1
|
Simakin AV, Baimler IV, Dikovskaya AO, Kazantseva DV, Yanykin DV, Voronov VV, Uvarov OV, Astashev ME, Sarimov RM, Ivanov VE, Bruskov VI, Kozlov VA. Laser fragmentation of amorphous and crystalline selenium of various morphologies and assessment of their antioxidant and protection properties. Front Chem 2024; 12:1459477. [PMID: 39185370 PMCID: PMC11341537 DOI: 10.3389/fchem.2024.1459477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction: The process of laser-induced breakdown of amorphous and crystalline selenium nanoparticles (Se NPs) of various shapes during nanosecond laser fragmentation of aqueous colloidal solutions of nanoparticles with different concentrations has been studied. Methods: The methods of studying the characteristics of plasma and acoustic oscillations induced by optical breakdown are applied. The methods of assessing the concentration of hydrogen peroxide and hydroxyl radicals, the amount of long-lived reactive species of protein and 8-oxoguanine are applied. Results: It has been established that in the process of laser fragmentation of selenium nanoparticles at a wavelength of 532 nm, corresponding to the maximum absorption of selenium, the highest probability of breakdown, the number of plasma flashes, their luminosity and the amplitude of acoustic signals are achieved at concentrations of the order of 109 NPs/mL. It has been shown that the use of selenium nanoparticles of various shapes and structures leads to a change in the photoacoustic signal during laser-induced breakdown. When crystalline selenium nanoparticles are irradiated, the intensity of the photoacoustic response during breakdown turns out to be greater (1.5 times for flash luminosity and 3 times for acoustics) than when amorphous particles are irradiated at the same concentration. It has been shown that selenium nanoparticles exhibit significant antioxidant properties. Selenium nanoparticles effectively prevent the formation of reactive oxygen species (ROS) during water radiolysis, eliminate radiation-induced long-lived reactive species of protein, and reduce the radiation-chemical yield of a key marker of oxidative DNA damage - 8-oxoguanine. Discussion: In general, the intensity of processes occurring during laser fragmentation of amorphous and crystalline selenium nanoparticles differs significantly. The antioxidant properties are more pronounced in amorphous selenium nanoparticles compared to crystalline selenium nanoparticles.
Collapse
Affiliation(s)
- Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dina V. Kazantseva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Denis V. Yanykin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V. Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E. Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Vadim I. Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Valeriy A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Zhu W, Wang R, Yang Z, Luo X, Yu B, Zhang J, Fu M. GC-MS based comparative metabolomic analysis of human cancellous bone reveals the critical role of linoleic acid metabolism in femur head necrosis. Metabolomics 2023; 19:86. [PMID: 37776501 DOI: 10.1007/s11306-023-02053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Femur head necrosis (FHN) is a challenging clinical disease with unclear underlying mechanism, which pathologically is associated with disordered metabolism. However, the disordered metabolism in cancellous bone of FHN was never analyzed by gas chromatography-mass spectrometry (GC-MS). OBJECTIVES To elucidate altered metabolism pathways in FHN and identify putative biomarkers for the detection of FHN. METHODS We recruited 26 patients with femur head necrosis and 22 patients with femur neck fracture in this study. Cancellous bone tissues from the femoral heads were collected after the surgery and were analyzed by GC-MS based untargeted metabolomics approach. The resulting data were analyzed via uni- and multivariate statistical approaches. The changed metabolites were used for the pathway analysis and potential biomarker identification. RESULTS Thirty-seven metabolites distinctly changed in FHN group were identified. Among them, 32 metabolites were upregulated and 5 were downregulated in FHN. The pathway analysis showed that linoleic acid metabolism were the most relevant to FHN pathology. On the basis of metabolites network, L-lysine, L-glutamine and L-serine were deemed as the junctions of the whole metabolites. Finally, 9,12-octadecadienoic acid, inosine, L-proline and octadecanoic acid were considered as the potential biomarkers of FHN. CONCLUSION This study provides a new insight into the pathogenesis of FHN and confirms linoleic acid metabolism as the core.
