1
|
Gholami M, Ahmadi AA, Yusofvand R, Khanchoupan M, Hajimazdarany S, Najibi R. Radioprotective Effects of Vitamin C, Cimetidine, and Famotidine on Lipid Peroxidase and Hepatic Glutathione Levels in Mouse Liver. Int J Cell Biol 2025; 2025:1106920. [PMID: 39803629 PMCID: PMC11724733 DOI: 10.1155/ijcb/1106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Radiation therapy is one of the most effective treatments for approximately 60% of patients with cancer. During radiation exposure, the overproduction of reactive oxygen species (ROS) disrupts the lipid layer of the membrane, leading to subsequent peroxide radical formation. Cimetidine (Cim) and famotidine (Fam) are histamine H2 receptor antagonists (H2 blocker), also known as peptic ulcer drugs, that exert radioprotective effects. Vitamin C (Vit.C) is an effective free radical and ROS scavenger with significant radioprotective effects. In this experimental study, male mice (6-8 weeks and 28 ± 3 g) were used in five groups. To evaluate ionizing radiation, gamma rays were used at two doses of 2 and 4 Gy and different doses of Cim, Fam, and Vit.C administered as the protectives. Finally, the livers of the mice were isolated and homogenized. The levels of lipid peroxidase and reduced and oxidized glutathione were measured using standard methods. With increasing radiation dose, lipid peroxidase activity, GSSG level, and glutathione content increased. The findings showed that in the drug-only group, Vit.C had better protection than the other two drugs, and the combination of the three drugs had excellent radiation protection. Radiation protection of normal cells in radiotherapy is a valuable necessity. A number of drugs can protect cells against ionizing radiation through different mechanisms. The results suggest that Fam, Cim, and Vit.C can be radioprotective individually or in combination.
Collapse
Affiliation(s)
- Mana Gholami
- Department of Biology, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Reza Yusofvand
- Department of Exceptional Talents, Faculty of Medicine Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Khanchoupan
- Department of Chemical Engineering, Faculty of Engineering, University of Urmia, Urmia, Iran
| | - Shima Hajimazdarany
- Department of Biology, Faculty of Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Reza Najibi
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| |
Collapse
|
2
|
Lu H, Xie L, Guo L, Gu X, Zhu R, Yang Y, Tang F, Li M, Liu C, Wang D, Li M, Tian Y, Cai S. EGCG protects intestines of mice and pelvic cancer patients against radiation injury via the gut microbiota/D-tagatose/AMPK axis. Radiother Oncol 2025; 202:110608. [PMID: 39486483 DOI: 10.1016/j.radonc.2024.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND AND PURPOSE Radiation-induced intestinal injury (RIII) compromises the clinical utility of pelvic radiotherapy (RT). We aimed to explore the protective effect and underlying mechanism of (-)-epigallocatechin-3-gallate (EGCG) on RIII. MATERIALS AND METHODS We evaluated the protective effect of EGCG on intestine in RIII mouse model and pelvic cancer patients, while explored the underlying mechanism through (1) 16S rRNA sequencing, (2) metabolomic profiles, (3) fresh sterile fecal filtrate (SFF) transplantation, and (4) transcriptome sequencing. RESULTS EGCG efficiently prevented RIII in mouse, as reflected by improved survival, alleviated intestinal structure damage, promoted intestinal regeneration, and ameliorated gut microbiota dysbiosis. Prophylactic EGCG intervention reduced the severity of RIII in patients receiving pelvic RT. Mechanistically, the protective effect of EGCG could be transferred to other mice by SFF transplantation. EGCG enriched gut microbiota-derived metabolite D-tagatose, and oral administration of D-tagatose reproduced the radio-protective effect of EGCG via activating AMPK. CONCLUSION Oral EGCG may be a promising strategy for preventing RIII clinically, and warrant further investigation in prospective randomized phase III trials.
