1
|
Durand P, Pottier V, Debordeaux F, Mesguich C, Duffau P, Lazaro E, Viallard J, Rivière E. Course of immune thrombocytopenia according to the site of platelet destruction identified by indium-111 platelet scintigraphy. Br J Haematol 2025; 206:279-289. [PMID: 39407432 PMCID: PMC11739762 DOI: 10.1111/bjh.19833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/03/2024] [Indexed: 01/19/2025]
Abstract
In primary immune thrombocytopenia (ITP), predictors of disease evolution and treatment response are needed. Data based on the site of platelet destruction are scarce. We performed a retrospective single-centre study of adult patients with primary ITP undergoing at least one Indium-111 platelet scintigraphy (IPS) between 2009 and 2018. Thirty-three patients had isolated hepatic platelet destruction (H-group), and 97 isolated splenic destruction (S-group). Median age at diagnosis (p < 0.001), proportion of associated cardiovascular (p < 0.001), organ-specific autoimmune diseases (p = 0.02), dependence on steroids (p = 0.003) and failure to rituximab (p = 0.01) were higher and relapse more frequent (p = 0.03) in H-group compared to non-splenectomized patients in S-group. Splenectomy was only performed in patients from S-group (as patients with hepatic sequestration are not splenectomized in our centre): 79% were in relapse-free remission at the end of a median 3.4-year post-IPS follow-up, 16% relapsed. In multivariate analyses, only a history of organ-specific autoimmune or inflammatory disease was significantly associated with hepatic sequestration (OR = 4.3, 95% CI = 1.2-15, p = 0.02). Patients with isolated hepatic sequestration were older, had more cardiovascular events and organ-specific autoimmune diseases, greater dependence on steroids, more relapses and a decreased response rate to rituximab suggesting an increased refractoriness to immunomodulatory therapies. Patients with isolated splenic sequestration responded well to splenectomy.
Collapse
Affiliation(s)
- Pauline Durand
- Department of Internal Medicine and Infectious DiseasesUniversity Hospital Centre of BordeauxPessacFrance
| | - Valérie Pottier
- Department of RadiopharmacyUniversity Hospital Centre of BordeauxPessacFrance
| | - Frédéric Debordeaux
- Department of RadiopharmacyUniversity Hospital Centre of BordeauxPessacFrance
| | - Charles Mesguich
- Department of Nuclear MedicineUniversity Hospital Centre of BordeauxPessacFrance
| | - Pierre Duffau
- Department of Internal MedicineUniversity Hospital Centre of BordeauxBordeauxFrance
- UMR CNRS 5164, ImmunoconcEpT & FHU ACRONIMBordeaux UniversityBordeauxFrance
- Faculty of MedicineBordeaux UniversityBordeauxFrance
| | - Estibaliz Lazaro
- Department of Internal Medicine and Infectious DiseasesUniversity Hospital Centre of BordeauxPessacFrance
- UMR CNRS 5164, ImmunoconcEpT & FHU ACRONIMBordeaux UniversityBordeauxFrance
- Faculty of MedicineBordeaux UniversityBordeauxFrance
| | - Jean‐François Viallard
- Department of Internal Medicine and Infectious DiseasesUniversity Hospital Centre of BordeauxPessacFrance
- Faculty of MedicineBordeaux UniversityBordeauxFrance
- INSERM U1034Bordeaux UniversityPessac CedexFrance
| | - Etienne Rivière
- Department of Internal Medicine and Infectious DiseasesUniversity Hospital Centre of BordeauxPessacFrance
- Faculty of MedicineBordeaux UniversityBordeauxFrance
- INSERM U1034Bordeaux UniversityPessac CedexFrance
| |
Collapse
|
2
|
Butta N, van der Wal DE. Desialylation by neuraminidases in platelets, kiss of death or bittersweet? Curr Opin Hematol 2025; 32:43-51. [PMID: 38529832 DOI: 10.1097/moh.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Loss of surface sialic acid by neuraminidases is known as 'desialylation'. Platelets are desialylated in bacterial or viral infections, during storage, senescence, various mutations, platelet auto antibodies, hemostasis and shear stress. In this review the recent literature on the different sialic acid capped glycan structures will be covered as well as platelet desialylation in inherited glycan disorders and induced by external neuraminidases. RECENT FINDINGS Neuraminidases are released from platelet intracellular stores and translocated to the platelet surface. Apart from clearance, loss of surface sialic acid by neuraminidases ('desialylation') affects platelet signaling including ligand binding and their procoagulant function. Platelets are also desialylated in infections, various mutations, presence of platelet auto antibodies. SUMMARY Since platelet desialylation occurs in various healthy and pathological conditions, measuring desialylation might be a new diagnostic tool.
Collapse
Affiliation(s)
- Nora Butta
- Group of Coagulopathies and Haemostasis Disorders, La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Dianne E van der Wal
- Platelets and Thrombosis Research Laboratory, Anzac Research Institute, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
3
|
Hou XR, Yan ZY, Liu S, Gao N, Chen J, Wang YW, Wang L, Li Z, Wang XR, Dong QF, Wang QY, Sun L, Wang YM, Ma J, Zhao YJ, Xu ZL, Cao CC, Peng J, Hou M, Liu XG. Corticosteroids plus metformin versus corticosteroids as front-line treatment for patients with newly diagnosed ITP and pre-existing type 2 diabetes mellitus: A multicentre propensity score-matched study. Br J Haematol 2024. [PMID: 39696781 DOI: 10.1111/bjh.19940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024]
Abstract
Corticosteroids are the standard first-line treatment for primary immune thrombocytopenia (ITP), with a high initial response but unsatisfactory sustained response (SR). Additionally, corticosteroids usually lead to hyperglycaemia especially in patients with pre-existing type 2 diabetes mellitus (T2DM). Besides reducing the blood glucose levels, metformin was found to have immunomodulatory effects. We hereby conducted a multicentre propensity score matching analysis of corticosteroids plus metformin versus corticosteroids for newly diagnosed ITP patients with pre-existing T2DM. After matching at a ratio of 1:1, there were 57 patients in each group. Baseline characteristics, comorbidities and other medications including concurrent hypoglycaemic medications were balanced between the two groups. No statistical difference was observed in the initial response rate at day 14. It was notable that patients in the metformin group had a significantly higher SR rate and longer duration of response compared to the non-metformin group. Metformin inclusion was associated with a higher incidence of stomach upset, which were generally tolerable. Our study provided evidence that the addition of metformin to corticosteroids might be a promising front-line treatment for newly diagnosed ITP patients with pre-existing T2DM.
Collapse
Affiliation(s)
- Xi-Ran Hou
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Yu Yan
- Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Shuang Liu
- Department of Hematology, Tai'an Central Hospital, Tai'an, China
| | - Na Gao
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, China
| | - Jian Chen
- Department of Hematology, Jining No. 1 People's Hospital, Jining, China
| | - Ya-Wen Wang
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China
| | - Zhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Qingdao, China
| | - Xin-Ru Wang
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Qiao-Feng Dong
- Department of Hematology, Heze Municipal Hospital, Heze, China
| | - Qiu-Yan Wang
- Department of Hematology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Lin Sun
- Department of Hematology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan-Ming Wang
- Department of Hematology, Yantai Yuhuangding Hospital, Yantai, China
| | - Ji Ma
- Department of Hematology, Shandong First Medical University Affiliated Tumor Hospital, Jinan, China
| | - Ya-Jing Zhao
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zhi-Long Xu
- Department of Hematology, Lanling Hospital, Linyi, China
| | - Cong-Cong Cao
- Department of Hematology, Qilu Hospital of Shandong University Pingyi Hospital, Pingyi, China
| | - Jun Peng
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin-Guang Liu
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Zheng SS, Perdomo JS. Desialylation and Apoptosis in Immune Thrombocytopenia: Implications for Pathogenesis and Treatment. Curr Issues Mol Biol 2024; 46:11942-11956. [PMID: 39590303 PMCID: PMC11592706 DOI: 10.3390/cimb46110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease in which platelet autoantibodies play a significant role in its pathogenesis. Regulatory T cell dysfunction and T cell-mediated cytotoxicity also contribute to thrombocytopenia. Current therapies are directed towards immune suppression and modulation as well as stimulation of platelet production with thrombopoietin receptor agonists. Additional mechanisms of the pathogenesis of ITP have been suggested by recent experimental data. One of these processes, known as desialylation, involves antibody-induced removal of terminal sialic acid residues on platelet surface glycoproteins, leading to hepatic platelet uptake and thrombocytopenia. Apoptosis, or programmed platelet death, may also contribute to the pathogenesis of ITP. The extent of the impact of desialylation and apoptosis on ITP, the relative proportion of patients affected, and the role of antibody specificity are still the subject of investigation. This review will discuss both historical and new evidence of the influence of desialylation and apoptosis in the pathogenesis of ITP, with an emphasis on the clinical implications of these developments. Further understanding of both platelet desialylation and apoptosis might change current clinical practice and improve patient outcomes.
Collapse
Affiliation(s)
- Shiying Silvia Zheng
- Haematology Research Unit, St. George and Sutherland Clinical Campuses, School of Medicine & Health, University of New South Wales, Kogarah, NSW 2217, Australia;
- Department of Haematology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - José Sail Perdomo
- Haematology Research Group, Central Clinical School, Faculty Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Zhang Q, Huang M, Thomas ER, Wang L, Liu J, Li X, Luo J, Zou W, Wu J. The role of platelet desialylation as a biomarker in primary immune thrombocytopenia: mechanisms and therapeutic perspectives. Front Immunol 2024; 15:1409461. [PMID: 38979425 PMCID: PMC11228137 DOI: 10.3389/fimmu.2024.1409461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Primary immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by the destruction of platelets. Although it was long believed that the critical role of autoantibodies in platelet destruction, primarily through the Fc-dependent platelet clearance pathway, recent findings indicate that the significance of the Fc-independent platelet clearance pathway mediated by hepatocytes, thus shedding light on a previously obscure aspect of ITP pathogenesis. Within this context, the desialylation of platelets has emerged as a pivotal biochemical marker. Consequently, targeting platelet desialylation emerges as a novel therapeutic strategy in the pathogenesis of ITP. Notably, prevailing research has largely focused on antiplatelet antibodies and the glycosylation-associated mechanisms of platelet clearance, while comprehensive analysis of platelet desialylation remains scant. In response, we retrospectively discuss the historical progression, inducing factors, generation process, and molecular regulatory mechanisms underlying platelet desialylation in ITP pathogenesis. By systematically evaluating the most recent research findings, we contribute to a comprehensive understanding of the intricate processes involved. Moreover, our manuscript delves into the potential application of desialylation regulatory strategies in ITP therapy, heralding novel therapeutic avenues. In conclusion, this manuscript not only fills a critical void in existing literature but also paves the way for future research by establishing a systematic theoretical framework. By inspiring new research ideas and offering insights into the development of new therapeutic strategies and targeted drugs, our study is poised to significantly advance the clinical management of ITP.
