1
|
Akiyoshi R, Hase T, Sathiyananthavel M, Ghosh S, Kitano H, Yachie A. Noninvasive, label-free image approaches to predict multimodal molecular markers in pluripotency assessment. Sci Rep 2024; 14:15760. [PMID: 38977828 PMCID: PMC11231322 DOI: 10.1038/s41598-024-66591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Manufacturing regenerative medicine requires continuous monitoring of pluripotent cell culture and quality assessment while eliminating cell destruction and contaminants. In this study, we employed a novel method to monitor the pluripotency of stem cells through image analysis, avoiding the traditionally used invasive procedures. This approach employs machine learning algorithms to analyze stem cell images to predict the expression of pluripotency markers, such as OCT4 and NANOG, without physically interacting with or harming cells. We cultured induced pluripotent stem cells under various conditions to induce different pluripotent states and imaged the cells using bright-field microscopy. Pluripotency states of induced pluripotent stem cells were assessed using invasive methods, including qPCR, immunostaining, flow cytometry, and RNA sequencing. Unsupervised and semi-supervised learning models were applied to evaluate the results and accurately predict the pluripotency of the cells using only image analysis. Our approach directly links images to invasive assessment results, making the analysis of cell labeling and annotation of cells in images by experts dispensable. This core achievement not only contributes for safer and more reliable stem cell research but also opens new avenues for real-time monitoring and quality control in regenerative medicine manufacturing. Our research fills an important gap in the field by providing a viable, noninvasive alternative to traditional invasive methods for assessing pluripotency. This innovation is expected to make a significant contribution to improving regenerative medicine manufacturing because it will enable a more detailed and feasible understanding of cellular status during the manufacturing process.
Collapse
Affiliation(s)
- Ryutaro Akiyoshi
- Yokogawa Electric Corporation, 2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Takeshi Hase
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
- SBX BioSciences, Inc, 1111 West Georgia Street, 20th Floor, Vancouver, BC, V6E 4G2, Canada
| | - Mayuri Sathiyananthavel
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
- SBX BioSciences, Inc, 1111 West Georgia Street, 20th Floor, Vancouver, BC, V6E 4G2, Canada
| | - Samik Ghosh
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Ayako Yachie
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan.
- SBX BioSciences, Inc, 1111 West Georgia Street, 20th Floor, Vancouver, BC, V6E 4G2, Canada.
| |
Collapse
|
2
|
Colony Formation, Migratory, and Differentiation Characteristics of Multipotential Stromal Cells (MSCs) from "Clinically Accessible" Human Periosteum Compared to Donor-Matched Bone Marrow MSCs. Stem Cells Int 2019; 2019:6074245. [PMID: 31871468 PMCID: PMC6906873 DOI: 10.1155/2019/6074245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Periosteum is vital for fracture healing, as a highly vascular and multipotential stromal cell- (MSC-) rich tissue. During surgical bone reconstruction, small fragments of periosteum can be “clinically accessible,” yet periosteum is currently not ultilised, unlike autologous bone marrow (BM) aspirate. This study is aimed at comparing human periosteum and donor-matched iliac crest BM MSC content and characterising MSCs in terms of colony formation, growth kinetics, phenotype, cell migration patterns, and trilineage differentiation capacity. “Clinically accessible” periosteum had an intact outer fibrous layer, containing CD271+ candidate MSCs located perivasculary; the inner cambium was rarely present. Following enzymatic release of cells, periosteum formed significantly smaller fibroblastic colonies compared to BM (6.1 mm2 vs. 15.5 mm2, n = 4, P = 0.0006). Periosteal colonies were more homogenous in size (range 2-30 mm2 vs. 2-54 mm2) and on average 2500-fold more frequent (2.0% vs. 0.0008%, n = 10, P = 0.004) relative to total viable cells. When expanded in vitro, similar growth rates up to passage 0 (P0) were seen (1.8 population doublings (PDs) per day (periosteum), 1.6 PDs per day (BM)); however, subsequently BM MSCs proliferated significantly slower by P4 (4.3 PDs per day (periosteum) vs. 9.3 PDs per day (BM), n = 9, P = 0.02). In early culture, periosteum cells were less migratory at slower speeds than BM cells. Both MSC types exhibited MSC phenotype and trilineage differentiation capacity; however, periosteum MSCs showed significantly lower (2.7-fold) adipogenic potential based on Nile red : DAPI ratios with reduced expression of adipogenesis-related transcripts PPAR-γ. Altogether, these data revealed that “clinically accessible” periosteal samples represent a consistently rich source of highly proliferative MSCs compared to donor-matched BM, which importantly show similar osteochondral capacity and lower adipogenic potential. Live cell tracking allowed determination of unique morphological and migration characteristics of periosteal MSCs that can be used for the development of novel bone graft substitutes to be preferentially repopulated by these cells.