Collapse
Affiliation(s)
- Haiyan Lu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liwei Xie
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xuhao Gu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ruiqiu Zhu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yinyin Yang
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Fengling Tang
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Mingyue Li
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chengzhi Liu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Difan Wang
- Suzhou Medical College of Soochow University, Suzhou 215000, China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.
| | - Ye Tian
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Shang Cai
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Center of PRaG therapy, Center for Cancer Diagnosis and Treatment, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
3
|
Zhao M. Food systems for long-term spaceflight: Understanding the role of non-nutrient polyphenols in astronauts' health. Heliyon 2024; 10:e37452. [PMID: 39391512 PMCID: PMC11466544 DOI: 10.1016/j.heliyon.2024.e37452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Background Manned space exploration missions have developed at a rapid pace, with missions to Mars likely to be in excess of 1000 days being planned for the next 20 years. As such, it is important to understand and address the challenges that astronauts face, such as higher radiation exposure, altered gravity, and isolation. Meanwhile, until now the formulation of space food systems has not focused on non-nutrients, and has not considered issues arising from their absence during space missions or the possibility of them to solve the challenges caused by space hazards. Aims This study investigates, by systematic review, current space food systems and the potential for non-nutrients, such as flavonoids and polyphenols, to counteract radiation- and low gravity-induced degeneration of bone, vision, muscle strength, immune function and cognition. Results and discussion A systematic approach found 39 related animal model studies, and that polyphenol dietary interventions have been shown to mitigate radiation-related physiological problems and cognitive decline, as well as reduce the implications of radiotherapy. From the results of these studies, it appears that berry extracts have a significant effect on preventing cognitive problems through attenuating the expression of NADPH-oxidoreductase-2 (NOX2) and cycloocygenase-2 (COX2) in both frontal cortex and hippocampus and immune system problems caused by radiation similar to that experienced in space. For physiological problems like alteration of blood-testicular barrier permeability and oxidative stress in kidney and liver caused by gamma rays and X-rays, various polyphenol compounds including resveratrol and tea polyphenols have a certain degree of protective effect like enhancing metabolism of heart and decreasing DNA damage respectively. Due to the lack of quantitative studies and the limited number of relevant studies, it is impossible to compare which polyphenol compounds are more effective. Only one study showed no difference in the performances of a blueberry extract-fed group and a control group exposed to Fe irradiation after 12 months. Conclusion In conclusion, current animal studies have shown that polyphenols can mitigate radiation damage to some extent, but more research is needed to enable the application of a polyphenol diet to actual space flights.
Collapse
Affiliation(s)
- Menglan Zhao
- School of Health, Tianhua College, Shanghai Normal University, 201800, Shanghai, China
| |
Collapse
|
4
|
Talebi M, Esmaeeli H, İlgün S, Talebi M, Farkhondeh T, Mishra G, Samarghandian S. The Protective Role of Grape Seed in Obesity and Lipid Profile: An Updated Narrative Overview of Preclinical and Clinical Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:46-62. [PMID: 35786197 DOI: 10.2174/1871530322666220630091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
Obesity and dyslipidemia are common disorders universally. According to the acquired outcomes of recent studies, dietary supplementations which have great content of phenolic compounds exert protective effects against obesity and dyslipidemia. Grape [Vitis vinifera] seeds are considered attractive sources of phenolic compounds with anti-oxidative stress and anti-inflammatory effects. There are also various experimental studies describing hepatoprotective, neuroprotective, anti-aging, cardioprotective, and anti-carcinogenic effects of polyphenols isolated from grape seed, highlighting the therapeutic and biological aspects of proanthocyanidins. The present review article first discusses pharmacological, botanical, toxicological, and phytochemical characteristics of Vitis vinifera seeds and afterward designates the protective properties which are attributed to the intake of grape seeds in obesity and hyperlipidemia. Overall valuable and updated findings of this study display that polyphenol of grape seeds has meaningful impacts on the regulation of lipid profile levels and management of obesity.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 1991953381, Iran
| | - Hadi Esmaeeli
- Research and Development Unit, NIAK Pharmaceutical Company, Gorgan, Iran.,Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Mohsen Talebi
- Viatris Pharmaceuticals Inc., 3300 Research Plaza, San Antonio, Texas, United States.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Yuce Sari S, Beduk Esen CS, Yazici G, Yuce D, Cengiz M, Ozyigit G. Do grape and black mulberry molasses have an effect on oral mucositis and quality of life in patients with head and neck cancer? Support Care Cancer 2022; 30:327-336. [PMID: 34283318 DOI: 10.1007/s00520-021-06411-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We aimed to investigate the effect of black mulberry and grape molasses on the prevention and treatment of oral mucositis and quality of life (QoL) in patients with head and neck cancer (HNC). METHODS Patients treated for HNC between 2010 and 2018 in our department were divided into three groups (group 1 = control (n = 14), group 2 = grape molasses (n = 40), and group 3 = black mulberry molasses (n = 40)). Oral mucositis, pain scoring, and weight loss were evaluated weekly. The European Organization for Research and Treatment of Cancer (EORTC) General QoL Questionnaire (QLQ-C30) and EORTC Head and Neck Cancer QoL Module (QLQ-HN35) were used to evaluate QoL. RESULTS The mean body weight, scores of oral mucositis, and pain were similar among the groups throughout the treatment. Both groups 2 and 3 were associated with improved outcomes for swallowing, opening mouth, and weight loss in the EORTC HN35, and these parameters were not significantly different between groups 2 and 3. Global health score was higher in group 3 at the 6th week of RT compared to that of group 2. Both groups 2 and 3 had improved scores for role functioning, emotional and social functioning, fatigue, appetite loss, and pain throughout the treatment compared to group 1. CONCLUSIONS Both grape and black mulberry molasses improved the QoL in HNC patients. No significant difference between black mulberry and grape molasses was found with regard to the healing of oral mucositis.