Collapse
Affiliation(s)
- Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Elizabeth Rosalind Thomas
- Department of Microbiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, India
| | - Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| |
Collapse
|
6
|
Liu LY, Zhang B, Song CD, Li PF, Yang M, Ren XQ, Ding Y. Successful treatment with oseltamivir phosphate in children with ITP who failed first-line therapy: a case series report. Ann Hematol 2024; 103:405-408. [PMID: 38095655 DOI: 10.1007/s00277-023-05581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
Immune thrombocytopenia (ITP) is a common bleeding disorder in children. First-line medicines (glucocorticoids and immunoglobulin) may not be effective for some children, endangering their lives, posing challenges for healthcare facilities, and leading to an unfavorable prognosis. As a sialidase inhibitor, oseltamivir phosphate can reduce the destruction of platelets in liver macrophages by inhibiting the sialylation of platelets, and finally achieve the purpose of increasing platelet count. In this paper, three cases of children with ITP who failed first-line therapy and were cured by oral administration of oseltamivir phosphate granules were reported. The mechanism of action of oseltamivir phosphate granules was clarified.
Collapse
Affiliation(s)
- Li-Ya Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
- School of Pediatrics, Henan University of Chinese Medicine, Henan, China
| | - Bo Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
- School of Pediatrics, Henan University of Chinese Medicine, Henan, China
| | - Chun-Dong Song
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
- School of Pediatrics, Henan University of Chinese Medicine, Henan, China
| | - Peng-Fei Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
- School of Pediatrics, Henan University of Chinese Medicine, Henan, China
| | - Meng Yang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
- School of Pediatrics, Henan University of Chinese Medicine, Henan, China
| | - Xian-Qing Ren
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
- School of Pediatrics, Henan University of Chinese Medicine, Henan, China
| | - Ying Ding
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China.
- School of Pediatrics, Henan University of Chinese Medicine, Henan, China.
| |
Collapse
|
7
|
Audia S, Bussel J. Improving the chances of response to splenectomy in immune thrombocytopenia. Br J Haematol 2024; 204:24-25. [PMID: 37939484 DOI: 10.1111/bjh.19174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by isolated thrombocytopenia. Its pathogenesis is complex relying in large part on destruction of platelets recognized by autoantibodies within the spleen. However, other mechanisms, such as platelet desialylation, may play a role in platelet reduction by accelerating their clearance in the liver. In their study, Mendoza and colleagues reported on platelet scintigraphy performed in 51 ITP patients, showing a response in 87.5% when the sequestration occurred in the spleen versus 45% in case of non-splenic destruction. Platelet desialylation was also measured after splenectomy and found to be higher in non-responder patients. These latter results, while requiring confirmation prior to splenectomy, support platelet desialylation may also be a potential biomarker of non-response to splenectomy. Commentary on: Mendoza et al. Study of platelet kinetics in immune thrombocytopenia to predict splenectomy response. Br J Haematol 2024;204:315-323.
Collapse
Affiliation(s)
- Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, Referral Center for Adult Autoimmune Cytopenia (CeReCAI), Dijon University Hospital, Dijon, France
| | - James Bussel
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
8
|
Moulinet T, Moussu A, Pierson L, Pagliuca S. The many facets of immune-mediated thrombocytopenia: Principles of immunobiology and immunotherapy. Blood Rev 2024; 63:101141. [PMID: 37980261 DOI: 10.1016/j.blre.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune condition, due to peripheral platelet destruction through antibody-dependent cellular phagocytosis, complement-dependent cytotoxicity, cytotoxic T lymphocyte-mediated cytotoxicity, and megakaryopoiesis alteration. This condition may be idiopathic or triggered by drugs, vaccines, infections, cancers, autoimmune disorders and systemic diseases. Recent advances in our understanding of ITP immunobiology support the idea that other forms of thrombocytopenia, for instance, occurring after immunotherapy or cellular therapies, may share a common pathophysiology with possible therapeutic implications. If a decent pipeline of old and new agents is currently deployed for classical ITP, in other more complex immune-mediated thrombocytopenic disorders, clinical management is less harmonized and would deserve further prospective investigations. Here, we seek to provide a fresh overview of pathophysiology and current therapeutical algorithms for adult patients affected by this disorder with specific insights into poorly codified scenarios, including refractory ITP and post-immunotherapy/cellular therapy immune-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Thomas Moulinet
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France; UMR 7365, IMoPA, Lorraine University, CNRS, Nancy, France
| | - Anthony Moussu
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Ludovic Pierson
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Simona Pagliuca
- UMR 7365, IMoPA, Lorraine University, CNRS, Nancy, France; Department of Hematology, Regional Competence Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
9
|
Mendoza A, Álvarez-Román MT, Monzón-Manzano E, Acuña P, Arias-Salgado EG, Rivas-Pollmar I, Martín-Salces M, Martínez de Miguel B, Martínez Montalbán E, Jiménez-Yuste V, Butta N. Study of platelet kinetics in immune thrombocytopenia to predict splenectomy response. Br J Haematol 2024; 204:315-323. [PMID: 37822168 DOI: 10.1111/bjh.19145] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/12/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Despite the efficacy of splenectomy for chronic immune thrombocytopenia (ITP), its considerable failure rate and its possible related complications prove the need for further research into potential predictors of response. The platelet sequestration site determined by 111 In-labelled autologous platelet scintigraphy has been proposed to predict splenectomy outcome, but without standardisation in clinical practice. Here, we conducted a single-centre study by analysing a cohort of splenectomised patients with ITP in whom 111 In-scintigraphy was performed at La Paz University Hospital in Madrid to evaluate the predictive value of the platelet kinetic studies. We also studied other factors that could impact the splenectomy outcome, such as patient and platelet characteristics. A total of 51 patients were splenectomised, and 82.3% responded. The splenic sequestration pattern predicted a higher rate of complete response up to 12 months after splenectomy (p = 0.005), with 90% sensitivity and 77% specificity. Neither age, comorbidities, therapy lines nor previous response to them showed any association with response. Results from the platelet characteristics analysis revealed a significant loss of sialic acid in platelets from the non-responding patients compared with those who maintained a response (p = 0.0017). Our findings highlight the value of splenic sequestration as an independent predictor of splenectomy response.
Collapse
Affiliation(s)
- Ana Mendoza
- Department of Haematology, La Paz University Hospital, Madrid, Spain
| | - María Teresa Álvarez-Román
- Department of Haematology, La Paz University Hospital, Madrid, Spain
- IdiPAZ, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Elena Monzón-Manzano
- Department of Haematology, La Paz University Hospital, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Paula Acuña
- Department of Haematology, La Paz University Hospital, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Elena G Arias-Salgado
- Department of Haematology, La Paz University Hospital, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Isabel Rivas-Pollmar
- Department of Haematology, La Paz University Hospital, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Mónica Martín-Salces
- Department of Haematology, La Paz University Hospital, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | | | | | - Víctor Jiménez-Yuste
- Department of Haematology, La Paz University Hospital, Madrid, Spain
- IdiPAZ, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Nora Butta
- Department of Haematology, La Paz University Hospital, Madrid, Spain
- IdiPAZ, Madrid, Spain
| |
Collapse
|
10
|
Tiemeyer KH, Kuter DJ, Cairo CW, Hollenhorst MA. New insights into the glycobiology of immune thrombocytopenia. Curr Opin Hematol 2023; 30:210-218. [PMID: 37526945 DOI: 10.1097/moh.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW The platelet surface harbors a lush forest of glycans (carbohydrate polymers) attached to membrane proteins and lipids. Accumulating evidence suggests that these glycans may be relevant to the pathophysiology of immune thrombocytopenia (ITP). Here, we critically evaluate data that point to a possible role for loss of sialic acid in driving platelet clearance in ITP, comment on the potential use of neuraminidase inhibitors for treatment of ITP, and highlight open questions in this area. RECENT FINDINGS Multiple lines of evidence suggest a role for loss of platelet sialic acid in the pathophysiology of thrombocytopenia. Recent work has tested the hypothesis that neuraminidase-mediated cleavage of platelet sialic acid may trigger clearance of platelets in ITP. Some clinical evidence supports efficacy of the viral neuraminidase inhibitor oseltamivir in ITP, which is surprising given its lack of activity against human neuraminidases. SUMMARY Further study of platelet glycobiology in ITP is necessary to fill key knowledge gaps. A deeper understanding of the roles of platelet glycans in ITP pathophysiology will help to guide development of novel therapies.
Collapse
Affiliation(s)
| | - David J Kuter
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Marie A Hollenhorst
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Li J, Karakas D, Xue F, Chen Y, Zhu G, Yucel YH, MacParland SA, Zhang H, Semple JW, Freedman J, Shi Q, Ni H. Desialylated Platelet Clearance in the Liver is a Novel Mechanism of Systemic Immunosuppression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0236. [PMID: 37808178 PMCID: PMC10551749 DOI: 10.34133/research.0236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovered, unexpectedly, desialylated platelets (dPLTs) down-regulated immune responses against both platelet-associated and -independent antigen challenges. Utilizing multispectral photoacoustic tomography, we tracked dPLT trafficking to gut vasculature and an exclusive Kupffer cell-mediated dPLT clearance in the liver, a process that we identified to be synergistically dependent on platelet glycoprotein Ibα and hepatic Ashwell-Morell receptor. Mechanistically, Kupffer cell clearance of dPLT potentiated a systemic immunosuppressive state with increased anti-inflammatory cytokines and circulating CD4+ regulatory T cells, abolishable by Kupffer cell depletion. Last, in a clinically relevant model of hemophilia A, presensitization with dPLT attenuated anti-factor VIII antibody production after factor VIII ( infusion. As platelet desialylation commonly occurs in daily-aged and activated platelets, these findings open new avenues toward understanding immune homeostasis and potentiate the therapeutic potential of dPLT and engineered dPLT transfusions in controlling autoimmune and alloimmune diseases.
Collapse
Affiliation(s)
- June Li
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Feng Xue
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yingyu Chen
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Yeni H. Yucel
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Departments of Ophthalmology and Vision Sciences Medicine,
University of Toronto, Toronto, ON, Canada
- Faculty of Engineering and Architectural Science,
Ryerson University, Toronto, ON, Canada
| | - Sonya A. MacParland
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Multi-Organ Transplant Program,
Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology,
University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Critical Care Medicine, Department of Anesthesiology and Pain,
University of Toronto, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - John W. Semple
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Pharmacology,
University of Toronto, Toronto, ON, Canada
- Division of Hematology and Transfusion Medicine,
Lund University, Lund, Sweden
- Clinical Immunology and Transfusion Medicine,
Office of Medical Services, Region Skåne, Lund, Sweden
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| | - Qizhen Shi
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Wisconsin, Wauwatosa, WI, USA
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI, USA
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Roeser A, Lazarus AH, Mahévas M. B cells and antibodies in refractory immune thrombocytopenia. Br J Haematol 2023; 203:43-53. [PMID: 37002711 DOI: 10.1111/bjh.18773] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder mediated by pathogenic autoantibodies secreted by plasma cells (PCs) in many patients. In refractory ITP patients, the persistence of splenic and bone marrow autoreactive long-lived PCs (LLPCs) may explain primary failure of rituximab and splenectomy respectively. The reactivation of autoreactive memory B cells generating new autoreactive PCs contributes to relapses after initial response to rituximab. Emerging strategies targeting B cells and PCs aim to prevent the settlement of splenic LLPCs with the combination of anti-BAFF and rituximab, to deplete autoreactive PCs with anti-CD38 antibodies, and to induce deeper B-cell depletion in tissues with novel anti-CD20 monoclonal antibodies and anti-CD19 therapies. Alternative strategies, focused on controlling autoantibody mediated effects, have also been developed, including SYK and BTK inhibitors, complement inhibitors, FcRn blockers and inhibitors of platelet desialylation.
