1
|
Althaus K, Hoepner G, Zieger B, Prüller F, Pavlova A, Boeckelmann D, Birschmann I, Müller J, Rühl H, Sachs U, Kehrel B, Streif W, Bugert P, Zaninetti C, Cooper N, Schulze H, Knöfler R, Bakchoul T, Jurk K. The Diagnostic Assessment of Platelet Function Defects - Part 2: Update on Platelet Disorders. Hamostaseologie 2025. [PMID: 39870108 DOI: 10.1055/a-2404-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025] Open
Abstract
Congenital platelet disorders are rare and targeted treatment is usually not possible. Inherited platelet function disorders (iPFDs) can affect surface receptors and multiple platelet responses such as defects of platelet granules, signal transduction, and procoagulant activity. If iPFDs are also associated with a reduced platelet count (thrombocytopenia), it is not uncommon to be misdiagnosed as immune thrombocytopenia. Because the bleeding tendency of the different platelet disorders is variable, a correct diagnosis of the platelet defect based on phenotyping, function analysis, and genotyping is essential, especially in the perioperative setting. In the case of a platelet receptor deficiency, such as Bernard-Soulier syndrome or Glanzmann thrombasthenia, not only the bleeding tendency but also the risk of isoimmunization after platelet transfusions or pregnancy has to be considered. Platelet granule disorders are commonly associated with either intrinsically quantitative or qualitative granule defects due to impaired granulopoiesis, or granule release defects, which can also affect additional signaling pathways. Functional platelet defects require expertise in the clinical bleeding tendency in terms of the disorder when using antiplatelet agents or other medications that affect platelet function. Platelet defects associated with hematological-oncological diseases require comprehensive information about the patient including the clinical implication of the genetic testing. This review focuses on genetics, clinical presentation, and laboratory platelet function analysis of iPFDs with or without reduced platelet number. As platelet defects affecting the cytoskeleton usually show thrombocytopenia, but less impaired or normal platelet functional responses, they are not specifically addressed.
Collapse
Affiliation(s)
- Karina Althaus
- Medical Faculty of Tübingen, Institute for Clinical and Experimental Transfusion Medicine, Tübingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Gero Hoepner
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, University Hospital Tübingen, Tübingen, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Florian Prüller
- Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria
| | - Anna Pavlova
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Doris Boeckelmann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Ingvild Birschmann
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bochum, Germany
| | - Jens Müller
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Heiko Rühl
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Ulrich Sachs
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Beate Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University-Hospital Munster, Münster, Germany
| | - Werner Streif
- Kinder- und Jugendheilkunde, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Bugert
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Carlo Zaninetti
- Institute of Immunology and Transfusion Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nina Cooper
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralf Knöfler
- Department of Paediatric Haemostaseology, Dresden University Hospital, Dresden, Germany
| | - Tamam Bakchoul
- Medical Faculty of Tübingen, Institute for Clinical and Experimental Transfusion Medicine, Tübingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
2
|
Wurtzel JGT, Gray BD, Pak KY, Zhao X, Ma P, McKenzie SE, Tanujaya M, Rizzo V, Del Carpio-Cano F, Rao AK, Lee-Gau Chong P, Goldfinger LE. Phosphatidylserine-blocking nanoparticles inhibit thrombosis without increased bleeding in mice. J Thromb Haemost 2025; 23:108-122. [PMID: 39423958 PMCID: PMC11725446 DOI: 10.1016/j.jtha.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Phosphatidylserine (PS) is a procoagulant phospholipid enriched on surfaces of activated vascular cells including platelets, endothelium, monocytes, and microvesicles. As a molecular driver of thrombosis accessible to drug blockade, PS is an attractive pharmacologic target for modulating thrombogenesis, with potentially reduced bleeding risk compared to anticoagulant and antiplatelet therapies. OBJECTIVES Test antithrombotic capabilities of a liposomal formulation, Zn-dipicolylamine cyanine-3[22,22]/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (molar ratio, 3:97), designated as DPAL, which we previously described binds selectively to PS-enriched cell surfaces, compared with effects on bleeding, in mouse models. METHODS PS-dependent DPAL binding to human and murine platelets was tested in vitro. Thrombosis and bleeding after DPAL intravenous administration were tested in C57Bl/6J mice following FeCl3 carotid arterial injury and tail tip amputation, respectively. Incorporation in hemostatic clots was investigated in the cremaster muscle laser injury model. Toxicity was tested by direct exposure to human endothelial cell cultures. RESULTS DPAL bound agonist-stimulated, PS-positive human and murine platelets, blocked by Annexin V or Ano6 deletion, which ablate PS exposure. DPAL prolonged prothrombin time, but did not prevent thrombin-induced fibrinogen receptor activation or aggregation, nor alter blood cell counts including platelets. Following arteriolar laser injury, DPAL bound wound surfaces and edges without destabilizing plugs. DPAL dose-dependently blocked FeCl3-induced arterial thrombosis but did not substantially increase bleeding, or induce endothelial cell death. CONCLUSION DPAL reduces thrombogenesis with minimal effects on bleeding in mouse models via selective binding to PS. DPAL may support novel approaches to modulate pathogenic thrombin generation with improved safety profiles in multiple contexts.
