1
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
2
|
Nigro E, Grunebaum E, Kamath B, Licht C, Malcolmson C, Jeewa A, Campbell C, McMillan H, Chakraborty P, Tarnopolsky M, Gonorazky H. Case report: A case of spinal muscular atrophy in a preterm infant: risks and benefits of treatment. Front Neurol 2023; 14:1230889. [PMID: 37780708 PMCID: PMC10539898 DOI: 10.3389/fneur.2023.1230889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular genetic disorder caused by the loss of lower motor neurons leading to progressive muscle weakness and atrophy. With the rise of novel therapies and early diagnosis on newborn screening (NBS), the natural history of SMA has been evolving. Earlier therapeutic interventions can modify disease outcomes and improve survival. The role of treatment in infants born preterm is an important question given the importance of early intervention. In this study, we discuss the case of an infant born at 32 weeks who was diagnosed with SMA on NBS and was treated with Spinraza® (Nusinersen) and Zolgensma® (Onasemnogene abeparvovec-xioi) within the first 2 months of life. With the scarce evidence that currently exists, clinicians should be aware of the efficacy and safety impact of early therapy particularly in the preterm infant.
Collapse
Affiliation(s)
- Elisa Nigro
- Division of Neurology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Eyal Grunebaum
- Division of Immunology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Binita Kamath
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Caroline Malcolmson
- Division of Hematology/Oncology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Aamir Jeewa
- Division of Cardiology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Craig Campbell
- Department of Pediatrics, Children's Hospital, London Health Sciences Centre, Western University, London, ON, Canada
| | - Hugh McMillan
- Department of Pediatrics, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Pranesh Chakraborty
- Department of Pediatrics, Newborn Screening Ontario, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Hernan Gonorazky
- Division of Neurology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| |
Collapse
|
3
|
Dulmovits BM, Wild KT, Flibotte J, Lambert MP, Kwiatkowski J, Thom CS. Neonatal Thrombocytopenia as a Presenting Finding in de novo Pyruvate Kinase Deficiency. Neonatology 2023; 120:661-665. [PMID: 37473739 PMCID: PMC11027091 DOI: 10.1159/000531242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 07/22/2023]
Abstract
Thrombocytopenia is a common laboratory abnormality encountered in critically ill neonates. The broad differential for thrombocytopenia, and its association with potentially severe neonatal pathology, often presents a diagnostic dilemma prompting extensive evaluation. Hemolysis due to red cell enzymopathies is a rare cause of neonatal thrombocytopenia that is typically brief and self-limiting. Here, we present a case of thrombocytopenia, refractory to transfusion, associated with anemia and hyperbilirubinemia in a neonate with pyruvate kinase deficiency (PKD) arising from compound heterozygous PKLR mutations. The nature of the thrombocytopenia in this patient created considerable diagnostic uncertainty, which was ultimately resolved by whole-exome sequencing. This case emphasizes that inherited red cell defects, such as PKD, are important to consider in cases of neonatal thrombocytopenia.
Collapse
MESH Headings
- Infant, Newborn
- Humans
- Thrombocytopenia, Neonatal Alloimmune
- Anemia, Hemolytic, Congenital Nonspherocytic/complications
- Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Pyruvate Metabolism, Inborn Errors/diagnosis
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/complications
- Pyruvate Kinase/genetics
- Anemia
- Infant, Newborn, Diseases
Collapse
Affiliation(s)
- Brian M Dulmovits
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - K Taylor Wild
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - John Flibotte
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Janet Kwiatkowski
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Abstract
Platelet plug formation is critically involved in murine ductus arteriosus closure and thrombocytopenia in preterm infants seems to negatively affect spontaneous and pharmacologically induced ductal closure. Furthermore, platelet dysfunction may contribute to ductal patency, especially in extremely immature infants. Neonatal platelets likely have multifaceted roles during ductal closure, such as secretion of several signaling molecules and facilitation of specific cell-cell interactions. The only available randomized-controlled trial on platelet transfusions in preterm infants with patent ductus arteriosus demonstrated that a liberal transfusion regimen did not promote ductal closure, but was associated with an increased rate of intraventricular hemorrhage. Herein, we discuss the available mechanistic evidence on the role of platelets in ductus arteriosus closure and their potential clinical implications in preterm infants. We further briefly outline future research directions aimed at a better understanding of platelet-endothelial interactions in neonatal health and disease.