Collapse
Affiliation(s)
- Anaïs Roeser
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| |
Collapse
|
13
|
Cines DB. Pathogenesis of refractory ITP: Overview. Br J Haematol 2023; 203:10-16. [PMID: 37735546 PMCID: PMC10539016 DOI: 10.1111/bjh.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
A subset of individuals with 'primary' or 'idiopathic' immune thrombocytopenia (ITP) who fail to respond to conventional first- and second-line agents or who lose responsiveness are considered to have 'refractory' disease (rITP), placing them at increased risk of bleeding and complications of intensive treatment. However, the criteria used to define the refractory state vary among studies, which complicates research and clinical investigation. Moreover, it is unclear whether rITP is simply 'more severe' ITP, or if there are specific pathogenic pathways that are more likely to result in refractory disease, and whether the presence or development of rITP can be established or anticipated based on these differences. This paper reviews potential biological features that may be associated with rITP, including genetic and epigenetic risk factors, dysregulation of T cells and cytokine networks, antibody affinity and specificity, activation of complement, impaired platelet production and alterations in platelet viability and clearance. These findings indicate the need for longitudinal studies using novel clinically available methodologies to identify and monitor pathogenic T cells, platelet antibodies and other clues to the development of refractory disease.
Collapse
Affiliation(s)
- Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Rosenbalm KE, Lee-Sundlov MM, Ashline DJ, Grozovsky R, Aoki K, Hanneman AJS, Hoffmeister KM. Characterization of the human platelet N- and O-glycome upon storage using tandem mass spectrometry. Blood Adv 2023; 7:4278-4290. [PMID: 36952551 PMCID: PMC10424148 DOI: 10.1182/bloodadvances.2022007084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
Changes in surface glycan determinants, specifically sialic acid loss, determine platelet life span. The gradual loss of stored platelet quality is a complex process that fundamentally involves carbohydrate structures. Here, we applied lipophilic extraction and glycan release protocols to sequentially profile N- and O-linked glycans in freshly isolated and 7-day room temperature-stored platelet concentrates. Analytical methods including matrix assisted laser desorption/ionization time-of-flight mass spectrometry, tandem mass spectrometry, and liquid chromatography were used to obtain structural details of selected glycans and terminal epitopes. The fresh platelet repertoire of surface structures revealed diverse N-glycans, including high mannose structures, complex glycans with polylactosamine repeats, and glycans presenting blood group epitopes. The O-glycan repertoire largely comprised sialylated and fucosylated core-1 and core-2 structures. For both N- and O-linked glycans, we observed a loss in sialylated epitopes with a reciprocal increase in neutral structures as well as increased neuraminidase activity after platelet storage at room temperature. The data indicate that loss of sialylated glycans is associated with diminished platelet quality and untimely removal of platelets after storage.
Collapse
Affiliation(s)
| | | | - David J. Ashline
- The Glycomics Center, Division of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Renata Grozovsky
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL
| | - Kazuhiro Aoki
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
- Medical College of Wisconsin Cancer Center, Milwaukee, WI
| | - Andrew J. S. Hanneman
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
- New England Biolabs, Beverly, MA
| | | |
Collapse
|
15
|
Xiao Z, Murakhovskaya I. Rituximab resistance in ITP and beyond. Front Immunol 2023; 14:1215216. [PMID: 37575230 PMCID: PMC10422042 DOI: 10.3389/fimmu.2023.1215216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The pathophysiology of immune thrombocytopenia (ITP) is complex and encompasses innate and adaptive immune responses, as well as megakaryocyte dysfunction. Rituximab is administered in relapsed cases and has the added benefit of inducing treatment-free remission in over 50% of patients. Nevertheless, the responses to this therapy are not long-lasting, and resistance development is frequent. B cells, T cells, and plasma cells play a role in developing resistance. To overcome this resistance, targeting these pathways through splenectomy and novel therapies that target FcγR pathway, FcRn, complement, B cells, plasma cells, and T cells can be useful. This review will summarize the pathogenetic mechanisms implicated in rituximab resistance and examine the potential therapeutic interventions to overcome it. This review will explore the efficacy of established therapies, as well as novel therapeutic approaches and agents currently in development.
Collapse
Affiliation(s)
| | - Irina Murakhovskaya
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
16
|
Nokhostin F, Bakhshpour F, Pezeshki SMS, Khademi R, Saki N. Immune thrombocytopenia: a review on the pathogenetic role of immune cells. Expert Rev Hematol 2023; 16:731-742. [PMID: 37668243 DOI: 10.1080/17474086.2023.2255750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Immune thrombocytopenia [ITP] is a common bleeding disorder with an isolated platelet count of less than 100 × 109/L. AREAS COVERED Relevant literature from 2003 to 2022 was retrieved and reviewed from the Google Scholar search engine and PubMed database. Antibodies produced by autoreactive B lymphocytes and the phagocytic function of macrophages are considered the most critical factors in platelet destruction. Also, macrophages present the antigen to T lymphocytes and activate them. Follicular helper T-cells [TFH] play a role in stimulating, differentiating, and activating autoreactive B cells, while cluster of differentiation [CD]-8+ T plays a role in platelet destruction through apoptosis. The classical pathway of the complement system also causes platelet destruction. By inhibiting platelet production, low levels of thrombopoietin and an immune response against megakaryocytes in the bone marrow worsen thrombocytopenia. EXPERT OPINION T-cell subset changes and an increase in activated autoreactive B cells, in addition to the function of components of the innate immune system [the complement system, dendritic cells, and natural killer cells], play a critical role in the pathogenesis of the ITP. Accurate detection of these changes may lead to developing new therapeutic strategies and identifying better prognostic/diagnostic factors.
Collapse
Affiliation(s)
- Forogh Nokhostin
- Rheumatology Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Bakhshpour
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Laboratory Sciences, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Laboratory Sciences, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Rodeghiero F. Recent progress in ITP treatment. Int J Hematol 2023; 117:316-330. [PMID: 36622549 DOI: 10.1007/s12185-022-03527-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
In this review, the recently approved drugs avatrombopag and fostamatinib, which were not extensively covered within 2019 international recommendations for ITP, will be discussed in some detail. Avatrombopag appears more convenient than eltrombopag as it does not require dietary restrictions or subcutaneous administration like romiplostim. However, data on quality of life (QoL) are lacking and the rate of thromboembolic events in exposed patients is not negligible. Efficacy of fostamatinib, an inhibitor of macrophagic activity, is supported by placebo-controlled trials in patients refractory to several therapies, including TPO-RA. While hypertension and diarrhea have been reported, only one minor thrombotic event occurred in 146 exposed patients. In addition, several new treatment combinations and new agents entered clinical investigation in recent years. In a UK trial, combining mycophenolate mofetil with corticosteroids as first line therapy was more effective than corticosteroids alone, but at the cost of worse QoL. No combination, including oseltamivir or all-trans retinoic acid or danazol, resulted in convincing evidence of superior efficacy and safety when used in first or later lines of treatment. Agents targeting specific mechanisms are also discussed: sutimlimab (complement inhibitor); rilzabrutinib (BTK inhibitor) and efgartigimod (modified Fc fragment inhibiting FcRn). Only efgartigimod has completed phase 3 investigation.
Collapse
Affiliation(s)
- Francesco Rodeghiero
- Hematology Project Foundation, Affiliated to the Department of Hematology, "S. Bortolo" Hospital, Contrà San Francesco 41, 36100, Vicenza, Italy.
| |
Collapse
|
18
|
Liu XG, Hou Y, Hou M. How we treat primary immune thrombocytopenia in adults. J Hematol Oncol 2023; 16:4. [PMID: 36658588 PMCID: PMC9850343 DOI: 10.1186/s13045-023-01401-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Primary immune thrombocytopenia (ITP) is an immune-mediated bleeding disorder characterized by decreased platelet counts and an increased risk of bleeding. Multiple humoral and cellular immune abnormalities result in accelerated platelet destruction and suppressed platelet production in ITP. The diagnosis remains a clinical exclusion of other causes of thrombocytopenia. Treatment is not required except for patients with active bleeding, severe thrombocytopenia, or cases in need of invasive procedures. Corticosteroids, intravenous immunoglobulin, and anti-RhD immunoglobulin are the classical initial treatments for newly diagnosed ITP in adults, but these agents generally cannot induce a long-term response in most patients. Subsequent treatments for patients who fail the initial therapy include thrombopoietic agents, rituximab, fostamatinib, splenectomy, and several older immunosuppressive agents. Other potential therapeutic agents, such as inhibitors of Bruton's tyrosine kinase and neonatal Fc receptor, are currently under clinical evaluation. An optimized treatment strategy should aim at elevating the platelet counts to a safety level with minimal toxicity and improving patient health-related quality of life, and always needs to be tailored to the patients and disease phases. In this review, we address the concepts of adult ITP diagnosis and management and provide a comprehensive overview of current therapeutic strategies under general and specific situations.
Collapse
Affiliation(s)
- Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
19
|
Zhou JX, Gao L, Hu N, Yan ZL, Tian CY, Su J, Qi JJ, Yue JS, Ma WT. Clinical efficacy of recombinant human thrombopoietin combined with glucocorticoids in the treatment of immune thrombocytopenia. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1062-1068. [PMID: 36094428 DOI: 10.1080/16078454.2022.2121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Herein, we aimed to determine the clinical efficacy of recombinant human thrombopoietin (rhTPO) combined with glucocorticoids for treating immune thrombocytopenia (ITP). METHODS Clinical data of 87 patients with ITP admitted to our hospital were retrospectively analyzed, and patients were divided into two groups according to the treatment employed: 42 patients in the control group (CG) were prescribed glucocorticoids, and 45 patients in the study group (SG) received rhTPO combined with glucocorticoids. RESULTS The total effective treatment rate in the SG (95.56%) was higher than that in the CG (76.19%) (P < 0.05). The SG achieved a platelet (PLT) count > 50 × 109/L faster and required fewer PLT transfusions than the CG (P < 0.05). At 1, 7, and 14 days after treatment, the PLT count increased in both groups and was higher in the SG than in the CG (P < 0.05). After treatment, CD3+, CD4+, and CD4+/CD8+ T cells increased, whereas CD8 + decreased in both groups, with the SG exhibiting a superior improvement to the CG (P < 0.05). Considering prothrombin time, activated partial thromboplastin time, and fibrinogen, differences between the two groups were not statistically significant, both before and after treatment (P > 0.05). CONCLUSION rhTPO combined with glucocorticoids for treating ITP can effectively enhance the therapeutic effect, regulate the T lymphocyte subpopulation, rapidly increase the PLT level, and induce no significant effect on the coagulation function of patients, with good safety and high clinical promotion value.