Collapse
Affiliation(s)
- Weiwen Zhu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Zhijian Yang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuming Luo
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Baoxi Yu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ming Fu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Gudkov SV, Gao M, Simakin AV, Baryshev AS, Pobedonostsev RV, Baimler IV, Rebezov MB, Sarimov RM, Astashev ME, Dikovskaya AO, Molkova EA, Kozlov VA, Bunkin NF, Sevostyanov MA, Kolmakov AG, Kaplan MA, Sharapov MG, Ivanov VE, Bruskov VI, Kalinichenko VP, Aiyyzhy KO, Voronov VV, Pimpha N, Li R, Shafeev GA. Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5164. [PMID: 37512437 PMCID: PMC10386620 DOI: 10.3390/ma16145164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
With the help of laser ablation, a technology for obtaining nanosized crystalline selenium particles (SeNPs) has been created. The SeNPs do not exhibit significant toxic properties, in contrast to molecular selenium compounds. The administration of SeNPs can significantly increase the viabilities of SH-SY5Y and PCMF cells after radiation exposure. The introduction of such nanoparticles into the animal body protects proteins and DNA from radiation-induced damage. The number of chromosomal breaks and oxidized proteins decreases in irradiated mice treated with SeNPs. Using hematological tests, it was found that a decrease in radiation-induced leukopenia and thrombocytopenia is observed when selenium nanoparticles are injected into mice before exposure to ionizing radiation. The administration of SeNPs to animals 5 h before radiation exposure in sublethal and lethal doses significantly increases their survival rate. The modification dose factor for animal survival was 1.2. It has been shown that the introduction of selenium nanoparticles significantly normalizes gene expression in the cells of the red bone marrow of mice after exposure to ionizing radiation. Thus, it has been demonstrated that SeNPs are a new gene-protective and radioprotective agent that can significantly reduce the harmful effects of ionizing radiation.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Alexey S Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Roman V Pobedonostsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Push-chino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, 142290 Pushchino, Russia
| | - Anastasia O Dikovskaya
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Elena A Molkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Valery A Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Nikolay F Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Mikhail A Sevostyanov
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Alexey G Kolmakov
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mikhail A Kaplan
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Push-chino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, 142290 Pushchino, Russia
| | - Vladimir E Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Vadim I Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Valery P Kalinichenko
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Russia
| | - Kuder O Aiyyzhy
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Valery V Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Nuttaporn Pimpha
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) 111, Phahonyotin Rd, Klong Luang 12120, Thailand
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Georgy A Shafeev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| |
Collapse
|
4
|
Selenium Nanoparticles Can Influence the Immune Response Due to Interactions with Antibodies and Modulation of the Physiological State of Granulocytes. Pharmaceutics 2022; 14:pharmaceutics14122772. [PMID: 36559266 PMCID: PMC9783826 DOI: 10.3390/pharmaceutics14122772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Currently, selenium nanoparticles (SeNPs) are considered potential immunomodulatory agents and as targets for activity modulation are granulocytes, which have the most abundant population of immune blood cells. The present study aims to evaluate the cytotoxic effect and its effect on the functional responses of granulocytes. In addition to the intrinsic activity of SeNPs, we studied the activity of the combination of SeNPs and IgG antibodies. Using laser ablation and fragmentation, we obtained nanoparticles with an average size of 100 nm and a rather narrow size evolution. The resulting nanoparticles do not show acute toxicity to primary cultures of fibroblasts and hepatocytes, epithelial-like cell line L-929 and granulocyte-like culture of HL-60 at a concentration of 109 NPs/mL. SeNPs at a concentration of 1010 NPs/mL reduced the viability of HL-60 cells by no more than 10% and did not affect the viability of the primary culture of mouse granulocytes, and did not have a genotoxic effect on progenitor cells. The addition of SeNPs can affect the production of reactive oxygen species (ROS) by mouse bone marrow granulocytes, modulate the proportion of granulocytes with calcium spikes and enhance fMLF-induced granulocytes degranulation. SeNPs can modulate the effect of IgG on the physiological responses of granulocytes. We studied the expression level of genes associated with inflammation and cell stress. SeNPs increase the expression of catalase, NF-κB, Xrcc5 and some others; antibodies enhance the effect of SeNPs, but IgG without SeNPs decreases the expression level of these genes. This fact can be explained by the interaction between SeNPs and IgG. It has been established that antibodies interact with SeNPs. We showed that antibodies bind to the surface of selenium nanoparticles and are present in aqueous solutions in a bound form from DLS methods, ultraviolet-visible spectroscopy, vibrational-rotational spectrometry, fluorescence spectrometry, and refractometry. At the same time, in a significant part of the antibodies, a partial change in the tertiary and secondary structure is observed. The data obtained will allow a better understanding of the principles of the interaction of immune cells with antibodies and SeNPs and, in the future, may serve to create a new generation of immunomodulators.