Collapse
Affiliation(s)
- Jeremy G T Wurtzel
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brian D Gray
- Molecular Targeting Technologies Inc, West Chester, Pennsylvania, USA
| | - Koon Y Pak
- Molecular Targeting Technologies Inc, West Chester, Pennsylvania, USA
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven E McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michelle Tanujaya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - A Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA; Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Parkson Lee-Gau Chong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Lawrence E Goldfinger
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Kaiser R, Dewender R, Mulkers M, Stermann J, Rossaro D, Di Fina L, Li L, Gold C, Schmid M, Kääb L, Eivers L, Akgöl S, Yue K, Kammerer L, Loew Q, Anjum A, Escaig R, Akhalkatsi A, Laun L, Kranich J, Brocker T, Mueller TT, Krächan A, Gmeiner J, Pekayvaz K, Thienel M, Massberg S, Stark K, Kilani B, Nicolai L. Procoagulant platelet activation promotes venous thrombosis. Blood 2024; 144:2546-2553. [PMID: 39440970 DOI: 10.1182/blood.2024025476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Platelets are key players in cardiovascular disease, and platelet aggregation represents a central pharmacologic target, particularly in secondary prevention. However, inhibition of adenosine diphosphate and thromboxane signaling has low efficacy in preventing venous thromboembolism, necessitating the inhibition of the plasmatic coagulation cascade in this disease entity. Anticoagulation carries a significantly higher risk of bleeding complications, highlighting the need of alternative therapeutic approaches. We hypothesized that procoagulant activation (PA) of platelets promotes venous thrombus formation and that targeting PA could alleviate venous thrombosis. Here, we found elevated levels of procoagulant platelets in the circulation and in thrombi of patients with deep vein thrombosis (DVT) and pulmonary embolism, and in mice developing DVT following inferior vena cava stenosis. Furthermore, we detected PA of recruited platelets within murine venous thrombi and human pulmonary emboli. Mice with platelet-specific deficiency in central pathways of PA-cyclophilin D and transmembrane protein 16F-were more resistant toward low flow-induced venous thrombosis. Finally, we found that a clinically approved carbonic anhydrase inhibitor, methazolamide, reduced platelet procoagulant activity and alleviated murine thrombus formation without affecting trauma-associated hemostasis. These findings identify an essential role of platelet procoagulant function in venous thrombosis and delineate novel pharmacologic strategies targeting platelets in the prevention of venous thromboembolism.
Collapse
Affiliation(s)
- Rainer Kaiser
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Robin Dewender
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Maité Mulkers
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Julia Stermann
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Dario Rossaro
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Lea Di Fina
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Lukas Li
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Christoph Gold
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Michael Schmid
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Lily Kääb
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Luke Eivers
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Sezer Akgöl
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Keyang Yue
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Lisa Kammerer
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Quentin Loew
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Afra Anjum
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Anastassia Akhalkatsi
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Lisa Laun
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig Maximilian University, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig Maximilian University, Munich, Germany
| | - Tonina T Mueller
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Angelina Krächan
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Jonas Gmeiner
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Manuela Thienel
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Steffen Massberg
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Konstantin Stark
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Badr Kilani
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Leo Nicolai
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Berlin, Germany
| |
Collapse
|
4
|
Yan M, Wang Z, An Y, Li Z, Li Y, Zhang H, Li C, Wang L, Chen L, Gao C, Wang D, Gao C. OxLDL enhances procoagulant activity of endothelial cells by TMEM16F-mediated phosphatidylserine exposure. Cell Biol Int 2024; 48:848-860. [PMID: 38444077 DOI: 10.1002/cbin.12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/28/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+, reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3-induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.
Collapse
Affiliation(s)
- Meishan Yan
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Zelong Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Yao An
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Zhanni Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Yun Li
- Hematology Department, Daqing Oil Field General Hospital, Daqing, China
| | - Hongyu Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Caixia Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Lifeng Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Li Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Chao Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| | - Dongsheng Wang
- Department of Emergency, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Chunyan Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University Daqing, Daqing, China
| |
Collapse
|
5
|
Ding B, Mao Y, Li Y, Xin M, Jiang S, Hu X, Xu Q, Ding Q, Wang X. A novel GATA1 variant p.G229D causing the defect of procoagulant platelet formation. Thromb Res 2024; 234:39-50. [PMID: 38159323 DOI: 10.1016/j.thromres.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION GATA1 is one of the master transcription factors in hematopoietic lineages development which is crucial for megakaryocytic differentiation and maturation. Previous studies have shown that distinct GATA1 variants are associated with varying severities of macrothrombocytopenia and platelet dysfunction. OBJECTIVE To determine the underlying pathological mechanisms of a novel GATA1 variant (c. 686G > A, p. G229D) in a patient with recurrent traumatic muscle hematomas. METHODS Comprehensive phenotypic analysis of the patient platelets was performed. Procoagulant platelet formation and function were detected using flow cytometry assay and thrombin generation test (TGT), respectively. The ANO6 expression was measured by qPCR and western blot. The intracellular supramaximal calcium flux was detected by Fluo-5N fluorescent assay. RESULTS The patient displayed mild macrothrombocytopenia with defects of platelet granules, aggregation, and integrin αIIbβ3 activation. The percentage of the procoagulant platelet formation of the patient upon the stimulation of thrombin plus collagen was lower than that of the healthy controls (40.9 % vs 49.0 % ± 5.1 %). The patient platelets exhibited a marked reduction of thrombin generation in platelet rich plasma TGT compared to the healthy controls (peak value: ∼70 % of the healthy controls; the endogenous thrombin potential: ∼40 % of the healthy controls). The expression of ANO6 and intracellular calcium flux were impaired, which together with abnormal granules of the patient platelets might contribute to defect of procoagulant platelet function. CONCLUSIONS The G229D variant could lead to a novel platelet phenotype characterized by defective procoagulant platelet formation and function, which extended the range of GATA1 variants associated platelet disorders.