Collapse
Affiliation(s)
- Jing-Xin Zhou
- Department of Hematology, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, People's Republic of China
| | - Ling Gao
- Department of Hematology, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, People's Republic of China
| | - Nan Hu
- Department of Hematology, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, People's Republic of China
| | - Zhi-Ling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Chun-Ying Tian
- Department of Hematology, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, People's Republic of China
| | - Jing Su
- Department of Hematology, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, People's Republic of China
| | - Ji-Jin Qi
- Department of Hematology, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, People's Republic of China
| | - Jun-Shuai Yue
- Department of Hematology, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, People's Republic of China
| | - Wen-Tong Ma
- Department of Intensive Care Unit, Suqian First People's Hospital Affiliated to Nanjing Medical University, Suqian, People's Republic of China
| |
Collapse
|
20
|
Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227779. [PMID: 36431880 PMCID: PMC9695323 DOI: 10.3390/molecules27227779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Venom-induced thrombocytopenia (VIT) is one of the most important hemotoxic effects of a snakebite, which is often associated with venom-induced consumptive coagulopathy (VICC). Refractory thrombocytopenia without significant coagulation abnormalities has also been reported after envenomation by some viperid snakes; however, the mechanisms are not well understood and therapeutic strategies are lacking. Here, we found that patients injured by Daboia siamensis or Agkistrodon halys snakes, who were resistant to standard antivenom treatment, had developed coagulopathy-independent thrombocytopenia. Venoms from these viperid snakes, rather than from the elapid snake (Bungarus multicinctus), induced platelet surface expression of neuraminidase-1 (NEU-1), and significantly increased the desialylation of the glycoproteins on human platelets. The desialylated platelets caused by viperid snake venoms were further internalized by macrophages, which resulted in reduced platelet numbers in peripheral blood. Importantly, neuraminidase inhibitor significantly decreased viper venom-induced platelet desialylation, therefore inhibiting platelet phagocytosis by macrophages, and alleviating venom-induced thrombocytopenia. Collectively, these findings support an important role for desialylated platelet clearance in the progression of viper envenomation-induced, coagulopathy-independent thrombocytopenia. Our study demonstrates that the neuraminidase inhibitor may be a potential therapy or adjuvant therapy to treat snakebite-induced thrombocytopenia.
Collapse
|
21
|
Systemic lupus erythematosus-complicating immune thrombocytopenia: From pathogenesis to treatment. J Autoimmun 2022; 132:102887. [PMID: 36030136 DOI: 10.1016/j.jaut.2022.102887] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Immune thrombocytopenia (ITP) is a common hematological manifestation of systemic lupus erythematosus (SLE). The heterogeneity of its clinical characteristics and therapeutic responses reflects a complex pathogenesis. A better understanding of its pathophysiological mechanisms and employing an optimal treatment regimen is therefore important to improve the response rate and prognosis, and avoid unwanted outcomes. Besides glucocorticoids, traditional immunosuppressants (i.e. cyclosporine, mycophenolate mofetil) and intravenous immunoglobulins, new therapies are emerging and promising for the treatment of intractable SLE-ITP, such as thrombopoietin receptor agonists (TPO-RAs), platelet desialylation inhibitors(i.e. oseltamivir), B-cell targeting therapy(i.e. rituximab, belimumab), neonatal Fc receptor(FcRn) inhibitor, spleen tyrosine kinase(Syk) inhibitor and Bruton tyrosine kinase(BTK) inhibitor et al., although more rigorous randomized controlled trials are needed to substantiate their efficacy. In this review, we update our current knowledge on the pathogenesis and treatment of SLE-ITP.
Collapse
|
22
|
Lv Y, Shi H, Liu H, Zhou L. Current therapeutic strategies and perspectives in refractory ITP: What have we learned recently? Front Immunol 2022; 13:953716. [PMID: 36003388 PMCID: PMC9393521 DOI: 10.3389/fimmu.2022.953716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder featured by increased platelet destruction and deficient megakaryocyte maturation. First-line treatments include corticosteroids, intravenous immunoglobulin and intravenous anti-D immunoglobulin. Second-line treatments consist of rituximab, thrombopoietin receptor agonists and splenectomy. Although most patients benefit from these treatments, an individualized treatment approach is warranted due to the large heterogeneity among ITP patients. In addition, ITP patients may relapse and there remains a subset of patients who become refractory to treatments. The management of these refractory patients is still a challenge. This review aims to summarize emerging therapeutic approaches for refractory ITP in several categories according to their different targets, including macrophages, platelets/megakaryocytes, T cells, B cells, and endothelial cells. Moreover, current management strategies and combination regimens of refractory ITP are also discussed.
Collapse
Affiliation(s)
- Yue Lv
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Huiping Shi
- Soochow University Medical College, Suzhou, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
23
|
Clinical impact of glycans in platelet and megakaryocyte biology. Blood 2022; 139:3255-3263. [PMID: 35015813 PMCID: PMC9164739 DOI: 10.1182/blood.2020009303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Humans produce and remove 1011 platelets daily to maintain a steady-state platelet count. The tight regulation of platelet production and removal from the blood circulation prevents anomalies in both processes from resulting in reduced or increased platelet count, often associated with the risk of bleeding or overt thrombus formation, respectively. This review focuses on the role of glycans, also known as carbohydrates or oligosaccharides, including N- and O-glycans, proteoglycans, and glycosaminoglycans, in human and mouse platelet and megakaryocyte physiology. Based on recent clinical observations and mouse models, we focused on the pathologic aspects of glycan biosynthesis and degradation and their effects on platelet numbers and megakaryocyte function.
Collapse
|
24
|
Colunga-Pedraza PR, Peña-Lozano SP, Sánchez-Rendón E, De la Garza-Salazar F, Colunga-Pedraza JE, Gómez-De León A, Santana-Hernández P, Cantú-Rodríguez OG, Gómez-Almaguer D. Oseltamivir as rescue therapy for persistent, chronic, or refractory immune thrombocytopenia: a case series and review of the literature. J Thromb Thrombolysis 2022; 54:360-366. [PMID: 35471623 DOI: 10.1007/s11239-022-02651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease that results from antibody-mediated platelet destruction and impaired platelet production. Novel therapies have emerged in the last decade, but 15-20% of patients will relapse or fail and require further therapy. We performed a prospective, single-arm intervention study on seven patients with chronic, persistent, or refractory ITP from the Hospital Universitario "Dr. José E González", in Monterrey, Mexico between 2015 and 2019. Eligible patients received oral oseltamivir 75 mg twice daily for 5 days and were followed up for six months. Most patients received a median of three distinct therapies (range 2-6). Four patients (57.1%) received combined therapy. The median time for any response was 55.5 days (range = 14-150). All patients responded at some point in time (ORR = 100%, six had a proportion of loss of response [PR], and one achieved [CR]). Six months after oseltamivir administration, three patients (42.9%) maintained a response, and one patient had a CR (14.3%). Oseltamivir was well tolerated with a good overall response rate and was useful for treating chronic ITP. We observed an initial increase in the number of platelets; however, this response was not maintained.
Collapse
Affiliation(s)
- Perla R Colunga-Pedraza
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Samantha P Peña-Lozano
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Ernesto Sánchez-Rendón
- Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Fernando De la Garza-Salazar
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Julia E Colunga-Pedraza
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Andrés Gómez-De León
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Paola Santana-Hernández
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Olga G Cantú-Rodríguez
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - David Gómez-Almaguer
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico.
| |
Collapse
|
25
|
Xu Z, Xiang J, Luan X, Geng Z, Cao L. Novel compound heterozygous mutations in a GNE myopathy with congenital thrombocytopenia: A case report and literature review. Clin Case Rep 2022; 10:e05659. [PMID: 35414913 PMCID: PMC8978988 DOI: 10.1002/ccr3.5659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
We reported a GNE myopathy with congenital thrombocytopenia on a young male patient. He presented with a 3-year history of lower distal extremity weakness initially affecting his legs. The weakness slowly progressed to lower proximal legs and upper arms last 6 months. Whole-exome sequencing revealed that the patient harbored two heterozygous gene mutations, including a novel insertion mutation c.*1037_*1038CACACACACACACACACACACA and c.C478T in exome 12 and 3 of the GNE gene (NM_001128227), respectively. The levels of serum sialic acid in this patient were considerably decreased. Muscle MRI imaging showed the anterior and medial parts of his quadriceps were heavily affected by this disease. Hematoxylin and eosin staining showed prominent rimmed vacuoles with a lack of inflammatory response in the atrophied muscle. We also undertook a review of the current literature, searching for reports in which the GNE gene mutation caused the thrombocytopenia with or without muscle weakness. This new gene mutation finding broadens the GNE disease genotype spectrum, and further investigation of the relationship between GNE gene mutations and the heterogeneity of its clinical manifestations is needed.
Collapse
Affiliation(s)
- Zhouwei Xu
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jingyan Xiang
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xinghua Luan
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhi Geng
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Li Cao
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
26
|
Lee‐Sundlov MM, Rivadeneyra L, Falet H, Hoffmeister KM. Sialic acid and platelet count regulation: Implications in immune thrombocytopenia. Res Pract Thromb Haemost 2022; 6:e12691. [PMID: 35425875 PMCID: PMC8994053 DOI: 10.1002/rth2.12691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Platelets are blood components that survive in circulation for 7 to 10 days in humans. Thus, platelet production by bone marrow (BM) megakaryocytes (MKs), and their removal from the blood circulation is precisely orchestrated to maintain an average platelet count. Abnormalities in both processes can result in thrombocytopenia (low platelet count) or thrombocytosis (high platelet count), often associated with the risk of bleeding or overt thrombus formation, respectively. Platelet glycans, particularly sialic acids, are indicators of platelet count. Loss of platelet sialic acids leads to platelet clearance. A State-of-the-Art lecture titled "Platelet and Megakaryocyte Glycobiology" was presented at the ISTH virtual congress 2021 to discuss (i) the loss of O-glycan sialic acid on BM MKs, revealing the Thomsen-Friedenreich (TF) antigen as a new concept of thrombocytopenia; herein, impaired thrombopoiesis is attributed to activation of immune cells with a plasmacytoid dendritic cell signature; and (ii) upregulation of antibodies against the TF antigen in pediatric patients with immune thrombocytopenia (ITP), positing that glycan alterations such as MK asialylation can lead to immune cell responses. Here, we discuss our findings alongside new data presented at the 2020 and 2021 ISTH congresses on the role of sialic acids and glycans in regulating platelet count. Desialylation is a prominent feature in thrombocytopenia, notably in ITP presentation. We compare similarities between ITP mediated with shear-stress and with storage-related asialylation. We also discuss genes involved in sialic acid synthesis leading to thrombocytopenia. Increased awareness in gene-regulating MK and platelet glycans is a giant leap to understanding the underpinning mechanisms of ITP and other forms of thrombocytopenia.