Collapse
|
5
|
Fujiwara M, Sato N, Okamoto K. Hypoxanthine Reduces Radiation Damage in Vascular Endothelial Cells and Mouse Skin by Enhancing ATP Production via the Salvage Pathway. Radiat Res 2022; 197:583-593. [PMID: 35334490 DOI: 10.1667/rade-21-00223.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
Abstract
An effective method that can protect radiation-damaged tissues from apoptosis and promote tissue repair has not been reported to date. Hypoxanthine (Hx) is an intermediate metabolite in the purine degradation system that serves as a substrate for ATP synthesis via the salvage pathway. In this study, we focused on the transient decrease in intracellular ATP concentration after radiation exposure and examined the protective effect of Hx against radiation-induced tissue damage. Human umbilical vein endothelial cells were X irradiated, and the cell viability and incidence of apoptosis and DNA double-strand breaks (DSBs) were evaluated at different Hx concentrations. We found that in the presence of 2-100 μM Hx, the percentages of DSBs and apoptotic cells after 2, 6 and 10 Gy dose of radiation significantly decreased, whereas cell viability increased in a concentration-dependent manner. Moreover, the addition of Hx increased the levels of AMP, ADP, and ATP in the cells at 2 h postirradiation, suggesting that Hx was used for adenine nucleotide synthesis through the salvage pathway. Administration of a xanthine oxidoreductase inhibitor to a mouse model of radiation dermatitis resulted in increased blood Hx levels that inhibited severe dermatitis and accelerated recovery. In conclusion, the findings provide evidence that increasing the levels of Hx to replenish ATP could be an effective strategy to reduce radiation-induced tissue damage and elucidating the detailed mechanisms underlying the protective effects of Hx could help develop new protective strategies against radiation.
Collapse
Affiliation(s)
- Megumi Fujiwara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Nana Sato
- Department of Food Biotechnology and Structural Biology, Tokyo University, Tokyo, Japan
| | - Ken Okamoto
- Department of Food Biotechnology and Structural Biology, Tokyo University, Tokyo, Japan
| |
Collapse
|
6
|
Parenti M, McClorry S, Maga EA, Slupsky CM. Metabolomic changes in severe acute malnutrition suggest hepatic oxidative stress: a secondary analysis. Nutr Res 2021; 91:44-56. [PMID: 34134040 PMCID: PMC8311294 DOI: 10.1016/j.nutres.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
Severe acute malnutrition (SAM), due to poor energy and/or protein intake, is associated with poor growth, depressed immune function, and long-term impacts on metabolic function. As the liver is a major metabolic organ and malnutrition poses metabolic stress, we hypothesize that SAM will be associated with alterations in the hepatic metabolome reflective of oxidative stress, gluconeogenesis, and ketogenesis. Thus, the purpose of this secondary analysis was to understand how SAM alters hepatic metabolism using a piglet model. Weanling piglets were feed either a reference (REF) or protein-energy deficient diet (MAL) for 5 weeks. After dietary treatment MAL piglets were severely underweight (weight-for-age Z-score of -3.29, Welch's t test, P = .0007), moderately wasted (weight-for-length Z-score of-2.49, Welch's t test, P = .003), and tended toward higher hepatic triglyceride content (Welch's t test, P = .07). Hematologic and blood biochemical measurements were assessed at baseline and after dietary treatment. The hepatic metabolome was investigated using 1H-NMR spectroscopy. Hepatic concentrations of betaine, cysteine, and glutathione tended to be lower in MAL (Welch's t test with FDR correction, P < .1), while inosine, lactate, and methionine sulfoxide concentrations were higher in MAL (inosine: P = .0448, lactate: P = .0258, methionine sulfoxide: P = .0337). These changes suggest that SAM is associated with elevated hepatic oxidative stress, increased gluconeogenesis, and alterations in 1-carbon metabolism.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, USA
| | | | - Elizabeth A Maga
- Department of Animal Science, University of California, Davis, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, USA; Department of Food Science and Technology, University of California, Davis, USA.
