1
|
Liu K, Titt U, Esplen N, Connell L, Konradsson E, Yang M, Wang X, Takaoka T, Li Z, Koong AC, Mitra D, Mohan R, Loo BW, Lin SH, Schüler E. Discordance in Acute Gastrointestinal Toxicity between Synchrotron-Based Proton and Linac-based Electron Ultra-High Dose Rate Irradiation. Int J Radiat Oncol Biol Phys 2025; 122:491-501. [PMID: 39862897 DOI: 10.1016/j.ijrobp.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate [ultra-high vs conventional (CONV)] and beam configuration [shoot-through (S-T) vs spread-out Bragg peak (SOBP)] on acute radiation-induced gastrointestinal toxicity (RIGIT) in mice. We also compared RIGIT between synchrotron-based protons and linac-based electrons with matched mean dose rates. METHODS AND MATERIALS We administered abdominal irradiation (12-14 Gy single fraction) to female C57BL/6J mice with an 87-MeV synchrotron-based proton beamline (2-cm-diameter field size as a lateral beam). Dose rates were 0.2 Gy/s (S-T pCONV), 0.3 Gy/s (SOBP pCONV), 150 Gy/s (S-T pFLASH), and 230 Gy/s (SOBP pFLASH). RIGIT was assessed by the jejunal regenerating crypt assay and survival. We also compared responses to proton (pFLASH and pCONV) with responses to electron CONV (eCONV, 0.4 Gy/s) and electron-beam FLASH (188-205 Gy/s). RESULTS The number of regenerating jejunal crypts at each matched dose was lowest for pFLASH (similar between S-T and SOBP), greater and similar between pCONV (S-T and SOBP) and eCONV, and greatest for electron-beam FLASH. Correspondingly, mice that received pFLASH SOBP had the lowest survival rates (50% at 50 days), followed by pFLASH S-T (80%), and pCONV SOBP (90%), but 100% of mice receiving pCONV S-T survived (log-rank P = .047 for the 4 groups). CONCLUSIONS Our findings are consistent with an increase in RIGIT after synchrotron-based pFLASH versus pCONV. This negative proton-specific FLASH effect versus linac-based electron irradiation underscores the importance of understanding the physical and biological factors that will allow safe and effective clinical translation.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Nolan Esplen
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke Connell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Elise Konradsson
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Yang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Xiaochun Wang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takeshi Takaoka
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; Particle Therapy Division, Hitachi America Ltd, Houston, Texas
| | - Ziyi Li
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Devarati Mitra
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Billy W Loo
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Steven H Lin
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emil Schüler
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
2
|
Kristensen L, Rohrer S, Hoffmann L, Præstegaard LH, Ankjærgaard C, Andersen CE, Kanouta E, Johansen JG, Sahlertz M, Nijkamp J, Poulsen PR, Sørensen BS. Electron vs proton FLASH radiation on murine skin toxicity. Radiother Oncol 2025; 206:110796. [PMID: 39983873 DOI: 10.1016/j.radonc.2025.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND AND PURPOSE Dose-response modification of FLASH has previously been established for acute skin toxicity in protons. This study used a similar experimental setup to quantify the dose-response modification of electron FLASH irradiation for acute skin- and late fibrotic toxicity in mice. The setup similarity enabled quantitative comparison of the acute skin response for electrons to protons. METHOD Female unanaesthetised C3D2F1 mice were restrained with the right hindleg fixated and submerged in a water bath for horizontal electron irradiation at 16 MeV. Mice were randomised in groups of varying single doses (19.4-57.6 Gy) and irradiated with either 0.162 Gy/s conventional (CONV) or 233 Gy/s FLASH dose rate using 8-10 mice per group. Acute skin toxicity was assessed daily from the 8th to the 28th day post-irradiation. The same mice were kept for a fibrotic assay of leg extension assessment done biweekly until 52 weeks post-irradiation. The dose-modifying factor (DMF) of FLASH was quantified from dose-response curves. RESULTS AND DISCUSSION Electron FLASH irradiated mice showed a considerable skin-sparing effect with a DMF of 1.45-1.54 and a smaller fibrotic-sparing effect with a DMF of 1.15. The development of acute skin toxicity was similar between CONV and FLASH groups with biological equivalent doses based on the DMF. The acute response of the electron irradiations was similar to previous reports on protons. CONCLUSION Despite apparent differences, e.g. average and instantaneous dose rates, the acute skin toxicity of electron beams and previously published proton beams were remarkably similar regarding both biological response and quantified acute skin DMFs.
Collapse
Affiliation(s)
- Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Sky Rohrer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lone Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Claus E Andersen
- DTU Health Tech, Technical University of Denmark, Roskilde, Denmark
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Graversen Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Sahlertz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jasper Nijkamp
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Hazout S, Oehler C, Zwahlen DR, Taussky D. Historical view of the effects of radiation on cancer cells. Oncol Rev 2025; 19:1527742. [PMID: 40370490 PMCID: PMC12075557 DOI: 10.3389/or.2025.1527742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Since Röntgen's discovery of X-rays in 1895, advancements in radiobiology have significantly shaped radiotherapy practices. This historical review traces the evolution of radiobiological theories and their impacts on current therapeutic strategies. Materials and Methods Databases such as PubMed were utilized to trace the evolution of concepts in radiobiology. Results/Discussion One of the first theories concerning the effect of radiation was Dessauer's target theory, introduced in the 1920s. He found that damage to critical molecular cellular targets leads to cell death. In the early 20th century, Muller contributed to the understanding of DNA structure and radiation-induced mutations, highlighting theories on the impact of radiation on genetic material and cellular damage. In 1972, Kellerer and Rossi introduced the theory of dual radiation action, which explains that ionizing radiation induces sequential damage to DNA, starting with single-strand breaks and progressing to irreparable double-strand breaks. Recent advances have enhanced the understanding of the effects of radiation on the microenvironment and immune responses, thereby improving therapeutic outcomes. The significance of the sigmoid dose-response curve and the initial shoulder effect were recognized early, leading to theoretical models such as the multitarget single-hit, linear-quadratic and repair-misrepair models. The history of fractionation and the 4R/5R principles have informed today's ultrahigh fractionation techniques, including single doses of approximately 20 Gy. Conclusion Although significant advances have been made toward understanding the effects of radiation on cancerous and healthy tissues, many clinical observations, such as the effects of very high doses or FLASH therapy, remain poorly understood.