Collapse
Affiliation(s)
- Hannes Sallmon
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Division of Pediatric Cardiology, Graz Medical University, Graz, Austria.
| | - Cassidy A Delaney
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora CO, USA
| |
Collapse
|
5
|
Davenport P, Liu ZJ, Sola-Visner M. Fetal vs adult megakaryopoiesis. Blood 2022; 139:3233-3244. [PMID: 35108353 PMCID: PMC9164738 DOI: 10.1182/blood.2020009301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Fetal and neonatal megakaryocyte progenitors are hyperproliferative compared with adult progenitors and generate a large number of small, low-ploidy megakaryocytes. Historically, these developmental differences have been interpreted as "immaturity." However, more recent studies have demonstrated that the small, low-ploidy fetal and neonatal megakaryocytes have all the characteristics of adult polyploid megakaryocytes, including the presence of granules, a well-developed demarcation membrane system, and proplatelet formation. Thus, rather than immaturity, the features of fetal and neonatal megakaryopoiesis reflect a developmentally unique uncoupling of proliferation, polyploidization, and cytoplasmic maturation, which allows fetuses and neonates to populate their rapidly expanding bone marrow and blood volume. At the molecular level, the features of fetal and neonatal megakaryopoiesis are the result of a complex interplay of developmentally regulated pathways and environmental signals from the different hematopoietic niches. Over the past few years, studies have challenged traditional paradigms about the origin of the megakaryocyte lineage in both fetal and adult life, and the application of single-cell RNA sequencing has led to a better characterization of embryonic, fetal, and adult megakaryocytes. In particular, a growing body of data suggests that at all stages of development, the various functions of megakaryocytes are not fulfilled by the megakaryocyte population as a whole, but rather by distinct megakaryocyte subpopulations with dedicated roles. Finally, recent studies have provided novel insights into the mechanisms underlying developmental disorders of megakaryopoiesis, which either uniquely affect fetuses and neonates or have different clinical presentations in neonatal compared with adult life.
Collapse
Affiliation(s)
- Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Developmental cues license megakaryocyte priming in murine hematopoietic stem cells. Blood Adv 2022; 6:6228-6241. [PMID: 35584393 PMCID: PMC9792704 DOI: 10.1182/bloodadvances.2021006861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
The fetal-to-adult switch in hematopoietic stem cell (HSC) behavior is characterized by alterations in lineage output and entry into deep quiescence. Here we identify the emergence of megakaryocyte (Mk)-biased HSCs as an event coinciding with this developmental switch. Single-cell chromatin accessibility analysis reveals a ubiquitous acquisition of Mk lineage priming signatures in HSCs during the fetal-to-adult transition. These molecular changes functionally coincide with increased amplitude of early Mk differentiation events after acute inflammatory insult. Importantly, we identify LIN28B, known for its role in promoting fetal-like self-renewal, as an insulator against the establishment of an Mk-biased HSC pool. LIN28B protein is developmentally silenced in the third week of life, and its prolonged expression delays emergency platelet output in young adult mice. We propose that developmental regulation of Mk priming may represent a switch for HSCs to toggle between prioritizing self-renewal in the fetus and increased host protection in postnatal life.
Collapse
|
7
|
Jeon GW. Pathophysiology, classification, and complications of common asymptomatic thrombocytosis in newborn infants. Clin Exp Pediatr 2022; 65:182-187. [PMID: 34665959 PMCID: PMC8990953 DOI: 10.3345/cep.2021.00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
We frequently encounter newborn infants with thrombocytosis in the neonatal intensive care unit. However, neonatal thrombocytosis is not yet fully understood. Thrombocytosis is more frequently identified in newborns and young infants, notably more often in those younger than 2 years than in older children or adults. The production of megakaryocytes (megakaryopoiesis) and platelets (thrombopoiesis) is mainly regulated by thrombopoietin (TPO). Increased TPO levels during infection or inflammation can stimulate megakaryopoiesis, resulting in thrombopoiesis. TPO concentrations are higher in newborn infants than in adults. Levels increase after birth, peak on the second day after birth, and start decreasing at 1 month of age. Initial platelet counts at birth increase with gestational age. Thus, preterm infants have lower initial platelet counts at birth than late-preterm or term infants. Postnatal thrombocytosis is more frequently observed in preterm infants than in term infants. A high TPO concentration and low TPO receptor expression on platelets leading to elevated plasma-free TPO, increased sensitivity of megakaryocyte precursor cells to TPO, a decreased red blood cell count, and immaturity of platelet regulation are speculated to induce thrombocytosis in preterm infants. Thrombocytosis in newborn infants is considered a reactive process (secondary thrombocytosis) following infection, acute/chronic inflammation, or anemia. Thrombocytosis in newborn infants is benign, resolves spontaneously, and, unlike in adults, is rarely associated with hemorrhagic and thromboembolic complications.