| |
Collapse
|
7
|
Sharapov MG, Gudkov SV. Peroxiredoxin 1 - Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation. Arch Biochem Biophys 2020; 697:108671. [PMID: 33181129 DOI: 10.1016/j.abb.2020.108671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Peroxiredoxin 1 (Prx1) is known to be a multifunctional antioxidant enzyme playing an essential role in protecting the organism against oxidative stress. We hypothesized that administration of exogenous recombinant Prx1 may provide additional protection of the mammalian organism during the development of acute oxidative stress induced by ionizing radiation. Hence, the aim of the present work was to study the radioprotective properties of exogenous Prx1. MATERIALS AND METHODS Recombinant Prx1 was obtained by genetic engineering. The properties of Prx1 were studied using physicochemical methods. An immunoblotting and ELISA were used for the determination of the level of endogenous and exogenous Prx1 in animal blood. The survival rate of irradiated animals was assessed for 30 days with various modes of administration (intraperitoneal, intramuscular, intravenously) Prx1. Using a hematological analyzer and microscopic analysis, the changes in the level of leukocytes and platelets were assessed in animals that received and did not receive an intravenous injection of Prx1 before irradiation. Genoprotective properties of Prx1 were confirmed by micronucleus test. Real-time PCR was used to investigate the effect of Prx1 on the expression of genes involved in response to oxidative stress. RESULTS Recombinant Prx1 was shown to significantly reduce oxidative damage to biological macromolecules. Prx1 is an effective radioprotector which decreases the severity of radiation-induced leuko- and thrombocytopenia, plus protects bone marrow cells from damage. The half-life of Prx1 in the bloodstream is more than 1 h, while within 1 h there is a loss of the antioxidant activity of Prx1 by almost 50%, which limits its use long (2 h) before irradiation. The introduction of Prx1 after irradiation has no significant radiomitigating effect. The most effective way of using Prx1 is intravenous administration shortly (15-30 min) before exposure to ionizing radiation, with a dose reduction factor of 1.3. Under the action of ionizing radiation a dose-dependent appearance of endogenous Prx1 in the bloodstream was also observed. The appearance of Prx1 in the bloodstream alters the expression of stress response genes (especial antioxidant response and DNA repair) in the cells of red bone marrow, promoting the activation of repair processes. CONCLUSION The recombinant Prx1 can be considered as an effective radioprotector for minimizing the risks of injury of animal's body by ionizing radiation.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
8
|
Sharapov M, Novoselov V, Samygina V, Konarev P, Molochkov A, Sekirin A, Balkanov A, Gudkov S. A chimeric recombinant protein with peroxidase and superoxide dismutase activities: Physico-chemical characterization and applicability to neutralize oxidative stress caused by ionizing radiation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Legeza VI, Grebenyuk AN, Drachev IS. Radiomitigators: Classification, Pharmacological Properties, and Application Prospects. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019120045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
|
11
|
Vasin MV, Ushakov IB. Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Sharapov MG, Novoselov VI, Fesenko EE, Bruskov VI, Gudkov SV. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals. Free Radic Res 2017; 51:148-166. [DOI: 10.1080/10715762.2017.1289377] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- M. G. Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - V. I. Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - E. E. Fesenko
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - V. I. Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - S. V. Gudkov
- A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
- Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
| |
Collapse
|
13
|
Gudkov SV, Chernikov AV, Bruskov VI. Chemical and radiological toxicity of uranium compounds. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216060517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sharapov MG, Gudkov SV, Gordeeva AE, Karp OE, Ivanov VE, Shelkovskaya OV, Bruskov VI, Novoselov VI, Fesenko EE. Peroxiredoxin 6 is a natural radioprotector. DOKL BIOCHEM BIOPHYS 2016; 467:110-2. [DOI: 10.1134/s1607672916020095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 12/21/2022]
|
15
|
Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted Radionuclide Therapy of Human Tumors. Int J Mol Sci 2015; 17:E33. [PMID: 26729091 PMCID: PMC4730279 DOI: 10.3390/ijms17010033] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/07/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022] Open
Abstract
Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St, 3, Pushchino, Moscow 142290, Russia.