Collapse
Affiliation(s)
- Saskia Hazout
- Department of Radiation Oncology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Christoph Oehler
- Department of Radiation Oncology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Daniel R. Zwahlen
- Department of Radiation Oncology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Daniel Taussky
- Department of Radiation Oncology, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Yang XX, Luo H, Zhang JJ, Ge H, Ge L. Clinical translation of ultra-high dose rate flash radiotherapy: Opportunities, challenges, and prospects. World J Radiol 2025; 17:105722. [PMID: 40309475 PMCID: PMC12038406 DOI: 10.4329/wjr.v17.i4.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Ultra-high dose rate flash radiotherapy (FLASH-RT) has attracted wide attention in the field of radiotherapy in recent years. For FLASH-RT, radiation is delivered at a very high dose rate [usually thousands of times compared with conventional radiotherapy (CONV-RT)] in an extremely short time. This novel irradiation technique shows a protective effect on normal tissues, also known as the flash effect. At the same time, FLASH-RT is comparable to CONV-RT in terms of tumor-killing efficacy. As basic research dedicates to uncover the mechanisms by which FLASH-RT reduces radiation-induced normal tissue damage, clinical trials of FLASH-RT have been gradually conducted worldwide. This article systematically reviews the evidence of the feasibility and safety of FLASH-RT in clinical practice and offers insights into the future translation of this technology in clinic.
Collapse
Affiliation(s)
- Xiang-Xiang Yang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hui Luo
- Department of Radiation Oncology, Henan Cancer Hospital, Zhengzhou 450003, Henan Province, China
| | - Jia-Jun Zhang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Heng Ge
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liang Ge
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
5
|
Setianegara J, Wang A, Gerard N, Nys J, Harold Li H, Chen RC, Gao H, Lin Y. Characterization of commercial detectors for absolute proton UHDR dosimetry on a compact clinical proton synchrocyclotron. Med Phys 2025. [PMID: 40268691 DOI: 10.1002/mp.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Modern compact proton synchrocyclotrons can achieve ultra-high dose rates ( ≥ $ \ge $ 40 Gy/s) to support ultra-high-dose-rate (UHDR) preclinical experiments utilizing pencil beam scanning (PBS) protons. Unique to synchrocyclotrons is a pulsed proton time structure as compared to the quasi-continuous nature of other proton accelerators like isochronous cyclotrons. Thus, high instantaneous proton currents in the order of several µA must be generated to achieve UHDRs. This will lead to high doses-per-pulse (DPP), which may cause significant charge recombination for ionization chambers, which must be characterized for accurate UHDR dosimetry programs. PURPOSE In this work, we investigate the suitability of various commercial radiation detectors for accurate proton UHDR dosimetry using PBS proton beams from a compact proton synchrocyclotron (IBA ProteusONE). This is achieved by cross-calibrating them with conventional dose rates, measuring UHDR recombination (Pion) and polarity correction factors (Ppol) for ionization chambers, and determining the absorbed proton UHDR dose delivered for all detectors. METHODS An IBA ProteusONE synchrocyclotron was initially tuned to achieve UHDRs with 228 MeV protons at 0° gantry angle. Various detectors, including Razor Chamber, Razor Nano Chamber, Razor Diode, and microDiamond, were cross-calibrated against a PPC05 plane-parallel ionization chamber (PPIC) that had an ADCL calibration coefficient of 59.23 cGy/nC. Then, all ionization chambers were exposed to UHDR protons with the Ppol and Pion subsequently calculated. Pion was calculated using two methods: TRS-398 methods and Niatel's model. Finally, the absolute UHDR proton doses delivered were determined for all detectors and cross-compared. RESULTS Faraday cup measurements were performed for a single spot proton UHDR beam, and the nozzle current at the isocenter was determined to be 129.5 nA during UHDR irradiations at 98.61% of the maximum theoretical dose rate. Repeated Faraday cup measurements of the UHDR beam yielded a percentage standard deviation of 0.8%, which was higher than 0.120% when similar repeated measurements were performed with conventional proton beams. Ppol was found to be relatively dose-rate independent for all ionization chambers investigated. Pion was found to be the lowest for the PPC05 ionization chamber (1.0097) compared to corresponding values of 1.0214 and 1.0294 for the Razor and Razor Nano detectors, respectively, for UHDRs. Pion values calculated using Niatel's model closely matched values from TRS-398 if the VH/VL ratio were kept at 2.5 for the PPC05 and Razor detectors and 2.0 for the Razor Nano detector. Absolute proton UHDR doses determined using cross-calibration factors were generally within ± 1% of PPC05 measurements. However, Razor Diode was found to over-respond by up to 3.79% within UHDR proton beams, rendering them unsuitable for proton UHDR dosimetry. CONCLUSION In this work, we comprehensively evaluated the suitability of various commercial detectors for absolute dosimetry with a pulsed UHDR beam structure from a proton synchrocyclotron. PPC05 had the lowest ionic recombination correction compared to Razor and Razor Nano ion chambers. Other than the diode detector, all other investigated detectors (PPC05, Razor, Razor Nano, microDiamond) were within ± 1% of one another and can be used for accurate absolute proton UHDR dosimetry.