Collapse
Affiliation(s)
- Ga Won Jeon
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
8
|
Kumode T, Tanaka H, Esipinoza JL, Rai S, Taniguchi Y, Fujiwara R, Sano K, Serizawa K, Iwata Y, Morita Y, Matsumura I. C-type lectin-like receptor 2 specifies a functionally distinct subpopulation within phenotypically defined hematopoietic stem cell population that contribute to emergent megakaryopoiesis. Int J Hematol 2022; 115:310-321. [PMID: 35106701 DOI: 10.1007/s12185-021-03220-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/19/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) expressed on megakaryocytes plays important roles in megakaryopoiesis. We found that CLEC-2 was expressed in about 20% of phenotypical long-term hematopoietic stem cells (LT-HSCs), which expressed lower levels of HSC-specific genes and produced larger amounts of megakaryocyte-related molecules than CLEC-2low LT-HSCs. Although CLEC-2high LT-HSCs had immature clonogenic activity, cultured CLEC-2high LT-HSCs preferentially differentiated into megakaryocytes. CLEC-2high HSCs yielded 6.8 times more megakaryocyte progenitors (MkPs) and 6.0 times more platelets 2 weeks and 1 week after transplantation compared with CLEC-2low LT-HSCs. However, platelet yield from CLEC-2high HSCs gradually declined with the loss of MkPs, while CLEC-2low HSCs self-renewed long-term, indicating that CLEC-2high LT-HSCs mainly contribute to early megakaryopoiesis. Treatment with pI:C and LPS increased the proportion of CLEC-2high LT-HSCs within LT-HSCs. Almost all CLEC-2low LT-HSCs were in the G0 phase and barely responded to pI:C. In contrast, 54% of CLEC-2high LT-HSCs were in G0, and pI:C treatment obliged CLEC-2high LT-HSCs to enter the cell cycle and differentiate into megakaryocytes, indicating that CLEC-2high LT-HSCs are primed for cell cycle entry and rapidly yield platelets in response to inflammatory stress. In conclusion, CLEC-2high LT-HSCs appear to act as a reserve for emergent platelet production under stress conditions.
Collapse
Affiliation(s)
- Takahiro Kumode
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan.
| | - Jorge Luis Esipinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yasuhiro Taniguchi
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Ryosuke Fujiwara
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Keigo Sano
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Kentaro Serizawa
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yoshio Iwata
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| |
Collapse
|
9
|
Abstract
Neonatal megakaryopoiesis and platelet turnover form a developmentally unique pattern by generating a pool of newly released reticulated platelets from the bone marrow into the circulation. Reticulated platelets are more reactive and hyperaggregable compared to mature platelets, due to their high residual mRNA content, large size, increased expression of platelet surface receptors, and degranulation. The proportion of reticulated platelets in neonates is higher compared to that in adults. Due to the emergence of an uninhibited platelet subpopulation, the newly formed reticulated platelet pool is inherently hyporesponsive to antiplatelets. An elevated population of reticulated platelets is often associated with increased platelet reactivity and is inversely related to high on-treatment platelet reactivity, which can contribute to ischemia. Measurements of the reticulated platelet subpopulation could be a useful indicator of increased tendency for platelet aggregation. Future research is anticipated to define the distinct functional properties of newly formed reticulated or immature platelets in neonates, as well as determine the impact of enhanced platelet turnover and high residual platelet reactivity on the response to antiplatelet agents.