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Vavilova St, 38, Moscow 119991, Russia.
| | - Natalya Yu Shilyagina
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
| | - Vladimir A Vodeneev
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
| | - Andrei V Zvyagin
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney 2109, Australia.
| |
Collapse
|
16
|
Gapeyev AB, Lukyanova NA. Pulse-modulated extremely high-frequency electromagnetic radiation protects cellular DNA from the damaging effects of physical and chemical factors in vitro. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915050061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Gudkov SV, Popova NR, Bruskov VI. Radioprotective substances: History, trends and prospects. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915040120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Gapeyev AB, Aripovsky AV, Kulagina TP. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays. Int J Radiat Biol 2015; 91:277-85. [DOI: 10.3109/09553002.2014.980467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Ushakov IB, Vasin MV. Radiation protective agents in the radiation safety system for long-term exploration missions. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s0362119714070251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Hydrogen peroxide induced by modulated electromagnetic radiation protects the cells from DNA damage. Open Life Sci 2014. [DOI: 10.2478/s11535-014-0326-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractIt is believed that non-ionizing electromagnetic radiation (EMR) and low-level hydrogen peroxide (H2O2) may change nonspecific resistance and modify DNA damage caused by ionizing radiation. To check this assumption, the combined effects of extremely high-frequency EMR (EHF EMR) and X-rays on induction of DNA damage in mouse whole blood leukocytes were studied. The cells were exposed to X-rays with or without preliminary treatment with EHF EMR or low-level H2O2. With the use of enhanced chemiluminescence, it was shown for the first time that pulse-modulated EHF EMR (42.2 GHz, incident power density of 0.1 mW/cm2, exposure duration of 20 min, modulation frequency of 1 Hz) induced H2O2 at a concentration of 4.6 ± 0.3 nM L−1 in physiological saline. With the use of an alkaline comet assay, it was found that the exposure of cells to the pulse-modulated EHF EMR, 25 min prior to treatment with X-rays at a dose of 4 Gy reduced the level of ionizing radiation-induced DNA damage. Continuous EHF EMR was inefficient. In turn, it was shown that low-level H2O2 (30–500 nM L−1) protected the cells against X-irradiation. Thus, the mechanisms of radiation protective effect of EHF EMR are connected with the induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated EHF EMR.
Collapse
|
21
|
Vasin MV. Comments on the mechanisms of action of radiation protective agents: basis components and their polyvalence. SPRINGERPLUS 2014; 3:414. [PMID: 25133093 PMCID: PMC4132458 DOI: 10.1186/2193-1801-3-414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Purpose These comments suggest a division of radiation protective agents on the grounds of their mechanism of action that increase the radio resistance of an organism. Conclusion Given below is the division of radiation protective agents on the basis of their mechanism of action into 3 groups: 1) Radiation protective agents, with the implementation of radiation protective action taking place at the cellular level in the course of rapidly proceeding radiation-chemical reactions. At the same time, when the ionizing radiation energy is absorbed, these agents partially neutralize the “oxygen effect” as a radiobiological phenomenon, especially in the radiolysis of DNA; 2) Radiation protective agents that exert their effect at the system level by accelerating the post-radiation recovery of radiosensitive tissues through activation of a number of pro-inflammatory signaling pathways and an increase in the secretion of hematopoietic growth factors, including their use as mitigators in the early period after irradiation prior to the clinical development of acute radiation syndrome (ARS). 3) Radiomodulators including drugs and nutritional supplements that can elevate the resistance of the organism to adverse environmental factors, including exposure to ionization by means of modulating the gene expression through a hormetic effect of small doses of stressors and a “substrate” maintenance of adaptive changes, resulting in an increased antioxidant protection of the organism. Radiation protective agents having polyvalence in implementation of their action may simultaneously induce radioprotective effect by various routes with a prevalence of basis mechanisms of the action.