Collapse
Affiliation(s)
| | - Leonardo Rivadeneyra
- Translational Glycomics CenterVersiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Hervé Falet
- Translational Glycomics CenterVersiti Blood Research InstituteMilwaukeeWisconsinUSA
- Department of Cell Biology, Neurobiology, and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Karin M. Hoffmeister
- Translational Glycomics CenterVersiti Blood Research InstituteMilwaukeeWisconsinUSA
- Departments of Biochemistry and MedicineMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
27
|
Tunjungputri RN, Riswari SF, Pramudo SG, Kuntjoro L, Alisjahbana B, Nugraha HG, van der Ven A, Gasem MH, de Mast Q. Effect of oseltamivir phosphate versus placebo on platelet recovery and plasma leakage in adults with dengue and thrombocytopenia; a phase 2, multicenter, double-blind, randomized trial. PLoS Negl Trop Dis 2022; 16:e0010051. [PMID: 34995275 PMCID: PMC8789129 DOI: 10.1371/journal.pntd.0010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/25/2022] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Background Thrombocytopenia, bleeding and plasma leakage are major complications of dengue. Activation of endogenous sialidases with desialylation of platelets and endothelial cells may underlie these complications. We aimed to assess the effects of the neuraminidase inhibitor oseltamivir on platelet recovery and plasma leakage in dengue. Methods We performed a phase 2, double-blind, multicenter, randomized trial in adult dengue patients with thrombocytopenia (<70,000/μl) and a duration of illness ≤ 6 days. Oseltamivir phosphate 75mg BID or placebo were given for a maximum of five days. Primary outcomes were the time to platelet recovery (≥ 100,000/μl) or discharge from hospital and the course of measures of plasma leakage. Results A total of 70 patients were enrolled; the primary outcome could be assessed in 64 patients (31 oseltamivir; 33 placebo). Time to platelet count ≥100,000/μl (n = 55) or discharge (n = 9) were similar in the oseltamivir and placebo group (3.0 days [95% confidence interval, 2.7 to 3.3] vs. 2.9 days [2.5 to 3.3], P = 0.055). The kinetics of platelet count and parameters of plasma leakage (gall bladder thickness, hematocrit, plasma albumin, syndecan-1) were also similar between the groups. Discussion In this trial, adjunctive therapy with oseltamivir phosphate had no effect on platelet recovery or plasma leakage parameters. Trial registration ISRCTN35227717. Moderate to severe thrombocytopenia is common in the febrile and/or critical phase of dengue virus infection. Platelets are important for preservation of vascular integrity, especially during inflammation, and low platelet counts may contribute to plasma leakage. Currently, no therapeutic intervention that targets the pathogenic pathway is available for DENV infection, including therapies to prevent or reduce thrombocytopenia or plasma leakage. Oseltamivir phosphate is widely used for prevention and treatment of influenza by inhibiting viral neuraminidase. However, oseltamivir may also inhibit human endogenous neuraminidase involved in sialic acid metabolism, and as such extend the lifespan of platelets. In the phase 2 TOTO trial (Treatment Of Thrombocytopenia with Oseltamivir in acute dengue virus infection: a randomized, placebo controlled, multicenter trial) we investigated the potential of oseltamivir phosphate to shorten the time to platelet recovery and reduce plasma leakage in patients with DENV infection. In this trial involving 70 adult thrombocytopenic patients, hospitalized with acute DENV infection, adjunctive therapy with oseltamivir phosphate did not shorten platelet recovery time compared with placebo. The trial also did not show an effect of adjunctive oseltamivir on plasma leakage parameters. The reasons that oseltamivir had no apparent effect on platelet counts, markers of plasma leakage and glycocalyx distortion in this study remain speculative, but may involve one or more of the following; first, dengue-associated thrombocytopenia and plasma leakage are both multifactorial in origin and targeting neuraminidase alone may be insufficient to impact these processes. Second, oseltamivir phosphate was designed to inhibit viral neuraminidase, and data of its inhibitory actions on human neuraminidases are inconclusive. The finding in this study also suggest that while laboratory works may lead to hypotheses for novel treatment, proof of concept studies are essential to test them in a clinical setting.
Collapse
Affiliation(s)
- Rahajeng N. Tunjungputri
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvita Fitri Riswari
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia, Indonesia
| | - Setyo G. Pramudo
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine Diponegoro University, Semarang, Central Java, Indonesia
| | - Lydia Kuntjoro
- Department of Radiology, Diponegoro National University Hospital, Faculty of Medicine Diponegoro University, Semarang, Central Java, Indonesia
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, West Java, Indonesia, Indonesia
| | - Harry Galuh Nugraha
- Department of Radiology, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, West Java, Indonesia, Indonesia
| | - Andre van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine Diponegoro University, Semarang, Central Java, Indonesia
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Smolag KI, Fager Ferrari M, Zetterberg E, Leinoe E, Ek T, Blom AM, Rossing M, Martin M. Severe Congenital Thrombocytopenia Characterized by Decreased Platelet Sialylation and Moderate Complement Activation Caused by Novel Compound Heterozygous Variants in GNE. Front Immunol 2021; 12:777402. [PMID: 34858435 PMCID: PMC8630651 DOI: 10.3389/fimmu.2021.777402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background Hereditary thrombocytopenias constitute a genetically heterogeneous cause of increased bleeding. We report a case of a 17-year-old boy suffering from severe macrothrombocytopenia throughout his life. Whole genome sequencing revealed the presence of two compound heterozygous variants in GNE encoding the enzyme UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, crucial for sialic acid biosynthesis. Sialic acid is required for normal platelet life span, and biallelic variants in GNE have previously been associated with isolated macrothrombocytopenia. Furthermore, sialic acid constitutes a key ligand for complement factor H (FH), an important inhibitor of the complement system, protecting host cells from indiscriminate attack. Methods Sialic acid expression and FH binding to platelets and leukocytes was evaluated by flow cytometry. The binding of FH to erythrocytes was assessed indirectly by measuring the rate of complement mediated hemolysis. Complement activation was determined by measuring levels of C3bBbP (alternative pathway), C4d (classical/lectin pathway) and soluble terminal complement complex assays. Results The proband exhibited markedly decreased expression of sialic acid on platelets and leukocytes. Consequently, the binding of FH was strongly reduced and moderate activation of the alternative and classical/lectin complement pathways was observed, together with an increased rate of erythrocyte lysis. Conclusion We report two previously undescribed variants in GNE causing severe congenital macrothrombocytopenia in a compound heterozygous state, as a consequence of decreased platelet sialylation. The decreased sialylation of platelets, leukocytes and erythrocytes affects the binding of FH, leading to moderate complement activation and increased hemolysis.
Collapse
Affiliation(s)
- Karolina I Smolag
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Marcus Fager Ferrari
- Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Zetterberg
- Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Leinoe
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Ek
- Children's Cancer Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Myriam Martin
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Seldeslachts L, Vanderbeke L, Fremau A, Reséndiz-Sharpe A, Jacobs C, Laeveren B, Ostyn T, Naesens L, Brock M, Van De Veerdonk FL, Humblet-Baron S, Verbeken E, Lagrou K, Wauters J, Vande Velde G. Early oseltamivir reduces risk for influenza-associated aspergillosis in a double-hit murine model. Virulence 2021; 12:2493-2508. [PMID: 34546839 PMCID: PMC8923074 DOI: 10.1080/21505594.2021.1974327] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/09/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening fungal infection occurring mainly in immunocompromised patients. We recently identified IPA as an emerging co-infection with high mortality in critically ill, but otherwise immunocompetent influenza patients. The neuraminidase inhibitor oseltamivir is the current standard-of-care treatment in hospitalized influenza patients; however, its efficacy in influenza-associated pulmonary aspergillosis (IAPA) is not known. Therefore, we have established an imaging-supported double-hit mouse model to investigate the therapeutic effect of oseltamivir on the development of IAPA. Immunocompetent mice received intranasal instillation influenza A or PBS followed by orotracheal inoculation with Aspergillus fumigatus 4 days later. Oseltamivir treatment or placebo was started at day 0, day 2, or day 4. Daily monitoring included micro-computed tomography and bioluminescence imaging of pneumonia and fungal burden. Non-invasive biomarkers were complemented with imaging, molecular, immunological, and pathological analysis. Influenza virus-infected immunocompetent mice developed proven airway IPA upon co-infection with Aspergillus fumigatus, whereas non-influenza-infected mice fully cleared Aspergillus, confirming influenza as a risk factor for developing IPA. Longitudinal micro-CT showed pulmonary lesions after influenza infection worsening after Aspergillus co-infection, congruent with bioluminescence imaging and histology confirming Aspergillus pneumonia. Early oseltamivir treatment prevented severe influenza pneumonia and mitigated the development of IPA and associated mortality. A time-dependent treatment effect was consistently observed with imaging, molecular, and pathological analyses. Hence, our findings underscore the importance of initiating oseltamivir as soon as possible, to suppress influenza infection and mitigate the risk of potentially lethal IAPA disease.
Collapse
Affiliation(s)
- Laura Seldeslachts
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, Ku Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, Ku Leuven, Leuven, Belgium
| | - Astrid Fremau
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, Ku Leuven, Leuven, Belgium
| | - Agustin Reséndiz-Sharpe
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, Ku Leuven, Leuven, Belgium
| | - Cato Jacobs
- Department of Microbiology, Immunology and Transplantation,Laboratory for Clinical Infectious and Inflammatory Disorders, Ku Leuven, Leuven, Belgium
| | - Bo Laeveren
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, Ku Leuven, Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, Ku Leuven, Leuven, Belgium
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Ku Leuven, Leuven, Belgium
| | - Matthias Brock
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, Ku Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Imaging and Pathology, Ku Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, Ku Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation,Laboratory for Clinical Infectious and Inflammatory Disorders, Ku Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, Ku Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Abstract
PURPOSE OF THE REVIEW This review highlights recent advancements in understanding the regulation of platelet numbers, focusing on mechanisms by which carbohydrates (glycans) link platelet removal with platelet production in the bone marrow in health and disease. RECENT FINDINGS This review is focused on the role of carbohydrates, specifically sialic acid moieties, as a central mediator of platelet clearance. We discuss recently identified novel mechanisms of carbohydrate-mediated platelet removal and carbohydrate-binding receptors that mediate platelet removal. SUMMARY The platelet production rate by megakaryocytes and removal kinetics controls the circulating platelet count. Alterations in either process can lead to thrombocytopenia (low platelet count) or thrombocytosis (high platelet count) are associated with the risk of bleeding or overt thrombus formation and serious complications. Thus, regulation of a steady-state platelet count is vital in preventing adverse events. There are few mechanisms delineated that shed light on carbohydrates' role in the complex and massive platelet removal process. This review focuses on carbohydrate-related mechanisms that contribute to the control of platelet numbers.
Collapse
Affiliation(s)
- Leonardo Rivadeneyra
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Herve Falet
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karin M. Hoffmeister
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Departments of Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee WI, United States
| |
Collapse
|
31
|
[Prospects of individualized diagnosis and treatment of primary immune thrombocytopenia in the era of new drugs]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:965-968. [PMID: 35045664 PMCID: PMC8763589 DOI: 10.3760/cma.j.issn.0253-2727.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Shen C, Liu M, Mackeigan DT, Chen ZY, Chen P, Karakas D, Li J, Norris PAA, Li J, Deng Y, Long C, Lai R, Ni H. Viper venoms drive the macrophages and hepatocytes to sequester and clear platelets: novel mechanism and therapeutic strategy for venom-induced thrombocytopenia. Arch Toxicol 2021; 95:3589-3599. [PMID: 34519865 DOI: 10.1007/s00204-021-03154-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022]
Abstract
Venomous snakebites cause clinical manifestations that range from local to systemic and are considered a significant global health challenge. Persistent or refractory thrombocytopenia has been frequently reported in snakebite patients, especially in cases caused by viperidae snakes. Viper envenomation-induced thrombocytopenia may persist in the absence of significant consumption coagulopathy even after the antivenom treatment, yet the mechanism remains largely unknown. Our study aims to investigate the mechanism and discover novel therapeutic targets for coagulopathy-independent thrombocytopenia caused by viper envenomation. Here we found that patients bitten by Protobothrops mucrosquamatus and Trimeresurus stejnegeri, rather than Naja. atra may develop antivenom-resistant and coagulopathy-independent thrombocytopenia. Crude venoms and the derived C-type lectin-like proteins from these vipers significantly increased platelet surface expression of neuraminidase and platelet desialylation, therefore led to platelet ingestion by both macrophages and hepatocytes in vitro, and drastically decreased peripheral platelet counts in vivo. Our study is the first to demonstrate that desialylation-mediated platelet clearance is a novel mechanism of viper envenomation-induced refractory thrombocytopenia and C-type lectin-like proteins derived from the viper venoms contribute to snake venom-induced thrombocytopenia. The results of this study suggest the inhibition of platelet desialylation as a novel therapeutic strategy against viper venom-induced refractory thrombocytopenia.