Collapse
Affiliation(s)
- Biying Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yinqi Mao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shifeng Jiang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaobo Hu
- Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Stefanucci L, Collins J, Sims MC, Barrio-Hernandez I, Sun L, Burren OS, Perfetto L, Bender I, Callahan TJ, Fleming K, Guerrero JA, Hermjakob H, Martin MJ, Stephenson J, Paneerselvam K, Petrovski S, Porras P, Robinson PN, Wang Q, Watkins X, Frontini M, Laskowski RA, Beltrao P, Di Angelantonio E, Gomez K, Laffan M, Ouwehand WH, Mumford AD, Freson K, Carss K, Downes K, Gleadall N, Megy K, Bruford E, Vuckovic D. The effects of pathogenic and likely pathogenic variants for inherited hemostasis disorders in 140 214 UK Biobank participants. Blood 2023; 142:2055-2068. [PMID: 37647632 PMCID: PMC10733830 DOI: 10.1182/blood.2023020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Rare genetic diseases affect millions, and identifying causal DNA variants is essential for patient care. Therefore, it is imperative to estimate the effect of each independent variant and improve their pathogenicity classification. Our study of 140 214 unrelated UK Biobank (UKB) participants found that each of them carries a median of 7 variants previously reported as pathogenic or likely pathogenic. We focused on 967 diagnostic-grade gene (DGG) variants for rare bleeding, thrombotic, and platelet disorders (BTPDs) observed in 12 367 UKB participants. By association analysis, for a subset of these variants, we estimated effect sizes for platelet count and volume, and odds ratios for bleeding and thrombosis. Variants causal of some autosomal recessive platelet disorders revealed phenotypic consequences in carriers. Loss-of-function variants in MPL, which cause chronic amegakaryocytic thrombocytopenia if biallelic, were unexpectedly associated with increased platelet counts in carriers. We also demonstrated that common variants identified by genome-wide association studies (GWAS) for platelet count or thrombosis risk may influence the penetrance of rare variants in BTPD DGGs on their associated hemostasis disorders. Network-propagation analysis applied to an interactome of 18 410 nodes and 571 917 edges showed that GWAS variants with large effect sizes are enriched in DGGs and their first-order interactors. Finally, we illustrate the modifying effect of polygenic scores for platelet count and thrombosis risk on disease severity in participants carrying rare variants in TUBB1 or PROC and PROS1, respectively. Our findings demonstrate the power of association analyses using large population datasets in improving pathogenicity classifications of rare variants.
Collapse
Affiliation(s)
- Luca Stefanucci
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation, BHF Centre of Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Janine Collins
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, Barts Health NHS Trust, London, United Kingdom
| | - Matthew C. Sims
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Luanluan Sun
- Department of Public Health and Primary Care, BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Oliver S. Burren
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Biology and Biotechnology “C.Darwin,” Sapienza University of Rome, Rome, Italy
| | - Isobel Bender
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tiffany J. Callahan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jose A. Guerrero
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, Barts Health NHS Trust, London, United Kingdom
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Maria J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - James Stephenson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - NIHR BioResource
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation, BHF Centre of Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, Barts Health NHS Trust, London, United Kingdom
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Public Health and Primary Care, BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Biology and Biotechnology “C.Darwin,” Sapienza University of Rome, Rome, Italy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
- Genomic Medicine, The Jackson Laboratory, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences RILD Building, University of Exeter Medical School, Exeter, United Kingdom
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Health Data Science Centre, Human Technopole, Milan, Italy
- Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, United Kingdom
- Department of Haematology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, University College London Hospitals NHS Trust, London, United Kingdom
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
- Cambridge Genomics Laboratory, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Kalpana Paneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Peter N. Robinson
- Genomic Medicine, The Jackson Laboratory, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Xavier Watkins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation, BHF Centre of Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences RILD Building, University of Exeter Medical School, Exeter, United Kingdom
| | - Roman A. Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Emanuele Di Angelantonio
- British Heart Foundation, BHF Centre of Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Public Health and Primary Care, BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Health Data Science Centre, Human Technopole, Milan, Italy
| | - Keith Gomez
- Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Mike Laffan
- Department of Haematology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University College London Hospitals NHS Trust, London, United Kingdom
| | - Andrew D. Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| | - Keren Carss
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge Genomics Laboratory, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nick Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Elspeth Bruford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Dragana Vuckovic
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Chen D, Pruthi RK. Platelet genetic testing by next-generation sequencing: A practical update. Int J Lab Hematol 2023; 45:630-642. [PMID: 37463678 DOI: 10.1111/ijlh.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of disorders characterized by normal or reduced platelet counts, bleeding diatheses of varying severities, and the presence (syndromic) or absence (non-syndromic) of involvement of other organs. Due to the lack of highly specific platelet function tests and overlapping clinical and laboratory features, diagnosing the underlying cause of IPDs remains challenging. In recent years, genetic testing via next-generation sequencing (NGS) technologies to rapidly analyze multiple genes has gradually emerged as an important part of the laboratory investigation of patients with IPDs. A systemic clinical and laboratory testing approach and thorough phenotype and genotype correlation studies of both patients and their family members are crucial for accurate diagnoses of IPDs.