Collapse
Affiliation(s)
- Sezin Yuce Sari
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Deniz Yuce
- Department of Preventive Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mustafa Cengiz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokhan Ozyigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Kawvised S, Prabsattroo T, Munkong W, Pattum P, Iamsaard S, Boonsirichai K, Uttayarat P, Maikaeo L, Sudchai W, Kirisattayakul W. Polygonum odoratum leaf extract attenuates oxidative stress and cell death of Raw 264.7 cells exposed to low dose ionizing radiation. J Food Biochem 2021; 46:e13909. [PMID: 34423456 DOI: 10.1111/jfbc.13909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023]
Abstract
This study aims to investigate the effect of Polygonum odoratum leaf extract (POE) on oxidative stress markers and cell death induced by low dose ionizing radiation (LDIR) in Raw 264.7 cells. The biological activities, chromatographic fingerprint, and cytotoxicity of POE were investigated. To determine the radioprotective effect of POE, Raw 264.7 cells were incubated with POE for 1 hr prior to 100 mGy x-irradiation. The cell viability, oxidative stress damage marker (malondialdehyde level; MDA), and endogenous antioxidant markers (superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GSH-Px) were also determined. The results showed that POE contained 8 essential substances and exhibited a potent antioxidant without any cytotoxicity. It was found that POE significantly decreased the MDA level and activated cell viability, SOD, CAT, and GSH-Px activities. The results from this study indicate that POE is a potent antioxidant, which can be developed as a radioprotector for diagnostic procedures. PRACTICAL APPLICATIONS: Polygonum odoratum leaf extract (POE) is a potent antioxidant that attenuates oxidative stress and cell death induced by low dose ionizing radiation (LDIR). POE might protect against cell damage from LDIR, particularly in diagnostic radiology procedures. Therefore, the development of functional food containing POE might be beneficial for patients who plan to undergo the diagnostic radiology procedure. The functional food containing POE might prevent stochastic and deterministic effects for these patients.
Collapse
Affiliation(s)
- Supannika Kawvised
- Radiological Technology School, Faculty of Health Science Technology, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thawatchai Prabsattroo
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Neurovascular Radiology and Neurointervention Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Waranon Munkong
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Neurovascular Radiology and Neurointervention Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panuwat Pattum
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Neurovascular Radiology and Neurointervention Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sittichai Iamsaard
- Neurovascular Radiology and Neurointervention Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Pimporn Uttayarat
- Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Lamai Maikaeo
- Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Waraporn Sudchai
- Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Woranan Kirisattayakul
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Neurovascular Radiology and Neurointervention Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
7
|
Celastrol Alleviates Gamma Irradiation-Induced Damage by Modulating Diverse Inflammatory Mediators. Int J Mol Sci 2020; 21:ijms21031084. [PMID: 32041250 PMCID: PMC7036880 DOI: 10.3390/ijms21031084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to explore the possible radioprotective effects of celastrol and relevant molecular mechanisms in an in vitro cell and in vivo mouse models exposed to gamma radiation. Human keratinocytes (HaCaT) and foreskin fibroblast (BJ) cells were exposed to gamma radiation of 20 Gy, followed by treatment with celastrol for 24 h. Cell viability, reactive oxygen species (ROS), nitric oxide (NO) and glutathione (GSH) production, lipid peroxidation, DNA damage, inflammatory cytokine levels, and NF-κB pathway activation were examined. The survival rate, levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in blood, and p65 and phospho-p65 expression were also evaluated in mice after exposure to gamma radiation and celastrol treatment. The gamma irradiation of HaCaT cells induced decreased cell viability, but treatment with celastrol significantly blocked this cytotoxicity. Gamma irradiation also increased free radical production (e.g., ROS and NO), decreased the level of GSH, and enhanced oxidative DNA damage and lipid peroxidation in cells, which were effectively reversed by celastrol treatment. Moreover, inflammatory responses induced by gamma irradiation, as demonstrated by increased levels of IL-6, TNF-α, and IL-1β, were also blocked by celastrol. The increased activity of NF-κB DNA binding following gamma radiation was significantly attenuated after celastrol treatment. In the irradiated mice, treatment with celastrol significantly improved overall survival rate, reduced the excessive inflammatory responses, and decreased NF-κB activity. As a NF-κB pathway blocker and antioxidant, celastrol may represent a promising pharmacological agent with protective effects against gamma irradiation-induced injury.
