 days, the PGHV group released 79.47 ± 1.54% of heparin and 86.25 ± 1.19% of VEGF, and degradation of the shell was observed but the core remained pristine. Both the control (PG) and PGHV groups demonstrated robust mechanical properties. The PGHV group showed excellent biocompatibility and hemocompatibility compared to the PG group. After four months of rat aorta implantation, PGHV exhibited smooth muscle cell regeneration and complete endothelialization with a patency rate of 100%. The novel core-shell structured graft could be pivotal in vascular tissue regeneration application.
Collapse
Affiliation(s)
- Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
6
|
Li B, Shu Y, Ma H, Cao K, Cheng YY, Jia Z, Ma X, Wang H, Song K. Three-dimensional printing and decellularized-extracellular-matrix based methods for advances in artificial blood vessel fabrication: A review. Tissue Cell 2024; 87:102304. [PMID: 38219450 DOI: 10.1016/j.tice.2024.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Blood vessels are the tubes through which blood flows and are divided into three types: millimeter-scale arteries, veins, and capillaries as well as micrometer-scale capillaries. Arteries and veins are the conduits that carry blood, while capillaries are where blood exchanges substances with tissues. Blood vessels are mainly composed of collagen fibers, elastic fibers, glycosaminoglycans and other macromolecular substances. There are about 19 feet of blood vessels per square inch of skin in the human body, which shows how important blood vessels are to the human body. Because cardiovascular disease and vascular trauma are common in the population, a great number of researches have been carried out in recent years by simulating the structures and functions of the person's own blood vessels to create different levels of tissue-engineered blood vessels that can replace damaged blood vessels in the human body. However, due to the lack of effective oxygen and nutrient delivery mechanisms, these tissue-engineered vessels have not been used clinically. Therefore, in order to achieve better vascularization of engineered vascular tissue, researchers have widely explored the design methods of vascular systems of various sizes. In the near future, these carefully designed and constructed tissue engineered blood vessels are expected to have practical clinical applications. Exploring how to form multi-scale vascular networks and improve their compatibility with the host vascular system will be very beneficial in achieving this goal. Among them, 3D printing has the advantages of high precision and design flexibility, and the decellularized matrix retains active ingredients such as collagen, elastin, and glycosaminoglycan, while removing the immunogenic substance DNA. In this review, technologies and advances in 3D printing and decellularization-based artificial blood vessel manufacturing methods are systematically discussed. Recent examples of vascular systems designed are introduced in details, the main problems and challenges in the clinical application of vascular tissue restriction are discussed and pointed out, and the future development trends in the field of tissue engineered blood vessels are also prospected.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kun Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Zhilin Jia
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China.
| | - Xiao Ma
- Department of Anesthesia, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Hongfei Wang
- Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
7
|
Sultana T, Fahad MAA, Park M, Kwon SH, Lee BT. Physicochemical, in vitro and in vivo evaluation of VEGF loaded PCL-mPEG and PDGF loaded PCL-Chitosan dual layered vascular grafts. J Biomed Mater Res B Appl Biomater 2024; 112:e35325. [PMID: 37675952 DOI: 10.1002/jbm.b.35325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The present study has attempted to evaluate the endothelialization and smooth muscle regeneration efficiency of a novel dual-layer small-diameter vascular graft. Two types of layers (PCL-mPEG-VEGF and PCL-Chitosan-PDGF) were fabricated to find out the best layer giving endothelialization support for the lumen and unique contractile function for outer layer of blood vessels. Platelet-derived growth factor (PDGF) and chitosan were immobilized onto PCL surface by aminolysis-based surface modification technique. Besides, Poly (ethylene glycol) methyl ether (mPEG) and vascular endothelial growth factor (VEGF) were directly blended with PCL. Morphological analysis of membranes ensured consistency of average fibers diameter with native extracellular matrix. A favorable interaction of PCL-mPEG-VEGF with cow pulmonary endothelial cells (CPAEs) and PCL-Chitosan-PDGF with rat bone marrow mesenchymal stem cells (RBMSCs) was obtained during in vitro study. Controlled growth factor release patterns were found from both layers. Further, PCL-mPEG-VEGF exhibited endothelial markers expression properties from RBMSCs. Up-regulation of SMCs markers expression was significantly ensured by the PCL-Chitosan-PDGF membrane. Thus, PCL-mPEG-VEGF and PCL-Chitosan-PDGF were preferred as inner and outer layers respectively of a finally prepared tubular hybrid tissue engineered small diameter vascular graft. Finally, the dual-layer vascular graft was implanted onto a rat abdominal aorta model for 2 months. The extracted samples exhibited the presence of endothelial marker (ICAM 1) in the inner layer and smooth muscle cell marker (αSMA) in the outer layer as well as substantial amount of collagen deposition was observed in the both layers.