Collapse
Affiliation(s)
- Dong Chen
- Special Coagulation Laboratory, Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rajiv K Pruthi
- Special Coagulation Laboratory, Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
Xiao QH, Sun XH, Cui ZQ, Hu XY, Yang T, Guan JW, Gu Y, Li HY, Zhang HY. TMEM16F may be a new therapeutic target for Alzheimer’s disease. Neural Regen Res 2023; 18:643-651. [DOI: 10.4103/1673-5374.350211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Zhang Y, Liang P, Yang L, Shan KZ, Feng L, Chen Y, Liedtke W, Coyne CB, Yang H. Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion. eLife 2022; 11:e78840. [PMID: 35670667 PMCID: PMC9236608 DOI: 10.7554/elife.78840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization, however, how TMEM16F is activated during cell fusion is unclear. Here, using trophoblasts as a model for cell fusion, we demonstrate that Ca2+ influx through the Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and plays a role in subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. We also show that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in a human trophoblast cell line using patch-clamp electrophysiology. Pharmacological inhibition or gene silencing of TRPV4 hinders TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and one of the physiological activation mechanisms of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically and disease-relevant cell fusion events.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liheng Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Ke Zoe Shan
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical CentreDurhamUnited States
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghaiChina
| | - Yong Chen
- Department of Neurology, Duke University Medical CenterDurhamUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical CenterDurhamUnited States
- Department of Anesthesiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- College of Dentistry, Department of Molecular Pathobiology, NYUNew YorkUnited States
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke UniversityDurhamUnited States
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
11
|
Procoagulant platelet sentinels prevent inflammatory bleeding through GPIIBIIIA and GPVI. Blood 2022; 140:121-139. [PMID: 35472164 DOI: 10.1182/blood.2021014914] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
Impairment of vascular integrity is a hallmark of inflammatory diseases. We recently reported that single immune-responsive platelets migrate and re-position themselves to sites of vascular injury to prevent bleeding. However, it remains unclear how single platelets preserve vascular integrity once encountering endothelial breaches. Here we demonstrate by intravital microscopy combined with genetic mouse models that procoagulant activation (PA) of single platelets and subsequent recruitment of the coagulation cascade are crucial for the prevention of inflammatory bleeding. Using a novel lactadherin-based compound we detect phosphatidylserine (PS)-positive procoagulant platelets in the inflamed vasculature. We identify exposed collagen as the central trigger arresting platelets and initiating subsequent PA in a CypD- and TMEM16F-dependent manner both in vivo and in vitro. Platelet PA promotes binding of the prothrombinase complex to the platelet membrane, greatly enhancing thrombin activity resulting in fibrin formation. PA of migrating platelets is initiated by co-stimulation via integrin αIIbβ3 (GPIIBIIIA)/Gα13-mediated outside-in-signaling and GPVI signaling, leading to an above-threshold intracellular calcium release. This effectively targets the coagulation cascade to breaches of vascular integrity identified by patrolling platelets. Platelet-specific genetic loss of either CypD or TMEM16F as well as combined blockade of platelet GPIIBIIIA and GPVI reduce platelet PA in vivo and aggravate pulmonary inflammatory hemorrhage. Our findings illustrate a novel role of procoagulant platelets in the prevention of inflammatory bleeding and provide evidence that PA of patrolling platelet sentinels effectively targets and confines activation of coagulation to breaches of vascular integrity.
Collapse
|
12
|
Millington‐Burgess SL, Harper MT. Maintaining flippase activity in procoagulant platelets is a novel approach to reducing thrombin generation. J Thromb Haemost 2022; 20:989-995. [PMID: 35034417 PMCID: PMC9306496 DOI: 10.1111/jth.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND During thrombosis, procoagulant platelets expose phosphatidylserine (PS), which enhances local thrombin generation. Reducing platelet PS exposure could be a novel anti-thrombotic approach. PS is confined to the inner leaflet of the plasma membrane in unstimulated platelets by ATP-dependent "flippase" activity. Ca2+ ionophores trigger all platelets to expose a high level of PS by activating a scramblase protein and inactivating the flippase. Although R5421 was previously shown to reduce Ca2+ ionophore-induced PS exposure, its mechanism of action is unknown. OBJECTIVES To determine the mechanism by which R5421 reduces platelet PS exposure. METHODS Washed human platelets were stimulated with the Ca2+ ionophore, A23187, to induce procoagulant platelet formation while bypassing proximal receptor signalling. Platelets PS exposure was detected using annexin V or lactadherin in flow cytometry. NBD (7-nitro-2-1,3-benzoxadiazol-4-yl)-PS was used to assess scramblase and flippase activity. Thrombin generation was monitored using a fluorogenic substrate. RESULTS AND CONCLUSIONS R5421 reduced the extent of A23187-stimulated platelet PS exposure, as demonstrated with annexin V or lactadherin binding. R5421 also maintained flippase activity in procoagulant platelets. Although R5421 appeared to inhibit scramblase activity in procoagulant platelets, it did not once the flippase had been inhibited, demonstrating that scramblase activity is not directly inhibited. Furthermore, R5421 inhibited the contribution of A23187-stimulated platelets to thrombin generation. Together these data demonstrate that R5421 reduces the extent of PS exposure in procoagulant platelets by maintaining flippase activity. Maintaining flippase activity in procoagulant platelets is a novel and effective approach to reducing thrombin generation.