Collapse
Affiliation(s)
- Mikhail V Vasin
- Department of Medicine of Catastrophe, Russian Medical Academy of Post-Graduate Education, St. Polikarpova 10, 125284 Moscow, Russia
| |
Collapse
|
22
|
The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS One 2014; 9:e90693. [PMID: 24587409 PMCID: PMC3938812 DOI: 10.1371/journal.pone.0090693] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/04/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Stroke is a devastating disease. Both excitotoxicity and oxidative stress play important roles in ischemic brain injury, along with harmful impacts on ischemic cerebral tissue. As guanosine plays an important neuroprotective role in the central nervous system, the purpose of this study was to evaluate the neuroprotective effects of guanosine and putative cerebral events following the onset of permanent focal cerebral ischemia. METHODS Permanent focal cerebral ischemia was induced in rats by thermocoagulation. Guanosine was administered immediately, 1 h, 3 h and 6 h after surgery. Behavioral performance was evaluated by cylinder testing for a period of 15 days after surgery. Brain oxidative stress parameters, including levels of ROS/RNS, lipid peroxidation, antioxidant non-enzymatic levels (GSH, vitamin C) and enzymatic parameters (SOD expression and activity and CAT activity), as well as glutamatergic parameters (EAAC1, GLAST and GLT1, glutamine synthetase) were analyzed. RESULTS After 24 h, ischemic injury resulted in impaired function of the forelimb, caused brain infarct and increased lipid peroxidation. Treatment with guanosine restored these parameters. Oxidative stress markers were affected by ischemic insult, demonstrated by increased ROS/RNS levels, increased SOD expression with reduced SOD activity and decreased non-enzymatic (GSH and vitamin C) antioxidant defenses. Guanosine prevented increased ROS/RNS levels, decreased SOD activity, further increased SOD expression, increased CAT activity and restored vitamin C levels. Ischemia also affected glutamatergic parameters, illustrated by increased EAAC1 levels and decreased GLT1 levels; guanosine reversed the decreased GLT1 levels and did not affect the EAAC1 levels. CONCLUSION The effects of brain ischemia were strongly attenuated by guanosine administration. The cellular mechanisms involved in redox and glutamatergic homeostasis, which were both affected by the ischemic insult, were also modulated by guanosine. These observations reveal that guanosine may represent a potential therapeutic agent in cerebral ischemia by preventing oxidative stress and excitotoxicity.
Collapse
|
23
|
Frańska M. Inosine octamer stabilized by alkali earth metal cations - as studied by electrospray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:249-253. [PMID: 24892295 DOI: 10.1255/ejms.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
By using electrospray ionization mass spectrometry, inosine was found to be able to form an octamer stabilized by alkali earth metal cation, namely Ca(2+), Sr(2+) and Ba(2+), of which the most stable is that stabilized by Ca(2+) (ion [I8+Ca](2+)). It was established that 9-methylhypoxanthine (M) did not form an analogical octamer, since ion [M8+Ca](2+) was not detected. On the other hand, 9-methylhypoxanthine can form "mixed" octamers together with inosine (ions [InMm+Ca](2+), n + m = 8, were detected).
Collapse
Affiliation(s)
- Magdalena Frańska
- Poznań University of Technology, Institute of Chemistry, Piotrowo 3, 60-965 Poznań, Poland.
| |
Collapse
|
24
|
Garmash SA, Smirnova VS, Karp OE, Usacheva AM, Berezhnov AV, Ivanov VE, Chernikov AV, Bruskov VI, Gudkov SV. Pro-oxidative, genotoxic and cytotoxic properties of uranyl ions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 127:163-170. [PMID: 23312590 DOI: 10.1016/j.jenvrad.2012.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/21/2012] [Accepted: 12/23/2012] [Indexed: 06/01/2023]
Abstract
It is demonstrated that hydroxyl radicals and hydrogen peroxide are formed under the action of uranyl ions in aqueous solutions containing no reducing agents. In the presence of uranyl ions, formation of 8-oxoguanine in DNA and long-lived protein radicals are observed in vitro. It is shown that the pro-oxidant properties of uranyl at micromolar concentrations mostly result from the physico-chemical nature of the compound rather than its radioactive decay. Uranyl ions lead to damage in DNA and proteins causing death of HEp-2 cells by necrotic pathway. It is revealed that the uranyl ions enhance radiation-induced oxidative stress and significantly increase a death rate of mice exposed to sublethal doses of X-rays.