Collapse
Affiliation(s)
- Jufri Setianegara
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aoxiang Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | | | - Jarrick Nys
- Ion Beam Applications (IBA), Louvain-la-Neuve, Belgium
| | - H Harold Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Zheng D, Preuss K, Milano MT, He X, Gou L, Shi Y, Marples B, Wan R, Yu H, Du H, Zhang C. Mathematical modeling in radiotherapy for cancer: a comprehensive narrative review. Radiat Oncol 2025; 20:49. [PMID: 40186295 PMCID: PMC11969940 DOI: 10.1186/s13014-025-02626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Mathematical modeling has long been a cornerstone of radiotherapy for cancer, guiding treatment prescription, planning, and delivery through versatile applications. As we enter the era of medical big data, where the integration of molecular, imaging, and clinical data at both the tumor and patient levels could promise more precise and personalized cancer treatment, the role of mathematical modeling has become even more critical. This comprehensive narrative review aims to summarize the main applications of mathematical modeling in radiotherapy, bridging the gap between classical models and the latest advancements. The review covers a wide range of applications, including radiobiology, clinical workflows, stereotactic radiosurgery/stereotactic body radiotherapy (SRS/SBRT), spatially fractionated radiotherapy (SFRT), FLASH radiotherapy (FLASH-RT), immune-radiotherapy, and the emerging concept of radiotherapy digital twins. Each of these areas is explored in depth, with a particular focus on how newer trends and innovations are shaping the future of radiation cancer treatment. By examining these diverse applications, this review provides a comprehensive overview of the current state of mathematical modeling in radiotherapy. It also highlights the growing importance of these models in the context of personalized medicine and multi-scale, multi-modal data integration, offering insights into how they can be leveraged to enhance treatment precision and patient outcomes. As radiotherapy continues to evolve, the insights gained from this review will help guide future research and clinical practice, ensuring that mathematical modeling continues to propel innovations in radiation cancer treatment.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA.
| | | | - Michael T Milano
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Xiuxiu He
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lang Gou
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, USA
| | - Brian Marples
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Raphael Wan
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, USA
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, USA
| |
Collapse
|
7
|
Kunz LV, Schaefer R, Kacem H, Ollivier J, Togno M, Chappuis F, Weber D, Lomax A, Limoli CL, Psoroulas S, Vozenin MC. Plasmid DNA Strand Breaks Are Dose Rate Independent at Clinically Relevant Proton Doses and Under Biological Conditions. Radiat Res 2025; 203:214-222. [PMID: 40010373 DOI: 10.1667/rade-24-00118.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/13/2024] [Indexed: 02/28/2025]
Abstract
We investigated the effect of proton FLASH radiation on plasmid DNA. Purified supercoiled pBR322 plasmids were irradiated with clinical doses (≤10 Gy) of protons at ultra-high and conventional dose rates using the Paul Scherrer Institute (PSI) isochronous cyclotron. The proton beam in this clinical facility has been validated to produce the FLASH effect in preclinical models. Plasmid samples were irradiated under various oxygen tensions, scavenger levels, pH conditions and Fe (II) concentrations as these biochemical parameters vary across tissues and tumors. Over the range of doses used, plasmid DNA strand breaks were found to be dose rate independent at all conditions investigated. Irradiation within the Bragg peak and spread-out Bragg peak increased clustered strand breaks, except in the presence of scavengers. With this model system, we demonstrate conclusively that plasmid DNA strand breakage is dose rate independent at doses below 10 Gy and does not constitute a high throughput assay endpoint predictive of the biological effect of FLASH.