Collapse
Affiliation(s)
- Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Soon Ha Kwon
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
8
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
9
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
10
|
Dokuchaeva AA, Vladimirov SV, Borodin VP, Karpova EV, Vaver AA, Shiliaev GE, Chebochakov DS, Kuznetsov VA, Surovtsev NV, Adichtchev SV, Malikov AG, Gulov MA, Zhuravleva IY. Influence of Single-Wall Carbon Nanotube Suspension on the Mechanical Properties of Polymeric Films and Electrospun Scaffolds. Int J Mol Sci 2023; 24:11092. [PMID: 37446270 DOI: 10.3390/ijms241311092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Carbon nanotubes (CNTs) are used in applications ranging from electrical engineering to medical device manufacturing. It is well known that the addition of nanotubes can influence the mechanical properties of various industrial materials, including plastics. Electrospinning is a popular method for fabricating nanomaterials, widely suggested for polymer scaffold manufacturing. In this study, we aimed to describe the influence of single-walled carbon nanotube (SWCNT) suspensions on polymeric poured films and electrospun scaffolds and to investigate their structural and mechanical properties obtained from various compositions. To obtain films and electrospun scaffolds of 8 mm diameter, we used poly-ε-caprolactone (PCL) and poly(cyclohexene carbonate) (PCHC) solutions containing several mass fractions of SWCNT. The samples were characterized using tensile tests, atomic force and scanning electronic microscopy (AFM and SEM). All the studied SWCNT concentrations were shown to decrease the extensibility and strength of electrospun scaffolds, so SWCNT use was considered unsuitable for this technique. The 0.01% mass fraction of SWCNT in PCL films increased the polymer strength, while fractions of 0.03% and more significantly decreased the polymer strength and extensibility compared to the undoped polymer. The PHCH polymeric films showed a similar behavior with an extremum at 0.02% concentration for strength at break.
Collapse
Affiliation(s)
- Anna A Dokuchaeva
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Sergey V Vladimirov
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Vsevolod P Borodin
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Elena V Karpova
- Group of Optical Spectrometry, Center of Spectral Investigations, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Andrey A Vaver
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Gleb E Shiliaev
- LLC "Tuball Center NSK", 24 Inzhenernaya St., Novosibirsk 630090, Russia
| | | | - Vasily A Kuznetsov
- I.Ya. Postovsky Insititute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences (IOS UB RAS), S. Kovalevskoy St., 22/20, Yekaterinburg 620108, Russia
| | - Nikolay V Surovtsev
- Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Academician Koptyug Avenue, 1, Novosibirsk 630090, Russia
| | - Sergey V Adichtchev
- Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Academician Koptyug Avenue, 1, Novosibirsk 630090, Russia
| | - Alexander G Malikov
- Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 4/1, Novosibirsk 630090, Russia
| | - Mikhail A Gulov
- Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 4/1, Novosibirsk 630090, Russia
| | - Irina Y Zhuravleva
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| |
Collapse
|
11
|
Khanna A, Oropeza BP, Huang NF. Engineering Spatiotemporal Control in Vascularized Tissues. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100555. [PMID: 36290523 PMCID: PMC9598830 DOI: 10.3390/bioengineering9100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|