Collapse
Affiliation(s)
- S A Garmash
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; Pushchino State University, Pushchino, Moscow Region 142290, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A current update on the rule of alternative and complementary medicine in the treatment of liver diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:321234. [PMID: 24109491 PMCID: PMC3784269 DOI: 10.1155/2013/321234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/02/2013] [Indexed: 02/05/2023]
Abstract
There is a vast body of knowledge which is ever-increasing about the treatment of liver disease with alternative and complementary medicine for which hundreds of thousands of literatures have been documented. Liver disease is a general term. This term covers all the potential problems that cause the liver to fail to perform its specified operations. Liver disease has a variety of presentations and causes a great public health problem worldwide which threatens the wellness of billions of people. Incidences of many types of liver disease are currently rising. Although there is still a debate about the entity of alternative and complementary medicine, it is now widely used and it is improving. And it covers the shortages and compensates for the weaknesses of conventional methods in the treatment of liver diseases. Alternative and complementary medicine for liver diseases provides benefits by regulating immunity, controlling disease progression, improving quality of life, and prolonging survival. This paper reviews the increasing interest and growing research into alternative and complementary medicine for liver diseases, with a look at the rough classification, principle of management, evidence-based applications, and issues for prescription and perspectives.
Collapse
|
26
|
Bruskov VI, Karp OE, Garmash SA, Shtarkman IN, Chernikov AV, Gudkov SV. Prolongation of oxidative stress by long-lived reactive protein species induced by X-ray radiation and their genotoxic action. Free Radic Res 2012; 46:1280-90. [DOI: 10.3109/10715762.2012.709316] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Asadullina NR, Gudkov SV, Bruskov VI. Caffeine modifies effects of X-ray action on mice after exposure to radiation and exhibits radioprotective properties. DOKL BIOCHEM BIOPHYS 2012; 442:22-5. [PMID: 22419088 DOI: 10.1134/s1607672912010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Indexed: 11/23/2022]
Affiliation(s)
- N R Asadullina
- Institute of Theoretical and Experimental Biophysics, pr. Nauki 3, Pushchino, Moscow oblast, 142290, Russia
| | | | | |
Collapse
|
28
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
29
|
Asadullina NR, Usacheva AM, Gudkov SV. Protection of mice against X-ray injuries by the post-irradiation administration of inosine-5'-monophosphate. JOURNAL OF RADIATION RESEARCH 2012; 53:211-216. [PMID: 22510593 DOI: 10.1269/jrr.11050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to investigate the radiation modulating properties of inosine-5'-monophosphate (IMP). Mice injected introperitoneally (i.p.) with IMP 15 minutes after irradiation with a lethal irradiation dose of 7 Gy have better survival rates comparative to irradiated mice non treated with IMP. The dose reduction factor of the IMP is 1.22. Using a hematologdical test we demonstrated that administration of IMP alleviates the symptoms of radiation-induced leukopenia and thrombocytopenia. The DNA damage in bone marrow and thymus cells of irradiated mice was measured by flow cytofluorometry and micronucleus test (MN-test). The tests show that i.p. administration of IMP to irradiated animals leads to a significant reduction of the DNA damage level. In this paper we show that IMP substantially modulates the damaging effects of ionizing radiation protecting irradiated mice and it is a promising agent for a treatment of leukopenia.
Collapse
Affiliation(s)
- Nelli R Asadullina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
30
|
Asadullina NR, Usacheva AM, Smirnova VS, Gudkov SV. Antioxidative and radiation modulating properties of guanosine-5'-monophosphate. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 29:786-99. [PMID: 20924959 DOI: 10.1080/15257770.2010.518576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Employing enhanced chemiluminescence in luminol-p-iodophenol peroxidase system and coumarine-3-carboxylic acid, it was shown that guanosine-5'-monophosphate (GMP) appreciably reduces formation of H₂O₂ and hydroxyl radicals induced by x-ray irradiation. Using immunoenzyme assay, we revealed that GMP lowered 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) formation in DNA in vitro after irradiation. The results of survival test have shown that mice being injected intraperitoneally with GMP after irradiation with a dose of 7 Gy had better survival rate than the control mice. GMP reduced leucopoenia and thrombocytopenia in irradiated mice. Obtained results give premises that GMP may be promising therapeutic agent for treatment of radiation injuries.