Collapse
|
13
|
Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59:405-444. [PMID: 35341454 DOI: 10.1080/10408363.2022.2049199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inherited platelet disorders are important conditions that often manifest with bleeding. These disorders have heterogeneous underlying pathologies. Some are syndromic disorders with non-blood phenotypic features, and others are associated with an increased predisposition to developing myelodysplasia and leukemia. Platelet disorders can present with thrombocytopenia, defects in platelet function, or both. As the underlying pathogenesis of inherited thrombocytopenias and platelet function disorders are quite diverse, their evaluation requires a thorough clinical assessment and specialized diagnostic tests, that often challenge diagnostic laboratories. At present, many of the commonly encountered, non-syndromic platelet disorders do not have a defined molecular cause. Nonetheless, significant progress has been made over the past few decades to improve the diagnostic evaluation of inherited platelet disorders, from the assessment of the bleeding history to improved standardization of light transmission aggregometry, which remains a "gold standard" test of platelet function. Some platelet disorder test findings are highly predictive of a bleeding disorder and some show association to symptoms of prolonged bleeding, surgical bleeding, and wound healing problems. Multiple assays can be required to diagnose common and rare platelet disorders, each requiring control of preanalytical, analytical, and post-analytical variables. The laboratory investigations of platelet disorders include evaluations of platelet counts, size, and morphology by light microscopy; assessments for aggregation defects; tests for dense granule deficiency; analyses of granule constituents and their release; platelet protein analysis by immunofluorescent staining or flow cytometry; tests of platelet procoagulant function; evaluations of platelet ultrastructure; high-throughput sequencing and other molecular diagnostic tests. The focus of this article is to review current methods for the diagnostic assessment of platelet function, with a focus on contemporary, best diagnostic laboratory practices, and relationships between clinical and laboratory findings.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
14
|
Veuthey L, Aliotta A, Bertaggia Calderara D, Pereira Portela C, Alberio L. Mechanisms Underlying Dichotomous Procoagulant COAT Platelet Generation-A Conceptual Review Summarizing Current Knowledge. Int J Mol Sci 2022; 23:2536. [PMID: 35269679 PMCID: PMC8910683 DOI: 10.3390/ijms23052536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Procoagulant platelets are a subtype of activated platelets that sustains thrombin generation in order to consolidate the clot and stop bleeding. This aspect of platelet activation is gaining more and more recognition and interest. In fact, next to aggregating platelets, procoagulant platelets are key regulators of thrombus formation. Imbalance of both subpopulations can lead to undesired thrombotic or bleeding events. COAT platelets derive from a common pro-aggregatory phenotype in cells capable of accumulating enough cytosolic calcium to trigger specific pathways that mediate the loss of their aggregating properties and the development of new adhesive and procoagulant characteristics. Complex cascades of signaling events are involved and this may explain why an inter-individual variability exists in procoagulant potential. Nowadays, we know the key agonists and mediators underlying the generation of a procoagulant platelet response. However, we still lack insight into the actual mechanisms controlling this dichotomous pattern (i.e., procoagulant versus aggregating phenotype). In this review, we describe the phenotypic characteristics of procoagulant COAT platelets, we detail the current knowledge on the mechanisms of the procoagulant response, and discuss possible drivers of this dichotomous diversification, in particular addressing the impact of the platelet environment during in vivo thrombus formation.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (L.V.); (A.A.); (D.B.C.); (C.P.P.)
| |
Collapse
|
15
|
Cryptogenic oozers and bruisers. Hematology 2021; 2021:85-91. [DOI: 10.1182/hematology.2021000236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Bleeding disorders with normal, borderline, or nondiagnostic coagulation tests represent a diagnostic challenge. Disorders of primary hemostasis can be further evaluated by additional platelet function testing modalities, platelet electron microscopy, repeat von Willebrand disease testing, and specialized von Willebrand factor testing beyond the usual initial panel. Secondary hemostasis is further evaluated by coagulation factor assays, and factor XIII assays are used to diagnose disorders of fibrin clot stabilization. Fibrinolytic disorders are particularly difficult to diagnose with current testing options. A significant number of patients remain unclassified after thorough testing; most unclassified patients have a clinically mild bleeding phenotype, and many may have undiagnosed platelet function disorders. High-throughput genetic testing using large gene panels for bleeding disorders may allow diagnosis of a larger number of these patients in the future, but more study is needed. A logical laboratory workup in the context of the clinical setting and with a high level of expertise regarding test interpretation and limitations facilitates a diagnosis for as many patients as possible.
Collapse
|
16
|
Millington-Burgess SL, Harper MT. Epigallocatechin gallate inhibits release of extracellular vesicles from platelets without inhibiting phosphatidylserine exposure. Sci Rep 2021; 11:17678. [PMID: 34480042 PMCID: PMC8417220 DOI: 10.1038/s41598-021-97212-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023] Open
Abstract
Arterial thrombosis triggers myocardial infarction and is a leading cause of death worldwide. Procoagulant platelets, a subpopulation of activated platelets that expose phosphatidylserine (PS), promote coagulation and occlusive thrombosis. Procoagulant platelets may therefore be a therapeutic target. PS exposure in procoagulant platelets requires TMEM16F, a phospholipid scramblase. Epigallocatechin gallate (EGCG) has been reported to inhibit TMEM16F but this has been challenged. We investigated whether EGCG inhibits PS exposure in procoagulant platelets. PS exposure is often measured using fluorophore-conjugated annexin V. EGCG quenched annexin V-FITC fluorescence, which gives the appearance of inhibition of PS exposure. However, EGCG did not quench annexin V-APC fluorescence. Using this fluorophore, we show that EGCG does not inhibit annexin V binding to procoagulant platelets. We confirmed this by using NBD-labelled PS to monitor PS scrambling. EGCG did not quench NBD fluorescence and did not inhibit PS scrambling. Procoagulant platelets also release PS-exposing extracellular vesicles (EVs) that further propagate coagulation. Surprisingly, EGCG inhibited EV release. This inhibition required the gallate group of EGCG. In conclusion, EGCG does not inhibit PS exposure in procoagulant platelets but does inhibit the EV release. Future investigation of this inhibition may help us further understand how EVs are released by procoagulant platelets.