Collapse
Affiliation(s)
- Louis V Kunz
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Robert Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Houda Kacem
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonathan Ollivier
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Flore Chappuis
- Institute of Radiation Physics (IRA), Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital, Lausanne, Switzerland
| | - Damien Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Anthony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Marie-Catherine Vozenin
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Xu M, Peng Q, Zhang J, Xu Z, Cheng X, Cao Z, Zhang Y. Comparative Transcriptomic Analysis Unveils Divergent Effects of FLASH Versus Conventional Irradiation on Skin Cells. Dose Response 2025; 23:15593258251342837. [PMID: 40401244 PMCID: PMC12092997 DOI: 10.1177/15593258251342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/23/2025] Open
Abstract
Objectives FLASH radiotherapy is garnering attention for its capacity to diminish skin toxicity without compromising tumoricidal efficacy, presenting a stark contrast to conventional (CONV) radiotherapy. Despite its promise, the underlying molecular mechanisms of FLASH irradiation (FLASH-IR) on skin are not yet fully elucidated. Methods This study investigated the transcriptomic responses of human foreskin fibroblast cells (HFF-1) via the FLASH-IR or CONV irradiation (CONV-IR), employing the next-generation RNA sequencing (RNA-seq) to capture the gene expression profiles. Our comparative analysis aimed to dissect the cellular and molecular pathways influenced by these two irradiation methods. Results We identified a spectrum of differentially expressed genes (DEGs), signaling pathways, and transcriptional networks that were either shared or divergent between FLASH-IR and CONV-IR. Particularly, transcription factor NR4A1 showed significant upregulation in response to FLASH-IR, while chromatin stability factor ELF3 was markedly downregulated following CONV-IR. The top 10 up-regulated DEGs were subjected to qPCR validation, confirming their differential expression in response to FLASH-IR and CONV-IR. Conclusion Collectively, our findings delineate unique regulatory landscapes of FLASH-IR and CONV-IR on skin cells, corroborating established effects and shedding new light on the molecular interplay within the context of ultra-high dose radiation.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang Cheng
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhifei Cao
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Effarah HH, Reutershan T, Seggebruch MWL, Algots M, Amador A, Baulch J, Drayson OGG, Hartemann FV, Hwang Y, Lagzda A, Raksi F, Limoli CL, Barty CPJ. Preparations for Ultra-High Dose Rate 25-90 MeV Electron Radiation Experiments with a Compact, High-Peak-Current, X-band Linear Accelerator. Radiat Res 2025; 203:223-235. [PMID: 40084756 DOI: 10.1667/rade-24-00120.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/05/2025] [Indexed: 03/16/2025]
Abstract
The Distributed Charge Compton Source (DCCS) developed by Lumitron Technologies, Inc. has produced a 25-MeV electron beam with 1.7-nC macrobunches at a 100-Hz repetition rate from a compact, high-gradient X-band (11.424 GHz) accelerator. The DCCS is currently being commissioned to produce 100-MeV-class electrons, well within the very high energy electron (VHEE) energy regime, with macrobunch charges of up to 25 nC at repetition rates up to 400 Hz. The DCCS is also designed to produce imaging X rays through Laser Compton scattering. This work aims to describe the preparations for the first dosimetry experimental campaign using this accelerator system at energies ranging from 25 MeV to 90 MeV through hardware development and Monte Carlo (TOPAS) simulation studies. A significant goal of these preparations is to configure the machine so that it can be used to both image with X rays and subsequently treat with VHEEs without movement of the animal model under study. At ultra-high dose rates, this X-ray image-guided electron source could be used to investigate dose-rate dependent differential sparing of normal and malignant biological tissue, known as the FLASH effect. An indium-tin-oxide-coated, 100-μm-thick diamond window was obtained and installed in a custom flange assembly to act as the electron/X-ray vacuum exit window. Simulations at 25 MeV suggest that a scattering foil and collimator can shape the output of the accelerator to produce a 12-mm-diameter, flat-field, circular beam with a 1.7-nC macrobunch charge. This corresponds to an entrance dose of 10 Gy in less than 100 ms. These initial results highly motivate an experimental campaign toward investigating VHEE FLASH using the DCCS at Lumitron Technologies, Inc.
Collapse
Affiliation(s)
- Haytham H Effarah
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Trevor Reutershan
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Michael W L Seggebruch
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Martin Algots
- Lumitron Technologies, Inc., Irvine, 92617 California
| | | | - Janet Baulch
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | | | - Yoonwoo Hwang
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Agnese Lagzda
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Ferenc Raksi
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | - Christopher P J Barty
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| |
Collapse
|
10
|
Klaver YLB, Hoogeman MS, Lu QR, Bradley JD, Choi JI, Ferris MJ, Grau C, Guha C, Lin H, Lin L, Mascia AE, Moerman AM, Poulsen PR, Shi LZ, Singers Sørensen B, Tian S, Vozenin MC, Willey CD, Zhou S, Amos RA, Hawkins M, Simone CB. Requirements and Study Design for the Next Proton FLASH Clinical Trials: an International Multidisciplinary Delphi Consensus. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00306-2. [PMID: 40174648 DOI: 10.1016/j.ijrobp.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/20/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE The FLASH effect, defined as normal tissue sparing while maintaining tumor control with ultra-high dose-rate irradiation, has been demonstrated preclinically in different tumors and tissues. Although the biological mechanisms are unclear, there is a need for clinical trials investigating the value of proton FLASH irradiation (pFLASH). The purpose of this study was to establish an expert consensus regarding prerequisites, study design, and endpoints for the next clinical trials exploring the clinical potentials of pFLASH. METHODS AND MATERIALS Delphi methodology was used to develop a systematic expert consensus. An international expert panel was composed of 21 clinicians, physicists, and biologists, well-balanced in expertise and geography, using predefined inclusion criteria. Statements were scored on a 5-point Likert scale in 2 rounds of online questionnaire voting. The definition of consensus was set a priori. RESULTS The response rate was 100% in both rounds. Preclinical in vivo demonstration of the FLASH effect in normal tissue while maintaining tumor response was deemed essential before starting a clinical trial in a specific tumor site. The next clinical pFLASH trials are advised to include adult patients only, with a minimal expected overall survival of 1 year for palliative settings or, preferably, oligometastatic disease in the ablative setting. The pFLASH effect should be studied in a single treatment modality setting with toxicity reduction as the primary endpoint. Recommendations were formulated on the use of clinical targets and organs at risk constraints, requirements for evaluation and reporting, and accuracy levels and pretreatment verification of dose rates. No consensus was reached on the use of multiple beams, multiple fractions, and fraction dose. CONCLUSIONS There is a need for additional data regarding the influence of fractionation and multiple beam planning. The results of this study can be used to develop roadmaps to guide future clinical trial design.