Collapse
Affiliation(s)
- Belay Tesfamariam
- Division of Pharmacology and Toxicology, 372792Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
10
|
Sallmon H, Timme N, Atasay B, Erdeve Ö, Hansmann G, Singh Y, Weber SC, Shelton EL. Current Controversy on Platelets and Patent Ductus Arteriosus Closure in Preterm Infants. Front Pediatr 2021; 9:612242. [PMID: 33718298 PMCID: PMC7946843 DOI: 10.3389/fped.2021.612242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets are critically involved in murine patent ductus arteriosus (PDA) closure. To date, the clinical significance of these findings in human preterm infants with PDA is still controversial. We discuss the available study data on the role of platelets for PDA closure in preterm infants: Several mostly retrospective studies have yielded conflicting results on whether thrombocytopenia contributes to failed spontaneous ductal closure. The same applies to investigations on the role of thrombocytopenia as a risk factor for unsuccessful ductus arteriosus closure by pharmacological treatment with cyclooxygenase inhibitors. Nonetheless, recent meta-analyses have concluded that thrombocytopenia constitutes an independent risk factor for both failed spontaneous and pharmacological PDA closure in preterm infants. However, the available investigations differ in regard to patient characteristics, diagnostic strategies, and treatment protocols. Several studies suggest that impaired platelet function rather than platelet number is critically involved in failure of ductus arteriosus closure in the preterm infant. A recent randomized-controlled trial on platelet transfusions in preterm infants with PDA failed to show any benefit for liberal vs. restrictive transfusion thresholds on PDA closure rates. Importantly, liberal transfusions were associated with an increased rate of intraventricular hemorrhage, and thus should be avoided. In conclusion, the available evidence suggests that thrombocytopenia and platelet dysfunction contribute to failure of spontaneous and pharmacological PDA closure in preterm infants. However, these platelet effects on PDA seem to be of only moderate clinical significance. Furthermore, platelet transfusions in thrombocytopenic preterm infants in order to facilitate PDA closure appear to cause more harm than good.
Collapse
Affiliation(s)
- Hannes Sallmon
- Department of Pediatric Cardiology, Charité University Medical Center, Berlin, Germany
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| | - Natalie Timme
- Department of Pediatric Cardiology, Charité University Medical Center, Berlin, Germany
| | - Begüm Atasay
- Division of Neonatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Ömer Erdeve
- Division of Neonatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Georg Hansmann
- Department of Pediatric Cardiology and Intensive Care Medicine, Medizinische Hochschule Hannover, Hanover, Germany
| | - Yogen Singh
- Department of Neonatology and Pediatric Cardiology, Cambridge University Hospitals, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Sven C. Weber
- Department of Pediatric Cardiology, Charité University Medical Center, Berlin, Germany
| | - Elaine L. Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. On the Quest for In Vitro Platelet Production by Re-Tailoring the Concepts of Megakaryocyte Differentiation. ACTA ACUST UNITED AC 2020; 56:medicina56120671. [PMID: 33287459 PMCID: PMC7761839 DOI: 10.3390/medicina56120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
The demand of platelet transfusions is steadily growing worldwide, inter-donor variation, donor dependency, or storability/viability being the main contributing factors to the current global, donor-dependent platelet concentrate shortage concern. In vitro platelet production has been proposed as a plausible alternative to cover, at least partially, the increasing demand. However, in practice, such a logical production strategy does not lack complexity, and hence, efforts are focused internationally on developing large scale industrial methods and technologies to provide efficient, viable, and functional platelet production. This would allow obtaining not only sufficient numbers of platelets but also functional ones fit for all clinical purposes and civil scenarios. In this review, we cover the evolution around the in vitro culture and differentiation of megakaryocytes into platelets, the progress made thus far to bring the culture concept from basic research towards good manufacturing practices certified production, and subsequent clinical trial studies. However, little is known about how these in vitro products should be stored or whether any safety measure should be implemented (e.g., pathogen reduction technology), as well as their quality assessment (how to isolate platelets from the rest of the culture cells, debris, microvesicles, or what their molecular and functional profile is). Importantly, we highlight how the scientific community has overcome the old dogmas and how the new perspectives influence the future of platelet-based therapy for transfusion purposes.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
| | - Jerard Seghatchian
- International Consultancy in Strategic Safety/Quality Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit/Inspection, London NW3 3AA, UK;
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
- Correspondence:
| |
Collapse
|