Collapse
|
3
|
Tsukioka T, Hiratsuka T, Nakamura M, Watanabe T, Kitamura Y, Isobe K, Okudera T, Okudera H, Azuma A, Uematsu K, Nakata K, Kawase T. An on-site preparable, novel bone-grafting complex consisting of human platelet-rich fibrin and porous particles made of a recombinant collagen-like protein. J Biomed Mater Res B Appl Biomater 2018; 107:1420-1430. [PMID: 30270545 PMCID: PMC6585782 DOI: 10.1002/jbm.b.34234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/13/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022]
Abstract
Platelet‐rich fibrin (PRF) is widely used in regenerative medicine. Nonetheless, major issues include its controversial effects on bone regeneration and a lack of quality‐assured glass tubes required for coagulation. We used porous particles (FBG) comprising a recombinant RGD motif‐enriched collagen I‐like protein to activate the coagulation pathway and examined the effects of the resulting PRF–FBG complex on bone regeneration. Human whole‐blood samples were mixed with FBG in plastic tubes and centrifuged to prepare a PRF–FBG complex. Platelet‐derived growth factor‐BB (PDGF‐BB) levels and cell growth activity were determined by ELISA and a bioassay using osteoblasts. Bone regenerative activity was assessed using a mouse model of calvarial bone defect. FBG facilitated PRF‐like matrix formation during centrifugation. In this PRF–FBG complex, the microstructure of fibrin fibers was similar to that of PRF prepared conventionally in glass tubes. PDGF‐BB levels and mitogenic action were not significantly influenced by FBG. In the bone defect model, although PRF did not exert any significant positive effects on its own, in combination with FBG, it synergistically stimulated new bone formation. This study demonstrated that incorporation of FBG into whole‐blood samples induces PRF formation without the aid of glass tubes. The resulting PRF–FBG complex could be a promising bone grafting material in clinical settings. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1420–1430, 2019.
Collapse
Affiliation(s)
| | - Takahiro Hiratsuka
- Bioscience & Technology Development Center, FIJIFILM Corporation, Kanagawa, Japan
| | | | | | | | | | | | | | - Akihiko Azuma
- Bioscience & Technology Development Center, FIJIFILM Corporation, Kanagawa, Japan
| | - Kohya Uematsu
- Division of Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Toyoda T, Isobe K, Tsujino T, Koyata Y, Ohyagi F, Watanabe T, Nakamura M, Kitamura Y, Okudera H, Nakata K, Kawase T. Direct activation of platelets by addition of CaCl 2 leads coagulation of platelet-rich plasma. Int J Implant Dent 2018; 4:23. [PMID: 30066050 PMCID: PMC6068057 DOI: 10.1186/s40729-018-0134-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
Background Based on the notion that full activation of platelets is required for a growth factor release, in regenerative dentistry, platelet-rich plasma (PRP) in liquid form is usually clotted by addition of CaCl2 in glassware before topical implantation. However, there has been no evidence as to which is better, full or partial activation of platelets, for minimizing the loss of growth factors and improving the controlled release of growth factors from coagulated PRP. To address this matter, here, we primarily examined direct effects of CaCl2 on platelets in PBS and on coagulation in citrated PRP. Methods PRP was prepared from healthy volunteers’ blood. Platelets’ actions were monitored by scanning electron microscopy, flow cytometry, digital holographic microscopy, and immunofluorescent staining. Clot formation was examined in plasma. Results In plasma-free PBS, 0.1% CaCl2 immediately upregulated CD62P and CD63, causing a release of microparticles and fibrinogen/fibrin; consequently, platelets aggregated and adhered to polystyrene culture dishes with enlargement of their attachment area. In a clot formation assay in plasma, CaCl2 initially induced platelet aggregation, which triggered loop-like matrix formation and subsequently induced coagulation on a watch glass. Such changes were not clearly observed either with PRP in a plastic dish or in platelet-poor plasma on a watch glass: coagulation was delayed in both conditions. Conclusions These findings indicate that besides the well-known coagulation pathway, which activates platelets via thrombin conversion in a coagulation cascade, CaCl2 directly activates platelets, which then facilitate clot formation independently and in cooperation with the coagulation pathway.