Collapse
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
17
|
Supramaximal calcium signaling triggers procoagulant platelet formation. Blood Adv 2021; 4:154-164. [PMID: 31935287 DOI: 10.1182/bloodadvances.2019000182] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
Procoagulant platelets promote thrombin generation during thrombosis. Platelets become procoagulant in an all-or-nothing manner. We investigated how distinct Ca2+ signaling between platelet subpopulations commits some platelets to become procoagulant, using the high-affinity Ca2+ indicator Fluo-4, which may become saturated during platelet stimulation, or low-affinity Fluo-5N, which reports only very high cytosolic Ca2+ concentrations. All activated platelets had high Fluo-4 fluorescence. However, in Fluo-5N-loaded platelets, only the procoagulant platelets had high fluorescence, indicating very high cytosolic Ca2+. This finding indicates a novel, "supramaximal" Ca2+ signal in procoagulant platelets (ie, much higher than normally considered maximal). Supramaximal Ca2+ signaling and the percentage of procoagulant platelets were inhibited by cyclosporin A, a mitochondrial permeability transition pore blocker, and Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, with no effect on Fluo-4 fluorescence. In contrast, Synta-66, an Orai1 blocker, reduced Fluo-4 fluorescence but did not directly inhibit generation of the supramaximal Ca2+ signal. Our findings show a distinct pattern of Ca2+ signaling in procoagulant platelets and provide a new framework to interpret the role of platelet signaling pathways in procoagulant platelets. This requires reassessment of the role of different Ca2+ channels and may provide new targets to prevent formation of procoagulant platelets and limit thrombosis.
Collapse
|
18
|
Platelets and extracellular vesicles and their cross talk with cancer. Blood 2021; 137:3192-3200. [PMID: 33940593 DOI: 10.1182/blood.2019004119] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Platelets play significant and varied roles in cancer progression, as detailed throughout this review series, via direct interactions with cancer cells and by long-range indirect interactions mediated by platelet releasates. Microvesicles (MVs; also referred to as microparticles) released from activated platelets have emerged as major contributors to the platelet-cancer nexus. Interactions of platelet-derived MVs (PMVs) with cancer cells can promote disease progression through multiple mechanisms, but PMVs also harbor antitumor functions. This complex relationship derives from PMVs' binding to both cancer cells and nontransformed cells in the tumor microenvironment and transferring platelet-derived contents to the target cell, each of which can have stimulatory or modulatory effects. MVs are extracellular vesicles of heterogeneous size, ranging from 100 nm to 1 µm in diameter, shed by living cells during the outward budding of the plasma membrane, entrapping local cytosolic contents in an apparently stochastic manner. Hence, PMVs are encapsulated by a lipid bilayer harboring surface proteins and lipids mirroring the platelet exterior, with internal components including platelet-derived mature messenger RNAs, pre-mRNAs, microRNAs, and other noncoding RNAs, proteins, second messengers, and mitochondria. Each of these elements engages in established and putative PMV functions in cancer. In addition, PMVs contribute to cancer comorbidities because of their roles in coagulation and thrombosis and via interactions with inflammatory cells. However, separating the effects of PMVs from those of platelets in cancer contexts continues to be a major hurdle. This review summarizes our emerging understanding of the complex roles of PMVs in the development and progression of cancer and cancer comorbidities.
Collapse
|
19
|
Inherited Platelet Disorders: An Updated Overview. Int J Mol Sci 2021; 22:ijms22094521. [PMID: 33926054 PMCID: PMC8123627 DOI: 10.3390/ijms22094521] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets play a major role in hemostasis as ppwell as in many other physiological and pathological processes. Accordingly, production of about 1011 platelet per day as well as appropriate survival and functions are life essential events. Inherited platelet disorders (IPDs), affecting either platelet count or platelet functions, comprise a heterogenous group of about sixty rare diseases caused by molecular anomalies in many culprit genes. Their clinical relevance is highly variable according to the specific disease and even within the same type, ranging from almost negligible to life-threatening. Mucocutaneous bleeding diathesis (epistaxis, gum bleeding, purpura, menorrhagia), but also multisystemic disorders and/or malignancy comprise the clinical spectrum of IPDs. The early and accurate diagnosis of IPDs and a close patient medical follow-up is of great importance. A genotype-phenotype relationship in many IPDs makes a molecular diagnosis especially relevant to proper clinical management. Genetic diagnosis of IPDs has been greatly facilitated by the introduction of high throughput sequencing (HTS) techniques into mainstream investigation practice in these diseases. However, there are still unsolved ethical concerns on general genetic investigations. Patients should be informed and comprehend the potential implications of their genetic analysis. Unlike the progress in diagnosis, there have been no major advances in the clinical management of IPDs. Educational and preventive measures, few hemostatic drugs, platelet transfusions, thrombopoietin receptor agonists, and in life-threatening IPDs, allogeneic hematopoietic stem cell transplantation are therapeutic possibilities. Gene therapy may be a future option. Regular follow-up by a specialized hematology service with multidisciplinary support especially for syndromic IPDs is mandatory.