Collapse
Affiliation(s)
- Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Daniel Thomas Mackeigan
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Zi Yan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
| | - June Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Peter A A Norris
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Jiayao Li
- Hospital of Traditional Chinese Medicine of Wuzhou City, Wuzhou, 543002, Guangxi, China
| | - Yanling Deng
- Hospital of Traditional Chinese Medicine of Wuzhou City, Wuzhou, 543002, Guangxi, China
| | - Chengbo Long
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine and Pathobiology, Department of Medicine and Department of Physiology, University of TorontoCanadian Blood Services Centre for Innovation, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
33
|
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune disease leading to a decreased platelet count and an ensuing haemorrhagic risk. First-line treatment against ITP consists in the administration of immunomodulators aimed at decreasing platelet destruction. Up to 70% of individuals with an ITP diagnosis treated with corticosteroids do not achieve a clinical response or demonstrate a high relapse rate, requiring treatment to prevent a haemorrhagic risk. Less than 30% of patients treated with thrombopoietin analogues, 60% of those treated with splenectomy and 20% of those treated with rituximab reach sustained remission in the absence of treatment. Because of these reasons, it is unquestionable that treatment of patients with ITP should be optimized. Through this study, we will review new actual and future options of treatment.
Collapse
|
34
|
Bonnard G, Babuty A, Collot R, Costes D, Drillaud N, Eveillard M, Néel A, Espitia A, Masseau A, Wahbi A, Hamidou M, Béné MC, Fouassier M. Platelet features allow to differentiate immune thrombocytopenia from inherited thrombocytopenia. Ann Hematol 2021; 100:2677-2682. [PMID: 34519886 DOI: 10.1007/s00277-021-04651-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder, for which no specific diagnostic test exists. Inherited thrombocytopenia (IT) can mimic ITP and lead to unappropriated management with significant morbidity. Here, in small cohorts of these two disorders, we explored whether platelet sialylation and platelet activation could allow to discriminate the two conditions. We also aimed to confirm the value of immature platelet counts in this discrimination. Platelet sialylation and the expression level of P-selectin were assessed by multiparameter flow cytometry. Immature platelets were estimated on a Sysmex XN 9000 analyzer. No significant difference in platelet sialylation was observed between ITP and IT. Contrarily, platelet activation was significantly higher in ITP patients (p = 0.008). The immature platelet fraction, as previously demonstrated, was significantly lower in the ITP group compared to the IT group (p = 0.014). That statistical significance was achieved in this small pilot study suggests that the two easily available assays of immature platelet count and P-selectin expression could help physicians to reach the proper diagnosis in complex cases of thrombocytopenia.
Collapse
Affiliation(s)
- Guillaume Bonnard
- Service d'Hématologie Biologique, Hôtel Dieu, CHU de Nantes, Nantes, France.
- Centre de ressources et de compétences-Maladies hémorragiques constitutionnelles, CHU de Nantes, Nantes, France.
- Service de Médecine Interne, Hôtel Dieu, CHU de Nantes, Nantes, France.
| | - Antoine Babuty
- Service d'Hématologie Biologique, Hôtel Dieu, CHU de Nantes, Nantes, France
- Centre de ressources et de compétences-Maladies hémorragiques constitutionnelles, CHU de Nantes, Nantes, France
| | - Romain Collot
- Service D'Hématologie Clinique, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Domitille Costes
- Service D'Hématologie Clinique, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Nicolas Drillaud
- Service d'Hématologie Biologique, Hôtel Dieu, CHU de Nantes, Nantes, France
- Centre de ressources et de compétences-Maladies hémorragiques constitutionnelles, CHU de Nantes, Nantes, France
| | - Marion Eveillard
- Service d'Hématologie Biologique, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Antoine Néel
- Service de Médecine Interne, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Alexandra Espitia
- Service de Médecine Interne, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Agathe Masseau
- Service de Médecine Interne, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Anaïs Wahbi
- Service de Médecine Interne, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Mohamed Hamidou
- Service de Médecine Interne, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Marie C Béné
- Service d'Hématologie Biologique, Hôtel Dieu, CHU de Nantes, Nantes, France
- Centre de ressources et de compétences-Maladies hémorragiques constitutionnelles, CHU de Nantes, Nantes, France
| | - Marc Fouassier
- Service d'Hématologie Biologique, Hôtel Dieu, CHU de Nantes, Nantes, France
- Centre de ressources et de compétences-Maladies hémorragiques constitutionnelles, CHU de Nantes, Nantes, France
| |
Collapse
|
35
|
Potential Diagnostic Approaches for Prediction of Therapeutic Responses in Immune Thrombocytopenia. J Clin Med 2021; 10:jcm10153403. [PMID: 34362187 PMCID: PMC8347743 DOI: 10.3390/jcm10153403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder in which, via unresolved mechanisms, platelets and megakaryocytes (MKs) are targeted by autoantibodies and/or T cells resulting in increased platelet destruction and impairment of MK function. Over the years, several therapeutic modalities have become available for ITP, however, therapeutic management has proven to be very challenging in several cases. Patients refractory to treatment can develop a clinically worsening disease course, treatment-induced toxicities and are predisposed to development of potentially life-endangering bleedings. It is therefore of critical importance to timely identify potential refractory patients, for which novel diagnostic approaches are urgently needed in order to monitor and predict specific therapeutic responses. In this paper, we propose promising diagnostic investigations into immune functions and characteristics in ITP, which may potentially be exploited to help predict platelet count responses and thereby distinguish therapeutic responders from non-responders. This importantly includes analysis of T cell homeostasis, which generally appears to be disturbed in ITP due to decreased and/or dysfunctional T regulatory cells (Tregs) leading to loss of immune tolerance and initiation/perpetuation of ITP, and this may be normalized by several therapeutic modalities. Additional avenues to explore in possible prediction of therapeutic responses include examination of platelet surface sialic acids, platelet apoptosis, monocyte surface markers, B regulatory cells and platelet microparticles. Initial studies have started evaluating these markers in relation to response to various treatments including glucocorticosteroids (GCs), intravenous immunoglobulins (IVIg) and/or thrombopoietin receptor agonists (TPO-RA), however, further studies are highly warranted. The systematic molecular analysis of a broad panel of immune functions may ultimately help guide and improve personalized therapeutic management in ITP.
Collapse
|
36
|
Immune Thrombocytopenia: Recent Advances in Pathogenesis and Treatments. Hemasphere 2021; 5:e574. [PMID: 34095758 PMCID: PMC8171374 DOI: 10.1097/hs9.0000000000000574] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to both a peripheral destruction of platelets and an inappropriate bone marrow production. Although the primary triggering factors of ITP remain unknown, a loss of immune tolerance-mostly represented by a regulatory T-cell defect-allows T follicular helper cells to stimulate autoreactive splenic B cells that differentiate into antiplatelet antibody-producing plasma cells. Glycoprotein IIb/IIIa is the main target of antiplatelet antibodies leading to platelet phagocytosis by splenic macrophages, through interactions with Fc gamma receptors (FcγRs) and complement receptors. This allows macrophages to activate autoreactive T cells by their antigen-presenting functions. Moreover, the activation of the classical complement pathway participates to platelet opsonization and also to their destruction by complement-dependent cytotoxicity. Platelet destruction is also mediated by a FcγR-independent pathway, involving platelet desialylation that favors their binding to the Ashwell-Morell receptor and their clearance in the liver. Cytotoxic T cells also contribute to ITP pathogenesis by mediating cytotoxicity against megakaryocytes and peripheral platelets. The deficient megakaryopoiesis resulting from both the humoral and the cytotoxic immune responses is sustained by inappropriate levels of thrombopoietin, the major growth factor of megakaryocytes. The better understanding of ITP pathogenesis has provided important therapeutic advances. B cell-targeting therapies and thrombopoietin-receptor agonists (TPO-RAs) have been used for years. New emerging therapeutic strategies that inhibit FcγR signaling, the neonatal Fc receptor or the classical complement pathway, will deeply modify the management of ITP in the near future.
Collapse
|
37
|
Dewi IM, Cunha C, Jaeger M, Gresnigt MS, Gkountzinopoulou ME, Garishah FM, Duarte-Oliveira C, Campos CF, Vanderbeke L, Sharpe AR, Brüggemann RJ, Verweij PE, Lagrou K, Vande Velde G, de Mast Q, Joosten LA, Netea MG, van der Ven AJ, Wauters J, Carvalho A, van de Veerdonk FL. Neuraminidase and SIGLEC15 modulate the host defense against pulmonary aspergillosis. Cell Rep Med 2021; 2:100289. [PMID: 34095887 PMCID: PMC8149467 DOI: 10.1016/j.xcrm.2021.100289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/01/2020] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) has been reported increasingly since the advent of use of neuraminidase (NA) inhibitors following the 2009 influenza pandemic. We hypothesize that blocking host NA modulates the immune response against Aspergillus fumigatus. We demonstrate that NA influences the host response against A. fumigatus in vitro and that oseltamivir increases the susceptibility of mice to pulmonary aspergillosis. Oseltamivir impairs the mouse splenocyte and human peripheral blood mononuclear cell (PBMC) killing capacity of A. fumigatus, and adding NA restores this defect in PBMCs. Furthermore, the sialic acid-binding receptor SIGLEC15 is upregulated in PBMCs stimulated with A. fumigatus. Silencing of SIGLEC15 decrease PBMC killing of A. fumigatus. We provide evidence that host NA activity and sialic acid recognition are important for anti-Aspergillus defense. NA inhibitors might predispose individuals with severe influenza to invasive aspergillosis. These data shed light on the pathogenesis of invasive fungal infections and may identify potential therapeutic targets.
Collapse
Affiliation(s)
- Intan M.W. Dewi
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoll Institute, Jena, Germany
| | | | - Fadel M. Garishah
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudia F. Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Lore Vanderbeke
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Roger J. Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Joost Wauters
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | | |
Collapse
|
38
|
The Importance of Platelet Glycoside Residues in the Haemostasis of Patients with Immune Thrombocytopaenia. J Clin Med 2021; 10:jcm10081661. [PMID: 33924503 PMCID: PMC8069668 DOI: 10.3390/jcm10081661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 01/14/2023] Open
Abstract
Loss of sialic acid from the carbohydrate side chains of platelet glycoproteins can affect platelet clearance, a proposed mechanism involved in the etiopathogenesis of immune thrombocytopaenia (ITP). We aimed to assess whether changes in platelet glycosylation in patients with ITP affected platelet counts, function, and apoptosis. This observational, prospective, and transversal study included 82 patients with chronic primary ITP and 115 healthy controls. We measured platelet activation markers and assayed platelet glycosylation and caspase activity, analysing samples using flow cytometry. Platelets from patients with ITP with a platelet count <30 × 103/µL presented less sialic acid. Levels of α1,6-fucose (a glycan residue that can directly regulate antibody-dependent cellular cytotoxicity) and α-mannose (which can be recognised by mannose-binding-lectin and activate the complement pathway) were increased in the platelets from these patients. Platelet surface exposure of other glycoside residues due to sialic acid loss inversely correlated with platelet count and the ability to be activated. Moreover, loss of sialic acid induced the ingestion of platelets by human hepatome HepG2 cells. Changes in glycoside composition of glycoproteins on the platelets’ surface impaired their functional capacity and increased their apoptosis. These changes in platelet glycoside residues appeared to be related to ITP severity.
