1
|
Cho DH, Lee JH, Jang JU, Son JJ, Sung HC. The adaptation and fitness costs to urban noise in the calls of the tree sparrow (Passer montanus). Sci Rep 2025; 15:5359. [PMID: 39948397 PMCID: PMC11825673 DOI: 10.1038/s41598-025-88287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Acoustic communication is one of the primary ways birds transmit and acquire important information. Birds living in urban environments are limited in the transmission and recognition of vocalizations due to intense low-frequency anthropogenic noise, but the Acoustic Adaptation Hypothesis (AAH) suggests that birds mitigate the masking effects of noise by modifying the structure and properties of their vocalizations. Although these adaptations can increase the efficiency of communication, they also impose potential fitness costs on the sender and receiver, which can negatively impact survival. The contact and alarm calls of tree sparrows have a frequency range of 1-10 kHz, which makes them likely to be partially masked by urban noise, limiting communication between individuals and interactions within populations. Thus, based on the AAH, we examined the modifications of contact and alarm calls in response to urban noise and confirmed the potential fitness costs of these modifications in tree sparrows. We recorded two contact calls and an alarm call at 80 sites with varying urban noise levels in Gwangju, Naju, and Damyang from March to April 2023. Both types of contact calls tended to have higher peak frequencies and shorter durations as urban noise increased. Alarm calls tended to increase in the number of notes and duration with increasing urban noise. These results indicate that tree sparrows respond to noisy environments through modifications of the spectral and temporal characteristics of their vocalizations. However, these adaptations impose potential fitness costs on both the sender and the receiver.
Collapse
Affiliation(s)
- Dae-Han Cho
- School of Biological Sciences and Biotechnology in Chonnam National University, Gwangju, Republic of Korea
- Korea Institute of Environmental Ecology, Daejeon, Republic of Korea
| | - Ju-Hyun Lee
- Department of Biological Sciences in Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Ung Jang
- School of Biological Sciences and Biotechnology in Chonnam National University, Gwangju, Republic of Korea
- Korea Institute of Environmental Ecology, Daejeon, Republic of Korea
| | - Jong-Ju Son
- School of Biological Sciences and Biotechnology in Chonnam National University, Gwangju, Republic of Korea
| | - Ha-Cheol Sung
- Department of Biological Sciences in Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Sagar HSSC, Anand A, Persche ME, Pidgeon AM, Zuckerberg B, Şekercioğlu ÇH, Buřivalová Z. Global analysis of acoustic frequency characteristics in birds. Proc Biol Sci 2024; 291:20241908. [PMID: 39501883 PMCID: PMC11538988 DOI: 10.1098/rspb.2024.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Animal communication plays a crucial role in biology, yet the wide variability in vocalizations is not fully understood. Previous studies in birds have been limited in taxonomic and analytical breadth. Here, we analyse an extensive dataset of >140 000 recordings of vocalizations from 8450 bird species, representing nearly every avian order and family, under a structural causal model framework, to explore the influence of eco-evolutionary traits on acoustic frequency characteristics. We find that body mass, beak size, habitat associations and geography influence acoustic frequency characteristics, with varying degrees of interaction with song acquisition type. We find no evidence for the influence of vegetation density, sexual dimorphism, range size and competition on our measures of acoustic frequency characteristics. Our results, built on decades of researchers' empirical observations collected across the globe, provide a new breadth of evidence about how eco-evolutionary processes shape bird communication.
Collapse
Affiliation(s)
- H. S. Sathya Chandra Sagar
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
- Nelson Institute for Environmental Studies, University of Wisconsin, MadisonWI 53726, USA
| | - Akash Anand
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Maia E. Persche
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Anna M. Pidgeon
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Benjamin Zuckerberg
- School of Biological Sciences, The University of Utah, Salt LakeUT 84112, USA
| | | | - Zuzana Buřivalová
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
- Nelson Institute for Environmental Studies, University of Wisconsin, MadisonWI 53726, USA
| |
Collapse
|
3
|
Sebastianelli M, Lukhele SM, Secomandi S, de Souza SG, Haase B, Moysi M, Nikiforou C, Hutfluss A, Mountcastle J, Balacco J, Pelan S, Chow W, Fedrigo O, Downs CT, Monadjem A, Dingemanse NJ, Jarvis ED, Brelsford A, vonHoldt BM, Kirschel ANG. A genomic basis of vocal rhythm in birds. Nat Commun 2024; 15:3095. [PMID: 38653976 DOI: 10.1038/s41467-024-47305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.