Collapse
Affiliation(s)
| | | | | | - Yasuo Koyata
- Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
| | | | | | | | | | | | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
5
|
Kitamura Y, Isobe K, Kawabata H, Tsujino T, Watanabe T, Nakamura M, Toyoda T, Okudera H, Okuda K, Nakata K, Kawase T. Quantitative evaluation of morphological changes in activated platelets in vitro using digital holographic microscopy. Micron 2018; 113:1-9. [PMID: 29936304 DOI: 10.1016/j.micron.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/05/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Platelet activation and aggregation have been conventionally evaluated using an aggregometer. However, this method is suitable for short-term but not long-term quantitative evaluation of platelet aggregation, morphological changes, and/or adhesion to specific materials. The recently developed digital holographic microscopy (DHM) has enabled the quantitative evaluation of cell size and morphology without labeling or destruction. Thus, we aim to validate its applicability in quantitatively evaluating changes in cell morphology, especially in the aggregation and spreading of activated platelets, thus modifying typical image analysis procedures to suit aggregated platelets. Freshly prepared platelet-rich plasma was washed with phosphate-buffered saline and treated with 0.1% CaCl2. Platelets were then fixed and subjected to DHM, scanning electron microscopy (SEM), atomic force microscopy, optical microscopy, and flow cytometry (FCM). Tightly aggregated platelets were identified as single cells. Data obtained from time-course experiments were plotted two-dimensionally according to the average optical thickness versus attachment area and divided into four regions. The majority of the control platelets, which supposedly contained small and round platelets, were distributed in the lower left region. As activation time increased, however, this population dispersed toward the upper right region. The distribution shift demonstrated by DHM was essentially consistent with data obtained from SEM and FCM. Therefore, DHM was validated as a promising device for testing platelet function given that it allows for the quantitative evaluation of activation-dependent morphological changes in platelets. DHM technology will be applicable to the quality assurance of platelet concentrates, as well as diagnosis and drug discovery related to platelet functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kazuhiro Okuda
- Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, 951-8514, Japan.
| |
Collapse
|
6
|
Label-Free, High Resolution, Multi-Modal Light Microscopy for Discrimination of Live Stem Cell Differentiation Status. Sci Rep 2018; 8:697. [PMID: 29335508 PMCID: PMC5768761 DOI: 10.1038/s41598-017-18714-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022] Open
Abstract
A label-free microscopy method for assessing the differentiation status of stem cells is presented with potential application for characterization of therapeutic stem cell populations. The microscopy system is capable of characterizing live cells based on the use of evanescent wave microscopy and quantitative phase contrast (QPC) microscopy. The capability of the microscopy system is demonstrated by studying the differentiation of live immortalised neonatal mouse neural stem cells over a 15 day time course. Metrics extracted from microscope images are assessed and images compared with results from endpoint immuno-staining studies to illustrate the system’s performance. Results demonstrate the potential of the microscopy system as a valuable tool for cell biologists to readily identify the differentiation status of unlabelled live cells.
Collapse
|