Collapse
|
20
|
Chu Y, Guo H, Zhang Y, Qiao R. Procoagulant platelets: Generation, characteristics, and therapeutic target. J Clin Lab Anal 2021; 35:e23750. [PMID: 33709517 PMCID: PMC8128296 DOI: 10.1002/jcla.23750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022] Open
Abstract
Platelets play a pivotal role in hemostasis. Activated platelets are classified into two groups, according to their agonist response: aggregating and procoagulant platelets. Aggregating platelets consist of activated integrin αIIbβ3 and stretch out pseudopods to further attract platelets to the site of injury by connecting with fibrinogen. They mainly gather in the core of the thrombus and perform a secretory function, such as releasing adenosine diphosphate (ADP). Procoagulant platelets promote the formation of thrombin and fibrin by interacting with coagulation factors and can thus be considered as the connector between primary and secondary hemostasis. In addition to their functions in blood coagulation, procoagulant platelets play a proinflammatory role by releasing platelet microparticles and inorganic polyphosphate. Considering these important functions of procoagulant platelets, this subpopulation warrants detailed study to analyze their potential in preventing human diseases. This review summarizes the generation and important characteristics of procoagulant platelets, as well as their potential for preventing the adverse effects associated with current antiplatelet therapies.
Collapse
Affiliation(s)
- Yaxin Chu
- The Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Han Guo
- The Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yuncong Zhang
- The Department of Laboratory Medicine, Peking University International Hospital, Beijing, China
| | - Rui Qiao
- The Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
21
|
Abstract
Platelets are the major cellular contributor to arterial thrombosis. However, activated platelets form two distinct subpopulations during thrombosis. Pro-aggregatory platelets aggregate to form the main body of the thrombus. In contrast, procoagulant platelets expose phosphatidylserine on their outer surface and promote thrombin generation. This apparently all-or-nothing segregation into subpopulations indicates that, during activation, platelets commit to becoming procoagulant or pro-aggregatory. Although the signaling pathways that control this commitment are not understood, distinct cytosolic and mitochondrial Ca2+ signals in different subpopulations are likely to be central. In this review, we discuss how these Ca2+ signals control procoagulant platelet formation and whether this process can be targeted pharmacologically to prevent arterial thrombosis.
Collapse
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge Cambridge, UK
| |
Collapse
|
22
|
Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106:337-350. [PMID: 33147934 PMCID: PMC7849565 DOI: 10.3324/haematol.2020.248153] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited platelet disorders resulting from platelet function defects and a normal platelet count cause a moderate or severe bleeding diathesis. Since the description of Glanzmann thrombasthenia resulting from defects of ITGA2B and ITGB3, new inherited platelet disorders have been discovered, facilitated by the use of high throughput sequencing and genomic analyses. Defects of RASGRP2 and FERMT3 responsible for severe bleeding syndromes and integrin activation have illustrated the critical role of signaling molecules. Important are mutations of P2RY12 encoding the major ADP receptor causal for an inherited platelet disorder with inheritance characteristics that depend on the variant identified. Interestingly, variants of GP6 encoding the major subunit of the collagen receptor GPVI/FcRγ associate only with mild bleeding. The numbers of genes involved in dense granule defects including Hermansky-Pudlak and Chediak Higashi syndromes continue to progress and are updated. The ANO6 gene encoding a Ca2+-activated ion channel required for phospholipid scrambling is responsible for the rare Scott syndrome and decreased procoagulant activity. A novel EPHB2 defect in a familial bleeding syndrome demonstrates a role for this tyrosine kinase receptor independent of the classical model of its interaction with ephrins. Such advances highlight the large diversity of variants affecting platelet function but not their production, despite the difficulties in establishing a clear phenotype when few families are affected. They have provided insights into essential pathways of platelet function and have been at the origin of new and improved therapies for ischemic disease. Nevertheless, many patients remain without a diagnosis and requiring new strategies that are now discussed.
Collapse
Affiliation(s)
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Remi Favier
- French National Reference Center for Inherited Platelet Disorders, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris
| | | |
Collapse
|
23
|
Fernández DI, Kuijpers MJE, Heemskerk JWM. Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets 2020; 32:863-871. [PMID: 33356720 DOI: 10.1080/09537104.2020.1859103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most agonists stimulate platelet Ca2+ rises via G-protein coupled receptors (GPCRs) or ITAM-linked receptors (ILRs). Well studied are the GPCRs stimulated by the soluble agonists thrombin (PAR1, PAR4), ADP (P2Y1, P2Y12), and thromboxane A2 (TP), signaling via phospholipase (PLC)β isoforms. The platelet ILRs glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2), and FcγRIIa are stimulated by adhesive ligands or antibody complexes and signal via tyrosine protein kinases and PLCγ isoforms. Marked differences exist between the GPCR- and ILR-induced Ca2+ signaling in: (i) dependency of tyrosine phosphorylation; (ii) oscillatory versus continued Ca2+ rises by mobilization from the endoplasmic reticulum; and (iii) smaller or larger role of extracellular Ca2+ entry via STIM1/ORAI1. Co-stimulation of both types of receptors, especially by thrombin (PAR1/4) and collagen (GPVI), leads to a highly enforced Ca2+ rise, involving mitochondrial Ca2+ release, which activates the ion and phospholipid channel, anoctamin-6. This highly Ca2+-dependent process causes swelling, ballooning, and phosphatidylserine expression, establishing a unique platelet population swinging between vital and necrotic (procoagulant 'zombie' platelets). Additionally, the high Ca2+ status of procoagulant platelets induces a set of additional events: (i) Ca2+ dependent cleavage of signaling proteins and receptors via calpain and ADAM isoforms; (ii) microvesiculation; (iii) enhanced coagulation factor binding; and (iv) fibrin-coat formation involving transglutaminases. Given the additive roles of GPCR and ILR in Ca2+ signal generation, high-throughput screening of biomolecules or small molecules based on Ca2+ flux measurements provides a promising way to find new inhibitors interfering with prolonged high Ca2+, phosphatidylserine expression, and hence platelet procoagulant activity.