Collapse
|
39
|
Dexamethasone plus oseltamivir versus dexamethasone in treatment-naive primary immune thrombocytopenia: a multicentre, randomised, open-label, phase 2 trial. LANCET HAEMATOLOGY 2021; 8:e289-e298. [PMID: 33770484 DOI: 10.1016/s2352-3026(21)00030-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Primary immune thrombocytopenia is an autoimmune bleeding disorder. Preclinical reports suggest that the sialidase inhibitor oseltamivir induces a platelet response in the treatment of immune thrombocytopenia. This study investigated the activity and safety of dexamethasone plus oseltamivir versus dexamethasone alone as initial treatment in adult patients with primary immune thrombocytopenia. METHODS This multicentre, randomised, open-label, parallel group, phase 2 trial was done in five tertiary medical hospitals in China. Eligible patients were aged 18 years or older with newly diagnosed, treatment-naive primary immune thrombocytopenia. Participants were randomly assigned (1:1), using block randomisation, to receive either dexamethasone (orally at 40 mg per day for 4 days) plus oseltamivir (orally at 75 mg twice a day for 10 days) or dexamethasone monotherapy (orally at 40 mg a day for 4 days). Patients who did not respond to treatment (platelet counts remained <30 × 109 cells per L or showed bleeding symptoms by day 10) were given an additional cycle of dexamethasone for 4 days in each group. Patients in the dexamethasone plus oseltamivir group who relapsed (platelet counts reduced again to <30 × 109 cells per L) after an initial response were allowed a supplemental course of oseltamivir (75 mg twice a day for 10 days). The coprimary endpoints were 14-day initial overall response and 6-month overall response. Complete response was defined as a platelet count at or above 100 × 109 cells per L and an absence of bleeding. Partial response was defined as a platelet count at or above 30 × 109 cells per L but less than 100 × 109 cells per L and at least a doubling of the baseline platelet count and an absence of bleeding. A response lasting for at least 6 months without any additional primary immune thrombocytopenia-specific intervention was defined as sustained response. All patients who were randomly assigned and received the allocated intervention were included in the modified intention-to-treat population analysis. This study has been completed and is registered with ClinicalTrials.gov, number NCT01965626. FINDINGS From Feb 1, 2016, to May 1, 2019, 120 patients were screened for eligibility, of whom 24 were ineligible and excluded, 96 were enrolled and randomly assigned to receive dexamethasone plus oseltamivir (n=47) or dexamethasone (n=49), and 90 were included in the modified intention-to-treat analysis. Six patients did not receive the allocated intervention. Patients in the dexamethasone plus oseltamivir group had a significantly higher initial response rate (37 [86%] of 43 patients) than did those in the dexamethasone group (31 [66%] of 47 patients; odds ratio [OR] 3·18; 95 CI% 1·13-9·23; p=0·030) at day 14. The 6-month sustained response rate in the dexamethasone plus oseltamivir group was also significantly higher than that in the dexamethasone group (23 [53%] vs 14 [30%]; OR 2·17; 95 CI% 1·16-6·13; p=0·032). During the median follow-up of 8 months (IQR 5-14), two of 90 patients discontinued treatment due to serious adverse events (grade 3); one (2%) patient with general oedema in the dexamethasone plus oseltamivir group and one (2%) patient with fever in the dexamethasone group. The most frequently observed adverse events of any grade were fatigue (five [12%] of 43 in the dexamethasone plus oseltamivir group vs eight [17%] of 47 in the dexamethasone group), gastrointestinal reactions (eight [19%] vs three [6%]), insomnia (seven [16%] vs four [9%]), and anxiety (five [12%] vs three [6%]). There were no grade 4 or 5 adverse events and no treatment-related deaths. INTERPRETATION Dexamethasone plus oseltamivir offers a readily available combination therapy in the management of newly diagnosed primary immune thrombocytopenia. The preliminary activity of this combination warrants further investigation. Multiple cycles of oseltamivir, as a modification of current first-line treatment, might be more effective in maintaining the platelet response. FUNDING National Natural Science Foundation of China.
Collapse
|
40
|
Jaime-Pérez JC, Ramos-Dávila EM, Meléndez-Flores JD, Gómez-De León A, Gómez-Almaguer D. Insights on chronic immune thrombocytopenia pathogenesis: A bench to bedside update. Blood Rev 2021; 49:100827. [PMID: 33771403 DOI: 10.1016/j.blre.2021.100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Immune thrombocytopenia (ITP) is a heterogeneous disease with an unpredictable course. Chronicity can develop in up to two-thirds of adults and 20-25% of children, representing a significant burden on patients' quality of life. Despite acceptable responses to treatment, precise etiology and pathophysiology phenomena driving evolution to chronicity remain undefined. We analyzed reported risk factors for chronic ITP and associated them with proposed underlying mechanisms in its pathogenesis, including bone marrow (BM) microenvironment disturbances, clinical features, and immunological markers. Their understanding has diagnostic implications, such as screening for the presence of specific antibodies or BM examination employing molecular tools, which could help predict prognosis and recognize main pathogenic pathways in each patient. Identifying these underlying mechanisms could guide the use of personalized therapies such as all-trans retinoic acid, mTor inhibitors, FcRn inhibitors, oseltamivir, and others. Further research should lead to tailored treatments and chronic course prevention, improving patients' quality of life.
Collapse
Affiliation(s)
- José Carlos Jaime-Pérez
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| | - Eugenia M Ramos-Dávila
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Jesús D Meléndez-Flores
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Andrés Gómez-De León
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - David Gómez-Almaguer
- Department of Hematology, Internal Medicine Division, Dr. Jose E. González University Hospital and School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
41
|
Chen Y, Hu J, Chen Y. Platelet desialylation and TFH cells-the novel pathway of immune thrombocytopenia. Exp Hematol Oncol 2021; 10:21. [PMID: 33722280 PMCID: PMC7958461 DOI: 10.1186/s40164-021-00214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by immune-mediated destruction of one's own platelets. The progression of thrombocytopenia involves an imbalance of platelet production and clearance. B cells can induce autoantibodies, and T cells contribute to the pathological progression as well. Some patients with ITP have a poor response to common first-line therapies. Recent studies have shown that a novel Fc-independent platelet clearance pathway is associated with poor prognosis in these patients. By this pathway, desialylated platelets can be cleared by Ashwell-Morell receptor (AMR) on hepatocytes. Research has demonstrated that patients with refractory ITP usually have a high level of desialylation, indicating the important role of sialylation on platelet membrane glycoprotein (GP) in patients with primary immune thrombocytopenia, and neuraminidase 1(NEU1) translocation might be involved in this process. Patients with ITP who are positive for anti-GPIbα antibodies have a poor prognosis, which indicates that anti-GPIbα antibodies are associated with this Fc-independent platelet clearance pathway. Experiments have proven that these antibodies could lead to the desialylation of GPs on platelets. The T follicular helper (TFH) cell level is related to the expression of the anti-GPIbα antibody, which indicates its role in the progression of desialylation. This review will discuss platelet clearance and production, especially the role of the anti-GPIbα antibody and desialylation in the pathophysiology of ITP and therapy for this disease.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
42
|
Emerging Therapies in Immune Thrombocytopenia. J Clin Med 2021; 10:jcm10051004. [PMID: 33801294 PMCID: PMC7958340 DOI: 10.3390/jcm10051004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disorder caused by peripheral platelet destruction and inappropriate bone marrow production. The management of ITP is based on the utilization of steroids, intravenous immunoglobulins, rituximab, thrombopoietin receptor agonists (TPO-RAs), immunosuppressants and splenectomy. Recent advances in the understanding of its pathogenesis have opened new fields of therapeutic interventions. The phagocytosis of platelets by splenic macrophages could be inhibited by spleen tyrosine kinase (Syk) or Bruton tyrosine kinase (BTK) inhibitors. The clearance of antiplatelet antibodies could be accelerated by blocking the neonatal Fc receptor (FcRn), while new strategies targeting B cells and/or plasma cells could improve the reduction of pathogenic autoantibodies. The inhibition of the classical complement pathway that participates in platelet destruction also represents a new target. Platelet desialylation has emerged as a new mechanism of platelet destruction in ITP, and the inhibition of neuraminidase could dampen this phenomenon. T cells that support the autoimmune B cell response also represent an interesting target. Beyond the inhibition of the autoimmune response, new TPO-RAs that stimulate platelet production have been developed. The upcoming challenges will be the determination of predictive factors of response to treatments at a patient scale to optimize their management.
Collapse
|
43
|
Marini I, Zlamal J, Faul C, Holzer U, Hammer S, Pelzl L, Bethge W, Althaus K, Bakchoul T. Autoantibody-mediated desialylation impairs human thrombopoiesis and platelet lifespan. Haematologica 2021; 106:196-207. [PMID: 31857361 PMCID: PMC7776251 DOI: 10.3324/haematol.2019.236117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Immune thrombocytopenia is a common bleeding disease caused by autoantibody-mediated accelerated platelet clearance and impaired thrombopoiesis. Accumulating evidence suggests that desialylation affects platelet life span in immune thrombocytopenia. Herein, we report on novel effector functions of autoantibodies from immune thrombocytopenic patients which might interfere with the clinical picture of the disease. Data from our study show that a subgroup of autoantibodies is able to induce cleave of sialic acid residues from the surface of human platelets and megakaryocytes. Moreover, autoantibody-mediated desialylation interferes with the interaction between cells and extracellular matrix proteins leading to impaired platelet adhesion and megakaryocyte differentiation. Using a combination of ex vivo model of thrombopoiesis, a humanized animal model, and a clinical cohort study, we demonstrate that cleavage of sialic acid induces significant impairment in production, survival as well as function of human platelets. These data may indicate that prevention of desialylation should be investigated in the future in clinical studies as a potential therapeutic approach to treat bleeding in immune thrombocytopenia.