Collapse
Affiliation(s)
- Matteo Sebastianelli
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Stacey G de Souza
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Christos Nikiforou
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Alexander Hutfluss
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | | | | | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Colleen T Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
| |
Collapse
|
4
|
Bustamante N, Garitano-Zavala Á. Natural Patterns in the Dawn and Dusk Choruses of a Neotropical Songbird in Relation to an Urban Sound Environment. Animals (Basel) 2024; 14:646. [PMID: 38396616 PMCID: PMC10886165 DOI: 10.3390/ani14040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Urbanization is one of the more important phenomena affecting biodiversity in the Anthropocene. Some organisms can cope with urban challenges, and changes in birds' acoustic communication have been widely studied. Although changes in the timing of the daily organization of acoustic communication have been previously reported, there is a significant gap regarding possible variations in song structure between dawn and dusk choruses. Considering that urbanization imposes different soundscapes for dawn and dusk choruses, we postulate two hypotheses: (i) there are variations in song parameters between dawn and dusk choruses, and (ii) such parameters within the city will vary in response to urban noise. We studied urban and extra-urban populations of Chiguanco Thrush in La Paz, Bolivia, measuring in dawn and dusk choruses: song length; song sound pressure level; minimum, maximum, range and dominant frequency; and the number of songs per individual. The results support our two hypotheses: there were more songs, and songs were louder and had larger band widths at dawn than at dusk in urban and extra-urban populations. Urban Chiguanco Thrushes sing less, the frequency of the entire song rises, and the amplitude increases as compared with extra-urban Chiguanco Thrushes. Understanding variations between dawn and dusk choruses could allow for a better interpretation of how some bird species cope with urban challenges.
Collapse
Affiliation(s)
- Noelia Bustamante
- Carrera de Biología, Universidad Mayor de San Andrés, La Paz P. O. Box 10077, Bolivia
| | | |
Collapse
|
5
|
Ritz-Radlinská A, Barták V, Hodačová L, Maidlová K, Zasadil P. The singing activity of the Yellowhammer (Emberiza citrinella) under traffic noise around highways. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1020982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Steadily increasing human population is changing the environment in many ways. One of the most disturbing impacts is the development of anthropogenic noise pollution connected to ever-growing traffic intensity. The road network can have both positive and negative effects on biodiversity and populations. Many bird species use acoustic communication to establish and maintain their territories and for intra-pair and adult–young communication. Noise pollution can impact negatively on breeding success and biorhythm if this communication is masked by noise and the individuals must adjust their singing activity. Yellowhammer (Emberiza citrinella) is a common bird species of agricultural landscapes whose population is declining due to agricultural intensification. It is found also in habitats near highways with forest steppe-like characteristics, where it is affected by the high levels of anthropogenic noise pollution. This study aimed to determine how this species adapts to noise from highway traffic by adjusting its singing activity. The influence of locality type, immediate and long-term impact of traffic noise on the average and total length of song sequences in the birdsong, and influence on the total number of recorded song sequences during the second hour after sunrise were evaluated in this study. Our results showed that Yellowhammer’s singing activity changed in localities close to highways compared to agricultural landscape. With increasing long-term traffic intensity on highways, song duration of the Yellowhammer song was decreasing. The present traffic intensity led to later onset of dawn chorus and decreasing strophe length with increasing number of passing vehicles. Furthermore, in the agricultural landscape, Yellowhammer’s song duration increased with increasing distance from the nearest road.
Collapse
|
6
|
Sebastianelli M, Lukhele SM, Nwankwo EC, Hadjioannou L, Kirschel ANG. Continent-wide patterns of song variation predicted by classical rules of biogeography. Ecol Lett 2022; 25:2448-2462. [PMID: 36124660 PMCID: PMC9826498 DOI: 10.1111/ele.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/11/2023]
Abstract
Physiological constraints related to atmospheric temperature pose a limit to body and appendage size in endothermic animals. This relationship has been summarised by two classical principles of biogeography: Bergmann's and Allen's rules. Body size may also constrain other phenotypic traits important in ecology, evolution and behaviour, and such effects have seldom been investigated at a continental scale. Through a multilevel-modelling approach, we demonstrate that continent-wide morphology of related African barbets follows predictions of Bergmann's rule, and that body size mirrors variation in song pitch, an acoustic trait important in species recognition and sexual selection. Specifically, effects on song frequency in accordance with Bergmann's rule dwarf those of acoustic adaptation at a continental scale. Our findings suggest that macroecological patterns of body size can influence phenotypic traits important in ecology and evolution, and provide a baseline for further studies on the effects of environmental change on bird song.
Collapse
Affiliation(s)
| | | | | | | | - Alexander N. G. Kirschel
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus,University of California Los AngelesDepartment of Ecology and Evolutionary BiologyLos AngelesCaliforniaUSA,Edward Grey Institute, Department of ZoologyUniversity of OxfordOxfordUK
| |
Collapse
|