Collapse
Affiliation(s)
- Delia I Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Millington-Burgess SL, Bonna AM, Rahman T, Harper MT. Ethaninidothioic acid (R5421) is not a selective inhibitor of platelet phospholipid scramblase activity. Br J Pharmacol 2020; 177:4007-4020. [PMID: 32496597 PMCID: PMC7429475 DOI: 10.1111/bph.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Ethaninidothioic acid (R5421) has been used as a scramblase inhibitor to determine the role of phospholipid scrambling across a range of systems including platelet procoagulant activity. The selectivity of R5421 has not been thoroughly studied. Here, we characterised the effects of R5421 on platelet function and its suitability for use as a scramblase inhibitor. Experimental Approach Human platelet activation was measured following pretreatment with R5421 and stimulation with a range of agonists. Phosphatidylserine exposure was measured using annexin V binding. Integrin αIIbβ3 activation and α‐granule release were measured by flow cytometry. Cytosolic Ca2+ signals were measured using Cal520 fluorescence. An in silico ligand‐based screen identified 16 compounds which were tested in these assays. Key Results R5421 inhibited A23187‐induced phosphatidylserine exposure in a time‐ and temperature‐dependent manner. R5421 inhibited Ca2+ signalling from the PAR1, PAR4 and glycoprotein VI receptors as well as platelet αIIbβ3 integrin activation and α‐granule release. R5421 is therefore not a selective inhibitor of platelet scramblase activity. An in silico screen identified the pesticide thiodicarb as similar to R5421. It also inhibited platelet phosphatidylserine exposure, Ca2+ signalling from the PAR1 and glycoprotein VI, αIIbβ3 activation and α‐granule release. Thiodicarb additionally disrupted Ca2+ homeostasis in unstimulated platelets. Conclusion and Implications R5421 is not a selective inhibitor of platelet scramblase activity. We have identified the pesticide thiodicarb, which had similar effects on platelet function to R5421 as well as additional disruption of Ca2+ signalling which may underlie some of thiodicarb's toxicity.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
25
|
Reddy EC, Rand ML. Procoagulant Phosphatidylserine-Exposing Platelets in vitro and in vivo. Front Cardiovasc Med 2020; 7:15. [PMID: 32195268 PMCID: PMC7062866 DOI: 10.3389/fcvm.2020.00015] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological heterogeneity of platelets leads to diverse responses and the formation of discrete subpopulations upon platelet stimulation. Procoagulant platelets are an example of such subpopulations, a key characteristic of which is exposure either of the anionic aminophospholipid phosphatidylserine (PS) or of tissue factor on the activated platelet surface. This review focuses on the former, in which PS exposure on a subpopulation of platelets facilitates assembly of the intrinsic tenase and prothrombinase complexes, thereby accelerating thrombin generation on the activated platelet surface, contributing importantly to the hemostatic process. Mechanisms involved in platelet PS exposure, and accompanying events, induced by physiologically relevant agonists are considered then contrasted with PS exposure resulting from intrinsic pathway-mediated apoptosis in platelets. Pathologies of PS exposure, both inherited and acquired, are described. A consideration of platelet PS exposure as an antithrombotic target concludes the review.
Collapse
Affiliation(s)
- Emily C Reddy
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Margaret L Rand
- Division of Haematology/Oncology, Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Laboratory Medicine & Pathobiology, Biochemistry, and Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Wei H, Davies JE, Harper MT. 2-Aminoethoxydiphenylborate (2-APB) inhibits release of phosphatidylserine-exposing extracellular vesicles from platelets. Cell Death Discov 2020; 6:10. [PMID: 32140260 PMCID: PMC7051957 DOI: 10.1038/s41420-020-0244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Activated, procoagulant platelets shed phosphatidylserine (PS)-exposing extracellular vesicles (EVs) from their surface in a Ca2+- and calpain-dependent manner. These PS-exposing EVs are prothrombotic and proinflammatory and are found at elevated levels in many cardiovascular and metabolic diseases. How PS-exposing EVs are shed is not fully understood. A clearer understanding of this process may aid the development of drugs to selectively block their release. In this study we report that 2-aminoethoxydiphenylborate (2-APB) significantly inhibits the release of PS-exposing EVs from platelets stimulated with the Ca2+ ionophore, A23187, or the pore-forming toxin, streptolysin-O. Two analogues of 2-APB, diphenylboronic anhydride (DPBA) and 3-(diphenylphosphino)-1-propylamine (DP3A), inhibited PS-exposing EV release with similar potency. Although 2-APB and DPBA weakly inhibited platelet PS exposure and calpain activity, this was not seen with DP3A despite inhibiting PS-exposing EV release. These data suggest that there is a further target of 2-APB, independent of cytosolic Ca2+ signalling, PS exposure and calpain activity, that is required for PS-exposing EV release. DP3A is likely to inhibit the same target, without these other effects. Identifying the target of 2-APB, DPBA and DP3A may provide a new way to inhibit PS-exposing EV release from activated platelets and inhibit their contribution to thrombosis and inflammation.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|