Collapse
Affiliation(s)
- Yvonne L B Klaver
- HollandPTC, Delft, The Netherlands; Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands.
| | - Mischa S Hoogeman
- HollandPTC, Delft, The Netherlands; Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Q Richard Lu
- Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Isabelle Choi
- Department of Radiation Oncology, New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew J Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Proton Treatment Center, Baltimore, Maryland
| | - Cai Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore University Hospital, Bronx, New York
| | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Radiation Oncology, Montefiore University Hospital, Bronx, New York
| | - Liyong Lin
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Anthony E Mascia
- Cincinnati Children's Hospital Medical Center, Cancer and Blood Disease Institute, Division of Oncology, Cincinnati, Ohio
| | | | - Per R Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lewis Z Shi
- Departments of Microbiology, Pharmacology & Toxicology; The Immunology Institute; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brita Singers Sørensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark
| | - Sibo Tian
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Marie-Catherine Vozenin
- Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sumin Zhou
- Radiation Oncology Department, University of Nebraska Medical Center, Omaha, Nebraska
| | - Richard A Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
11
|
Chaoui M, Bouhali O, Tayalati Y. FLASH radiotherapy: technical advances, evidence of the FLASH effect and mechanistic insights. Biomed Phys Eng Express 2025; 11:022003. [PMID: 40043321 DOI: 10.1088/2057-1976/adbcb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Cancer is one of the leading causes of death worldwide, responsible for nearly 10 million deaths in 2020, with approximately 50% of patients receiving radiation therapy as part of their treatment (Baskaret al2012). Preclinical investigations studies have shown that FLASH radiotherapy (FLASH-RT), delivering radiation in ultra-high dose rates (UHDR), preserves healthy tissue integrity and reduces toxicity, all while maintaining an effective tumor response compared to conventional radiotherapy (CONV-RT), the combined biological benefit was termed as FLASH effect. This article comprehensively surveys pertinent research conducted within FLASH-RT, explores the facilities used in this realm, delves into hypothesized mechanism perspectives, and addresses the challenges to trigger the FLASH effect. In addition, we discuss the potential prospects of FLASH-RT and examine the obstacles that require resolution before its clinical implementation can become a reality.
Collapse
Affiliation(s)
- Mustapha Chaoui
- Faculty of Sciences, University Mohammed V in Rabat, Morocco
| | - Othmane Bouhali
- Electrical Engineering, College of Science and Engineering, Hamad Bin Khalifa University Doha, Qatar
| | - Yahya Tayalati
- Faculty of Sciences, University Mohammed V in Rabat, Morocco
- Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
12
|
Cheng W, Zhao F, Zhang T, He Y, Zhu H. A review of ultra-wide-bandgap semiconductor radiation detector for high-energy particles and photons. NANOTECHNOLOGY 2025; 36:152002. [PMID: 39983238 DOI: 10.1088/1361-6528/adb8f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/21/2025] [Indexed: 02/23/2025]
Abstract
Radiation detectors have gained significant attention due to their extensive applications in high-energy physics, medical diagnostics, aerospace, and nuclear radiation protection. Advances in relevant technologies have made the drawbacks of traditional semiconductor detectors, including high leakage currents and instability, increasingly apparent. Ga2O3, diamond, and BN represent a new generation of semiconductor materials following GaN and SiC, offering wide bandgaps of around 5 eV. These ultra-wide bandgap semiconductors demonstrate excellent properties, including ultra-low dark current, high breakdown fields, and superior radiation tolerance, underscoring their promising potential in radiation detection. In this review, we first discuss the materials and electrical properties of Ga2O3, diamond, and BN, along with the general performance metrics relevant to radiation detectors. Subsequently, the review provides a comprehensive overview of the research progress in x-ray detection, charged particle detection (e.g.αparticles and carbon ions), as well as fast neutron and thermal neutron detection, focusing on aspects such as chip fabrication processes, device architectures, and testing results for radiation detectors based on these three materials.
Collapse
Affiliation(s)
- Wenzheng Cheng
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Feiyang Zhao
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Tianyi Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongjie He
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Hao Zhu
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
- Shaoxin Laboratory, Shaoxing, Zhejiang 312000, People's Republic of China
| |
Collapse
|
13
|
Schönfeld AA, Hildreth J, Bourgouin A, Flatten V, Kozelka J, Simon W, Schüller A. A 2D detector array for relative dosimetry and beam steering for FLASH radiotherapy with electrons. Med Phys 2025; 52:1845-1857. [PMID: 39688375 PMCID: PMC11880641 DOI: 10.1002/mp.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND FLASH radiotherapy is an emerging treatment modality using ultra-high dose rate beams. Much effort has been made to develop suitable dosimeters for reference dosimetry, yet the spatial beam characteristics must also be characterized to enable computerized treatment planning, as well as quality control and service of a treatment delivery device. In conventional radiation therapy, this is commonly achieved by beam profile scans in a water phantom using a point detector. In ultra-high dose rate beams, the delivered dose needed for a set of beam profile scans may exceed the regulatory dose limit specified for a typical treatment room, or degrade components of the scanning system and scanning detector. Point detector scans also cannot quantify the pulse-to-pulse stability of a beam profile. Detector arrays can overcome these challenges, but to date, no detector arrays suitable for ultra-high dose rate beams are commercially available. PURPOSE The study presents the development and characterization of a two-dimensional detector array for measuring pulse-resolved spatial fluence distributions in real-time and temporal structure of intra-pulse dose rate of ultra-high pulsed dose rate (UHPDR) electron beams used in FLASH radiotherapy. METHODS The performance of the SunPoint 1 diode was evaluated by measuring the response of the EDGE Detector in a 20 MeV UHPDR electron beam with a dose per pulse of 0.04 Gy - 6 Gy at a pulse duration of 1 µs or 1.9 µs, and instantaneous dose rates of 0.040 - 3.2 MGy·s-1. Based on the findings regarding a suitable signal acquisition technique, a PROFILER 2 detector array made of SunPoint 1 diodes was then modified by minimizing trace resistance, applying a reverse bias, and implementing an RC component to each diode to optimize the transfer of the collected charge during a pulse. The resultant "FLASH Profiler" was then tested in the same UHPDR electron beam. RESULTS The FLASH Profiler exhibited a linear response within ± 3% deviation over the investigated dose per pulse range. The FLASH Profiler array showed good agreement with the absolute dose measured using a flashDiamond point detector and an integrating current transformer for dose-per-pulse values of up to 6 Gy. The FLASH Profiler was able to measure lateral beam profiles in real-time and on a single-pulse basis. The ability to capture and display the profiles during steering of UHPDR beams was demonstrated. The SunPoint 1 diode was able to measure the pulse duration and the intra-pulse dose rate with a time resolution of 4 ns. CONCLUSION The FLASH Profiler could be used for characterizing UHPDR electron beams and facilitating quality control and beam steering service of electron FLASH irradiators.