Collapse
Affiliation(s)
- N R Asadullina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
31
|
Abstract
Radiation leaves a fairly characteristic footprint in biological materials, but this is rapidly all but obliterated by the canonical biological responses to the radiation damage. The innate immune recognition systems that sense "danger" through direct radiation damage and through associated collateral damage set in motion a chain of events that, in a tissue compromised by radiation, often unwittingly result in oscillating waves of molecular and cellular responses as tissues attempt to heal. Understanding "nature's whispers" that inform on these processes will lead to novel forms of intervention targeted more precisely towards modifying them in an appropriate and timely fashion so as to improve the healing process and prevent or mitigate the development of acute and late effects of normal tissue radiation damage, whether it be accidental, as a result of a terrorist incident, or of therapeutic treatment of cancer. Here we attempt to discuss some of the non-free radical scavenging mechanisms that modify radiation responses and comment on where we see them within a conceptual framework of an evolving radiation-induced lesion.
Collapse
Affiliation(s)
- Kwanghee Kim
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - William H. McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
32
|
Karp OE, Gudkov SV, Garmash SA, Shtarkman IN, Chernikov AV, Bruskov VI. Genotoxic effect of long-lived protein radicals in vivo generated by X-ray irradiation. DOKL BIOCHEM BIOPHYS 2010; 434:250-3. [DOI: 10.1134/s160767291005008x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Indexed: 11/23/2022]
|
33
|
Gudkov SV, Garmash SA, Shtarkman IN, Chernikov AV, Karp OE, Bruskov VI. Long-lived protein radicals induced by X-ray irradiation are the source of reactive oxygen species in aqueous medium. DOKL BIOCHEM BIOPHYS 2010; 430:1-4. [DOI: 10.1134/s1607672910010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Andrievsky GV, Bruskov VI, Tykhomyrov AA, Gudkov SV. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radic Biol Med 2009; 47:786-93. [PMID: 19539750 DOI: 10.1016/j.freeradbiomed.2009.06.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 04/30/2009] [Accepted: 06/12/2009] [Indexed: 11/16/2022]
Abstract
Aqueous solutions of highly stable supramolecular donor-acceptor complexes of chemically nonmodified pristine C(60) fullerene molecules with H(2)O molecules (hydrated C(60) fullerene-C(60)HyFn) and their labile nano-sized clusters were examined for their antioxidant effects on removal of hydroxyl radicals (.OH) and protecting DNA against oxidative damage induced by ionizing radiation in vitro. The suppressing influence of C(60)HyFn on the formation of OH-radicals in water exposed to X-rays at doses of 1-7 Gy was assessed by determination of oxidation levels of coumarin-3-carboxylic acid. C(60)HyFn demonstrates apparent antiradical activity in vitro in the range of concentrations of 10(-11)-10(-6) M. Paradoxically, the .OH-removing efficacy of C(60)HyFn was in reverse correlation with fullerene concentration. It was hypothesized that the antiradical action of C(60)HyFn in water medium generally is due to a "nonstoichiometric" mechanism, supposedly to a hydrated free radical recombination (self-neutralization), which is catalyzed by specific water structures ordered by C(60)HyFn. With the use of 8-oxoguanine as a marker of oxidative damage to DNA, it has been demonstrated that C(60)HyFn in concentrations of 10(-7)-10(-6) M protects nucleic acids against radical-induced damage. The second part of the present study was aimed to evaluate the overall radioprotective efficacy of C(60)HyFn in doses of 0.1 or 1 mg/kg b.w. injected intraperitoneally to mice either 1 h before or 15 min after lethal dose exposure of the X-ray (7 Gy) irradiation. Survival rate of the mice was observed at 30 day intervals after irradiation, while the weight gains of experimental animals were monitored as well. The most significant protective effect was demonstrated when 1 mg/kg dosage of C(60)HyFn was administered before irradiation. The outcome of the substance testing is 15% survival rate of irradiated animals at 30 days of observation, and prevention of noticeable weight loss characteristic for radiation impact, versus unprotected control animals. In conclusion, results of the study obviate that the apparent protective action of C(60)HyFn in vivo is determined by its considerable ability to decrease X-ray-generated reactive oxygen species. Based on the results and that neat C(60) is nontoxic, actually in the hydrated form, without side effects and with sufficient radioprotective effects in low doses, C(60)HyFn may be considered as a novel antioxidant agent, which substantially diminishes the harmful effects of ionizing radiation.
Collapse
|