Collapse
Affiliation(s)
- Irene Marini
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Jan Zlamal
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Christoph Faul
- Department of Internal Medicine II, University Hospital of Tübingen
| | - Ursula Holzer
- Dept. of Pediatric Hematology-Oncology, University Children's Hospital of Tübingen, Germany
| | - Stefanie Hammer
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Germany
| | - Lisann Pelzl
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Wolfgang Bethge
- Department of Internal Medicine II, University Hospital of Tübingen
| | - Karina Althaus
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Germany
| | - Tamam Bakchoul
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| |
Collapse
|
44
|
Audia S, Mahevas M, Bonnotte B. [Immune thrombocytopenia: From pathogenesis to treatment]. Rev Med Interne 2020; 42:16-24. [PMID: 32741715 DOI: 10.1016/j.revmed.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to an immune peripheral destruction of platelets and an inappropriate platelet production. The pathogenesis of ITP is now better understood: it involves a humoral immune response which dependents on the stimulation of B cells by specific T cells called T follicular helper cells, leading to their differentiation into plasma cells that produce antiplatelet antibodies thus promoting the phagocytosis of platelets mainly by splenic macrophages. The deciphering of ITP pathogenesis has led to a better understanding of the inefficiency of treatments such as rituximab, although it has not provided yet the determination of biological predictive factor of response to treatments. Moreover, new therapeutic perspectives have been opened in the last few years with the development of molecules targeting Fcγ receptor signalling such as Syk inhibitor, or molecules increasing the clearance of pathogenic autoantibodies such as inhibitors of the neonatal Fc receptor (FcRn).
Collapse
Affiliation(s)
- S Audia
- Service de Médecine Interne et Immunologie Clinique, Médecine 1-SOC 1, Hôpital François Mitterrand, Centre de référence des cytopénies auto-immunes de l'adulte, CHU Dijon-Bourgogne, 14 rue Paul Gaffarel, 21079 Dijon, France; Unité RIGHT, INSERM UMR 1098, Équipe "Immunorégulation et immunopathologie", Bâtiment B3, 15 rue Maréchal de Lattre de Tassigny, 21000 Dijon, France.
| | - M Mahevas
- 1 Service de Médecine Interne, Centre National de Référence des Cytopénies Auto-Immunes de l'Adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil, France; IMRB - U955 - Equipe n°2 "Transfusion et maladies du globule rouge" EFS Île-de-France, Hôpital Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, France
| | - B Bonnotte
- Service de Médecine Interne et Immunologie Clinique, Médecine 1-SOC 1, Hôpital François Mitterrand, Centre de référence des cytopénies auto-immunes de l'adulte, CHU Dijon-Bourgogne, 14 rue Paul Gaffarel, 21079 Dijon, France; Unité RIGHT, INSERM UMR 1098, Équipe "Immunorégulation et immunopathologie", Bâtiment B3, 15 rue Maréchal de Lattre de Tassigny, 21000 Dijon, France
| |
Collapse
|
45
|
Lee-Sundlov MM, Stowell SR, Hoffmeister KM. Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. J Thromb Haemost 2020; 18:1535-1547. [PMID: 32350996 PMCID: PMC7336546 DOI: 10.1111/jth.14874] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Glycosylation is highly prevalent, and also one of the most complex and varied posttranslational modifications. This large glycan diversity results in a wide range of biological functions. Functional diversity includes protein degradation, protein clearance, cell trafficking, cell signaling, host-pathogen interactions, and immune defense, including both innate and acquired immunity. Glycan-based ABO(H) antigens are critical in providing compatible products in the setting of transfusion and organ transplantation. However, evidence also suggests that ABO expression may influence cardiovascular disease, thrombosis, and hemostasis disorders, including alterations in platelet function and von Willebrand factor blood levels. Glycans also regulate immune and hemostasis function beyond ABO(H) antigens. Mutations in glycogenes (PIGA, COSMC) lead to serious blood disorders, including Tn syndrome associated with hyperagglutination, hemolysis, and thrombocytopenia. Alterations in genes responsible for sialic acids (Sia) synthesis (GNE) and UDP-galactose (GALE) and lactosamine (LacNAc) (B4GALT1) profoundly affect circulating platelet counts. Desialylation (removal of Sia) is affected by human and pathogenic neuraminidases. This review addresses the role of glycans in transfusion medicine, hemostasis and thrombosis, and red blood cell and platelet survival.
Collapse
Affiliation(s)
- Melissa M. Lee-Sundlov
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Karin M. Hoffmeister
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee WI, United States
| |
Collapse
|
46
|
Lasne D, Pascreau T, Darame S, Bourrienne M, Tournoux P, Philippe A, Ziachahabi S, Suarez F, Marcais A, Dupont A, Denis CV, Kauskot A, Borgel D. Measuring beta-galactose exposure on platelets: Standardization and healthy reference values. Res Pract Thromb Haemost 2020; 4:813-822. [PMID: 33134771 PMCID: PMC7586713 DOI: 10.1002/rth2.12369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Correct diagnosis of the cause of thrombocytopenia is crucial for the appropriate management of patients. Hyposialylation/desialylation (characterized by abnormally high β-galactose exposure) accelerates platelet clearance and can lead to thrombocytopenia. However, the reference range for β-galactose exposure in healthy individuals has not been defined previously. OBJECTIVE The objective of the present study was to develop a standardized assay of platelet β-galactose exposure for implementation in a clinical laboratory. METHODS β-Galactose exposure was measured in platelet-rich plasma by using flow cytometry and Ricinus communis agglutinin (RCA). A population of 120 healthy adults was recruited to study variability. RESULTS We determined an optimal RCA concentration of 12.5 μg/mL. The measure was stable for up to 4 hours (mean fluorescence intensity [MFI]-RCA: 1233 ± 329 at 0 hour and 1480 ± 410 at 4 hours). The platelet count did not induce a variation of RCA and the measure of RCA was stable when tested up to 24 hours after blood collection (MFI-RCA: 1252 ± 434 at day 0 and 1140 ± 297 24 hours after blood sampling). To take into account the platelet size, results should be expressed as RCA/forward scatter ratio. We used the assay to study variability in 120 healthy adults, and we found that the ratio is independent of sex and blood group. CONCLUSION We defined a normal range in a healthy population and several preanalytical and analytical variables were evaluated, together with positive and negative controls. This assay may assist in the diagnosis of thrombocytopenic diseases linked to changes in β-galactose exposure.
Collapse
Affiliation(s)
- Dominique Lasne
- Department of Biological HematologyHôpital NeckerAP‐HPParisFrance
- HIThUMR_S 1176INSERMUniv. Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Tiffany Pascreau
- Department of Biological HematologyHôpital NeckerAP‐HPParisFrance
- HIThUMR_S 1176INSERMUniv. Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Sadyo Darame
- Department of Biological HematologyHôpital NeckerAP‐HPParisFrance
| | | | - Peggy Tournoux
- Department of Biological HematologyHôpital NeckerAP‐HPParisFrance
| | | | - Sara Ziachahabi
- Department of Biological HematologyHôpital NeckerAP‐HPParisFrance
| | - Felipe Suarez
- Department of HematologyHôpital NeckerAP‐HPParisFrance
| | | | - Annabelle Dupont
- Department of Haemostasis and TransfusionCHU LilleLilleFrance
- Institut Pasteur de LilleU1011‐ EGIDInsermCHU LilleUniv. LilleLilleFrance
| | - Cécile V. Denis
- HIThUMR_S 1176INSERMUniv. Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Delphine Borgel
- Department of Biological HematologyHôpital NeckerAP‐HPParisFrance
- HIThUMR_S 1176INSERMUniv. Paris‐SaclayLe Kremlin‐BicêtreFrance
| |
Collapse
|
47
|
Hicks SM, Coupland LA, Jahangiri A, Choi PY, Gardiner EE. Novel scientific approaches and future research directions in understanding ITP. Platelets 2020; 31:315-321. [PMID: 32054377 DOI: 10.1080/09537104.2020.1727871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diagnosis of immune thrombocytopenia (ITP) and prediction of response to therapy remain significant and constant challenges in hematology. In patients who present with ITP, the platelet count is frequently used as a surrogate marker for disease severity, and so often determines the need for therapy. Although there is a clear link between thrombocytopenia and hemostasis, a direct correlation between the extent of thrombocytopenia and bleeding symptoms, especially at lower platelet counts is lacking. Thus, bleeding in ITP is heterogeneous, unpredictable, and nearly always based on a multitude of risk factors, beyond the platelet count. The development of an evidence-based, validated risk stratification model for ITP treatment is a major goal in the ITP community and this review discusses new laboratory approaches to evaluate the various pathobiologies of ITP that may inform such a model.
Collapse
Affiliation(s)
- Sarah M Hicks
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lucy A Coupland
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,The National Platelet Research and Referral Centre (NPRC), Canberra, Australia
| | - Anila Jahangiri
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Philip Y Choi
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,The National Platelet Research and Referral Centre (NPRC), Canberra, Australia.,Haematology Department, The Canberra Hospital, Canberra, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,The National Platelet Research and Referral Centre (NPRC), Canberra, Australia
| |
Collapse
|
48
|
Monzón Manzano E, Álvarez Román MT, Justo Sanz R, Fernández Bello I, Hernández D, Martín Salces M, Valor L, Rivas Pollmar I, Butta NV, Jiménez Yuste V. Platelet and immune characteristics of immune thrombocytopaenia patients non-responsive to therapy reveal severe immune dysregulation. Br J Haematol 2020; 189:943-953. [PMID: 31945798 DOI: 10.1111/bjh.16459] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023]
Abstract
Multifactorial mechanisms leading to diminished platelet counts in immune thrombocytopaenia (ITP) might condition the ability of patients with ITP to respond to treatments. Examining their platelet and immune features, we aimed to detect singular characteristics of patients with ITP who do not respond to any treatment. We studied patients with chronic primary ITP who had been without treatment, or untreated (UT-ITP), for at least six months; included were responders to agonists of thrombopoietin receptors (TPO-RA), patients who showed no response to first- and second-line treatments (NR-ITP), and healthy controls. Platelets from NR-ITP patients exposed a reduced amount of sialic acid residues. Increased loss of platelet surface sialic acid residues was associated with increased platelet apoptosis. NR-ITP patients had an increased fraction of naive lymphocyte (L) B cells and a reduced LTreg (Lymphocyte T-regulator) subset. They also presented an anomalous monocyte and NK (Natural Killer) cells distribution. TPO-RA-treated patients seemed to recover an immune homeostasis similar to healthy controls. In conclusion, our results indicate a severe deregulation of the immune system of NR-ITP. The inverse correlation between loss of sialic acid and LTreg count suggests a potential relationship between glycan composition on the platelet surface and immune response, positing terminal sugar moieties of the glycan chains as aetiopathogenic agents in ITP.
Collapse
Affiliation(s)
| | | | | | | | - Diana Hernández
- Hospital Universitario Gregorio Marañón-IiSGM, Madrid, Spain
| | | | - Larissa Valor
- Hospital Universitario Gregorio Marañón-IiSGM, Madrid, Spain
| | | | - Nora V Butta
- Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Víctor Jiménez Yuste
- Hospital Universitario La Paz-IdiPaz, Madrid, Spain.,Facultad de Medicina, Hospital Universitario La Paz-IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
49
|
Abstract
Introduction: Immune thrombocytopenia (ITP) is an autoimmune disease. Even though there are many treatments available, some patients remain resistant to multiple treatments. Therefore, it is very important to develop new treatment options. Areas covered: Here, the authors summarize several current and emerging treatments developed for ITP in recent years. They include a summary of their mechanisms of action and clinical trial results. Expert opinion: At present, the first-line treatment of ITP is glucocorticoid and intravenous immunoglobulin (IVIg). Other traditional therapies include splenectomy, thrombopoietin (TPO), rituximab and other immunosuppressive agents. The several emerging treatments developed recently for ITP may change the treatment pattern in the future.
Collapse
Affiliation(s)
- Xueqing Dou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China
| |
Collapse
|