Collapse
Affiliation(s)
| | - Jeff Hildreth
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - Alexandra Bourgouin
- Dosimetry for RadiotherapyPhysikalisch‐Technische BundesanstaltBraunschweig38116Germany
- Present address:
Metrology Research CenterNational Research Council of CanadaOttawaOntarioCanada
| | | | - Jakub Kozelka
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - William Simon
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - Andreas Schüller
- Dosimetry for RadiotherapyPhysikalisch‐Technische BundesanstaltBraunschweig38116Germany
| |
Collapse
|
14
|
Li XK, Amirkhanyan Z, Grebinyk A, Gross M, Komar Y, Riemer F, Asoyan A, Boonpornprasert P, Borchert P, Davtyan H, Dmytriiev D, Frohme M, Hoffmann A, Krasilnikov M, Loisch G, Lotfi Z, Müller F, Schmitz M, Obier F, Oppelt A, Philipp S, Richard C, Vashchenko G, Villani D, Worm S, Stephan F. Demonstration of ultra-high dose rate electron irradiation at FLASH lab@PITZ. Phys Med Biol 2025; 70:055010. [PMID: 39907068 DOI: 10.1088/1361-6560/adb276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Objective.The photo injector test facility at DESY in Zeuthen (PITZ) is building up an R&D platform, known as FLASHlab@PITZ, for systematically studying the FLASH effect in cancer treatment with its high-brightness electron beams, which can provide a uniquely large dose parameter range for radiation experiments. In this paper, we demonstrate the capabilities by experiments with a reduced parameter range on a startup beamline and study the potential performance of the full beamline by simulations.Approach.To measure the dose, Gafchromic films are installed both in front of and after the samples; Monte Carlo simulations are conducted to predict the dose distribution during beam preparation and help understand the dose distribution inside the sample. Plasmid DNA is irradiated under various doses at conventional and ultra-high dose rate (UHDR) to study the DNA damage by radiations. Start-to-end simulations are performed to verify the performance of the full beamline.Main results.On the startup beamline, reproducible irradiation has been established with optimized electron beams and the delivered dose distributions have been measured with Gafchromic films and compared to FLUKA simulations. The functionality of this setup has been further demonstrated in biochemical experiments at conventional dose rate of 0.05 Gy s-1and UHDR of several 105 Gy s-1and a varying dose up to 60 Gy, with the UHDR experiments finished within a single RF pulse (less than 1 millisecond); the observed conformation yields of the irradiated plasmid DNA revealed its dose-dependent radiation damage. The upgrade to the full FLASHlab@PITZ beamline is justified by simulations with homogeneous radiation fields generated by both pencil beam scanning and scattering beams.Significance.With the demonstration of UHDR irradiation and the simulated performance of the new beamline, FLASHlab@PITZ will serve as a powerful platform for studying the FLASH effects in cancer treatment.
Collapse
Affiliation(s)
- X-K Li
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Z Amirkhanyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - A Grebinyk
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - M Gross
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Y Komar
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - F Riemer
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - A Asoyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - P Boonpornprasert
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - P Borchert
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - H Davtyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - D Dmytriiev
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Frohme
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - A Hoffmann
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Krasilnikov
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - G Loisch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Z Lotfi
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - F Müller
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Schmitz
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - F Obier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Oppelt
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - S Philipp
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - C Richard
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - G Vashchenko
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - D Villani
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - S Worm
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - F Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| |
Collapse
|
15
|
Akhunzianov AA, Rozhina EV, Filina YV, Rizvanov AA, Miftakhova RR. Resistance to Radiotherapy in Cancer. Diseases 2025; 13:22. [PMID: 39851486 PMCID: PMC11764699 DOI: 10.3390/diseases13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Radiation therapy or radiotherapy is a medical treatment that uses high doses of ionizing radiation to eliminate cancer cells and shrink tumors. It works by targeting the DNA within the tumor cells restricting their proliferation. Radiotherapy has been used for treating cancer for more than 100 years. Along with surgery and chemotherapy, it is one of the three main and most common approaches used in cancer therapy. Nowadays, radiotherapy has become a standard treatment option for a wide range of cancers around the world, including lung, breast, cervical, and colorectal cancers. Around 50% of all patients will require radiotherapy, 60% of whom are treated with curative intent. Moreover, it is commonly used for palliative treatment. Radiotherapy provides 5-year local control and overall survival benefit in 10.4% and 2.4% of all cancer patients, respectively. The highest local control benefit is reported for cervical (33%), head and neck (32%), and prostate (26%) cancers. But no benefit is observed in pancreas, ovary, liver, kidney, and colon cancers. Such relatively low efficiency is related to the development of radiation resistance, which results in cancer recurrence, metastatic dissemination, and poor prognosis. The identification of radioresistance biomarkers allows for improving the treatment outcome. These biomarkers mainly include proteins involved in metabolism and cell signaling pathways.