Collapse
|
8
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
9
|
Groves AM, Williams JP. Saving normal tissues - a goal for the ages. Int J Radiat Biol 2019; 95:920-935. [PMID: 30822213 PMCID: PMC7183326 DOI: 10.1080/09553002.2019.1589654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Almost since the earliest utilization of ionizing radiation, many within the radiation community have worked toward either preventing (i.e. protecting) normal tissues from unwanted radiation injury or rescuing them from the downstream consequences of exposure. However, despite over a century of such investigations, only incremental gains have been made toward this goal and, with certainty, no outright panacea having been found. In celebration of the 60th anniversary of the International Journal of Radiation Biology and to chronicle the efforts that have been made to date, we undertook a non-rigorous survey of the articles published by normal tissue researchers in this area, using those that have appeared in the aforementioned journal as a road map. Three 'snapshots' of publications on normal tissue countermeasures were taken: the earliest (1959-1963) and most recent (2013-2018) 5-year of issues, as well as a 5-year intermediate span (1987-1991). Limiting the survey solely to articles appearing within International Journal of Radiation Biology likely reduced the number of translational studies interrogated given the basic science tenor of this particular publication. In addition, by taking 'snapshots' rather than considering the entire breadth of the journal's history in this field, important papers that were published during the interim periods were omitted, for which we apologize. Nonetheless, since the journal's inception, we observed that, during the chosen periods, the majority of studies undertaken in the field of normal tissue countermeasures, whether investigating radiation protectants, mitigators or treatments, have focused on agents that interfere with the physical, chemical and/or biological effects known to occur during the acute period following whole body/high single dose exposures. This relatively narrow approach to the reduction of normal tissue effects, especially those that can take months, if not years, to develop, seems to contradict our growing understanding of the progressive complexities of the microenvironmental disruption that follows the initial radiation injury. Given the analytical tools now at our disposal and the enormous benefits that may be reaped in terms of improving patient outcomes, as well as the potential for offering countermeasures to those affected by accidental or mass casualty exposures, it appears time to broaden our approaches to developing normal tissue countermeasures. We have no doubt that the contributors and readership of the International Journal of Radiation Biology will continue to contribute to this effort for the foreseeable future.