Collapse
Affiliation(s)
- Almaz A. Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvira V. Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuliya V. Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
16
|
Geirnaert F, Kerkhove L, Montay-Gruel P, Gevaert T, Dufait I, De Ridder M. Exploring the Metabolic Impact of FLASH Radiotherapy. Cancers (Basel) 2025; 17:133. [PMID: 39796760 PMCID: PMC11720285 DOI: 10.3390/cancers17010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
FLASH radiotherapy (FLASH RT) is an innovative modality in cancer treatment that delivers ultrahigh dose rates (UHDRs), distinguishing it from conventional radiotherapy (CRT). FLASH RT has demonstrated the potential to enhance the therapeutic window by reducing radiation-induced damage to normal tissues while maintaining tumor control, a phenomenon termed the FLASH effect. Despite promising outcomes, the precise mechanisms underlying the FLASH effect remain elusive and are a focal point of current research. This review explores the metabolic and cellular responses to FLASH RT compared to CRT, with particular focus on the differential impacts on normal and tumor tissues. Key findings suggest that FLASH RT may mitigate damage in healthy tissues via altered reactive oxygen species (ROS) dynamics, which attenuate downstream oxidative damage. Studies indicate the FLASH RT influences iron metabolism and lipid peroxidation pathways differently than CRT. Additionally, various studies indicate that FLASH RT promotes the preservation of mitochondrial integrity and function, which helps maintain apoptotic pathways in normal tissues, attenuating damage. Current knowledge of the metabolic influences following FLASH RT highlights its potential to minimize toxicity in normal tissues, while also emphasizing the need for further studies in biologically relevant, complex systems to better understand its clinical potential. By targeting distinct metabolic pathways, FLASH RT could represent a transformative advance in RT, ultimately improving the therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Febe Geirnaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Lisa Kerkhove
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Pierre Montay-Gruel
- Radiation Oncology Department, Iridium Netwerk, 2610 Antwerp, Belgium;
- Antwerp Research in Radiation Oncology (AreRO), Center for Oncological Research (CORE), University of Antwerp, 2020 Antwerp, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (F.G.); (L.K.); (T.G.); (I.D.)
| |
Collapse
|
17
|
Akulinichev SV, Glukhov SI, Kuznetsova EA, Gavrilov YK, Kokontsev DA, Martynova VV, Merzlikin GV, Yakovlev IA. Manifestation of the FLASH effect in proton irradiation of embryos. Int J Radiat Biol 2024; 101:144-152. [PMID: 39625863 DOI: 10.1080/09553002.2024.2435338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/24/2024] [Indexed: 01/25/2025]
Abstract
PURPOSE In order to study the FLASH effect using live models, this work compared proton-induced damage to embryos (nine days after fertilization) and one-day-old chicks (18 days after fertilization) from irradiated at different dose rates eggs of Japanese quail (Coturnix coturnix japónica). MATERIALS AND METHODS Eggs were irradiated with protons in different modes depending on the dose rate: in a conventional mode (<1 Gy/s, CONV), in a flash mode (∼100 Gy/s, FLASH) and in a single-pulse flash mode (∼105 Gy/s SPLASH). RESULTS By the criteria of body weight and length, as well as the number of erythrocytes with micronuclei in nine-day-old embryos from eggs irradiated in the spread-out Bragg peak (SOBP) (8.5 Gy), FLASH and SPLASH modes were found to be less traumatic compared with the CONV mode. Among all irradiated embryos, the maximum body weight and length were observed in the SPLASH mode. The lowest death incidence and the smallest number of abnormal erythrocytes were recorded after FLASH and SPLASH irradiation. In chicks that hatched from eggs irradiated in the CONV mode, a tendency for an increase in the number of abnormal erythrocytes was observed. The speed of movement of chicks from FLASH- and SPLASH-irradiated eggs was comparable with that from unirradiated eggs, while chicks from eggs irradiated in the CONV mode were less active than all others. CONCLUSIONS The proton irradiation of eggs in SOBP using high dose-rate modes is less damaging for healthy tissues and for the development of embryos and chicks on the cellular, anatomical, and physiological levels.