Collapse
Affiliation(s)
- Angela M. Groves
- Departments of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, USA
| | - Jacqueline P. Williams
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, USA
- Departments of Radiation Oncology, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
10
|
Zhang QY, Wang FX, Jia KK, Kong LD. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front Pharmacol 2018; 9:1253. [PMID: 30459615 PMCID: PMC6232953 DOI: 10.3389/fphar.2018.01253] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy are the common cancer treatments. However, the development of adverse effects resulting from chemotherapy and radiotherapy hinders the clinical use, and negatively reduces the quality of life in cancer patients. Natural products including crude extracts, bioactive components-enriched fractions and pure compounds prepared from herbs as well as herbal formulas have been proved to prevent and treat cancer. Of significant interest, some natural products can reduce chemotherapy and radiotherapy-induced oral mucositis, gastrointestinal toxicity, hepatotoxicity, nephrotoxicity, hematopoietic system injury, cardiotoxicity, and neurotoxicity. This review focuses in detail on the effectiveness of these natural products, and describes the possible mechanisms of the actions in reducing chemotherapy and radiotherapy-induced side effects. Recent advances in the efficacy of natural dietary supplements to counteract these side effects are highlighted. In addition, we draw particular attention to gut microbiotan in the context of prebiotic potential of natural products for the protection against cancer therapy-induced toxicities. We conclude that some natural products are potential therapeutic perspective for the prevention and treatment of chemotherapy and radiotherapy-induced side effects. Further studies are required to validate the efficacy of natural products in cancer patients, and elucidate potential underlying mechanisms.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei-Xuan Wang
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Han XB, Tan Y, Fang YQ, Li F. Protective effects of celastrol against γ irradiation-induced oxidative stress in human umbilical vein endothelial cells. Exp Ther Med 2018; 16:685-694. [PMID: 30116323 PMCID: PMC6090236 DOI: 10.3892/etm.2018.6270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
High-dose ionizing radiation can cause harmful effects on the cardiovascular system. Notably, endothelial cells are critical targets in radiation-induced damage. γ radiation exerts its biological effects through the radiolysis of water, which further generates ROS and induces lipid peroxidation and DNA damage. The present study aimed to evaluate the potential protective effects of celastrol against γ radiation-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). HUVECs were exposed to γ radiation at different doses with or without celastrol treatment. Cell viability and cytotoxicity, migratory ability, ROS production, lipid peroxidation, oxidative DNA damage and antioxidative enzyme levels were evaluated in HUVECs at 24 h post-irradiation. It was observed that HUVECs exhibited decreased cell viability, increased cytotoxicity and a decreased migratory ability after exposure to 20-Gy γ radiation. Celastrol treatment concentration-dependently reversed these effects. γ irradiation was also demonstrated to increase the production of ROS, enhance lipid peroxidation and oxidative DNA damage and decrease the levels of SOD, catalase, GST and GPx in HUVECs. These detrimental effects were blocked by treatment with celastrol for 24 h. These data suggested that celastrol not only attenuated γ radiation-induced cytotoxicity, but also effectively blocked oxidative stress in HUVECs. As an antioxidant agent, celastrol may have potential protective effects in HUVECs against γ irradiation-induced injury.
Collapse
Affiliation(s)
- Xiang-Bei Han
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China.,Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Yan Tan
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Yan-Qiu Fang
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Feng Li
- Department of Nursing, School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
12
|
Wang H, Sim MK, Loke WK, Chinnathambi A, Alharbi SA, Tang FR, Sethi G. Potential Protective Effects of Ursolic Acid against Gamma Irradiation-Induced Damage Are Mediated through the Modulation of Diverse Inflammatory Mediators. Front Pharmacol 2017; 8:352. [PMID: 28670276 PMCID: PMC5472704 DOI: 10.3389/fphar.2017.00352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
This study was aimed to evaluate the possible protective effects of ursolic acid (UA) against gamma radiation induced damage both in vitro as well as in vivo. It was observed that the exposure to gamma radiation dose- and time-dependently caused a significant decrease in the cell viability, while the treatment of UA attenuated this cytotoxicity. The production of free radicals including reactive oxygen species (ROS) and NO increased significantly post-irradiation and further induced lipid peroxidation and oxidative DNA damage in cells. These deleterious effects could also be effectively blocked by UA treatment. In addition, UA also reversed gamma irradiation induced inflammatory responses, as indicated by the decreased production of TNF-α, IL-6, and IL-1β. NF-κB signaling pathway has been reported to be a key mediator involved in gamma radiation-induced cellular damage. Our results further demonstrated that gamma radiation dose- and time-dependently enhanced NF-κB DNA binding activity, which was significantly attenuated upon UA treatment. The post-irradiation increase in the expression of both phospho-p65, and phospho-IκBα was also blocked by UA. Moreover, the treatment of UA was found to significantly prolong overall survival in mice exposed to whole body gamma irradiation, and reduce the excessive inflammatory responses. Given its radioprotective efficacy as described here, UA as an antioxidant and NF-κB pathway blocker, may function as an important pharmacological agent in protecting against gamma irradiation-induced injury.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
- Singapore Nuclear Research and Safety Initiative, National University of SingaporeSingapore, Singapore
| | - Meng-Kwoon Sim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Weng Keong Loke
- Agent Diagnostic and Therapeutic Laboratory, Defence and Environmental Research Institute, DSO National LaboratoriesSingapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of SingaporeSingapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| |
Collapse
|