Collapse
Affiliation(s)
- S V Akulinichev
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
- B.V.Petrovsky National Research Center of Surgery, Moscow, Russia
| | - S I Glukhov
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - E A Kuznetsova
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - Yu K Gavrilov
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
| | - D A Kokontsev
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
| | - V V Martynova
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
| | - G V Merzlikin
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
| | - I A Yakovlev
- Institute for Nuclear Research, Russian Academy of Sciences (INR RAS), Troitsk, Russia
- B.V.Petrovsky National Research Center of Surgery, Moscow, Russia
| |
Collapse
|
18
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
19
|
Liu K, Titt U, Esplen N, Connell L, Konradsson E, Yang M, Wang X, Takaoka T, Li Z, Koong AC, Mitra D, Mohan R, Loo BW, Lin SH, Schüler E. Discordance in acute gastrointestinal toxicity between synchrotron-based proton and linac-based electron ultra-high dose rate irradiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611307. [PMID: 39282305 PMCID: PMC11398481 DOI: 10.1101/2024.09.04.611307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Purpose Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs. spread-out-Bragg-peak [SOBP]) on acute radiation-induced gastrointestinal toxicity (RIGIT) in mice. We also compared RIGIT between synchrotron-based protons and linac-based electrons with matched mean dose rates. Methods and Materials We administered abdominal irradiation (12-14 Gy single fraction) to female C57BL/6J mice with an 87 MeV synchrotron-based proton beamline (2 cm diameter field size as a lateral beam). Dose rates were 0.2 Gy/s (S-T pCONV), 0.3 Gy/s (SOBP pCONV), 150 Gy/s (S-T pFLASH), and 230 Gy/s (SOBP pFLASH). RIGIT was assessed by the jejunal regenerating crypt assay and survival. We also compared responses to proton [pFLASH and pCONV] with responses to electron CONV (eCONV, 0.4 Gy/s) and electron FLASH (eFLASH, 188-205 Gy/s). Results The number of regenerating jejunal crypts at each matched dose was lowest for pFLASH (similar between S-T and SOBP), greater and similar between pCONV (S-T and SOBP) and eCONV, and greatest for eFLASH. Correspondingly, mice that received pFLASH SOBP had the lowest survival rates (50% at 50 days), followed by pFLASH S-T (80%), and pCONV SOBP (90%), but 100% of mice receiving pCONV S-T survived (log-rank P = 0.047 for the four groups). Conclusions Our findings are consistent with an increase in RIGIT after synchrotron-based pFLASH versus pCONV. This negative proton-specific FLASH effect versus linac-based electron irradiation underscores the importance of understanding the physical and biological factors that will allow safe and effective clinical translation.
Collapse
|
20
|
Sørensen BS, Kanouta E, Ankjærgaard C, Kristensen L, Johansen JG, Sitarz MK, Andersen CE, Grau C, Poulsen P. Proton FLASH: Impact of Dose Rate and Split Dose on Acute Skin Toxicity in a Murine Model. Int J Radiat Oncol Biol Phys 2024; 120:265-275. [PMID: 38750904 DOI: 10.1016/j.ijrobp.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Preclinical studies have shown a preferential normal tissue sparing effect of FLASH radiation therapy with ultra-high dose rates. The aim of the present study was to use a murine model of acute skin toxicity to investigate the biologic effect of varying dose rates, time structure, and introducing pauses in the dose delivery. METHODS AND MATERIALS The right hind limbs of nonanaesthetized mice were irradiated in the entrance plateau of a pencil beam scanning proton beam with 39.3 Gy. Experiment 1 was with varying field dose rates (0.7-80 Gy/s) without repainting, experiment 2 was with varying field dose rates (0.37-80 Gy/s) with repainting, and in experiment 3, the dose was split into 2, 3, 4, or 6 identical deliveries with 2-minute pauses. In total, 320 mice were included, with 6 to 25 mice per group. The endpoints were skin toxicity of different levels up to 25 days after irradiation. RESULTS The dose rate50, which is the dose rate to induce a response in 50% of the animals, depended on the level of skin toxicity, with the higher toxicity levels displaying a FLASH effect at 0.7-2 Gy/s. Repainting resulted in higher toxicity for the same field dose rate. Splitting the dose into 2 deliveries reduced the FLASH effect, and for 3 or more deliveries, the FLASH effect was almost abolished for lower grades of toxicity. CONCLUSIONS The dose rate that induced a FLASH effect varied for different skin toxicity levels, which are characterized by a differing degree of sensitivity to radiation dosage. Conclusions on a threshold for the dose rate needed to obtain a FLASH effect can therefore be influenced by the dose sensitivity of the used endpoint. Splitting the total dose into more deliveries compromised the FLASH effect. This can have an impact for fractionation as well as for regions where 2 or more FLASH fields overlap within the same treatment session.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Held KD, McNamara AL, Daartz J, Bhagwat MS, Rothwell B, Schuemann J. Dose Rate Effects from the 1950s through to the Era of FLASH. Radiat Res 2024; 202:161-176. [PMID: 38954556 PMCID: PMC11426361 DOI: 10.1667/rade-24-00024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy. The discussion includes dose rate effects in vitro in cultured cells, in in vivo experimental systems and in the clinic, including both tumors and normal tissues. Gaps in understanding dose rate effects are identified, as are opportunities for improving clinical use of dose rate modulation.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
- National Council on Radiation Protection and Measurements, Bethesda, Maryland 20814
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Mandar S Bhagwat
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Bethany Rothwell
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
22
|
Ma J, Lin Y, Tang M, Zhu YN, Gan GN, Rotondo RL, Chen RC, Gao H. Simultaneous dose and dose rate optimization via dose modifying factor modeling for FLASH effective dose. Med Phys 2024; 51:5190-5203. [PMID: 38873848 PMCID: PMC11783338 DOI: 10.1002/mp.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Although the FLASH radiotherapy (FLASH) can improve the sparing of organs-at-risk (OAR) via the FLASH effect, it is generally a tradeoff between the physical dose coverage and the biological FLASH coverage, for which the concept of FLASH effective dose (FED) is needed to quantify the net improvement of FLASH, compared to the conventional radiotherapy (CONV). PURPOSE This work will develop the first-of-its-kind treatment planning method called simultaneous dose and dose rate optimization via dose modifying factor modeling (SDDRO-DMF) for proton FLASH that directly optimizes FED. METHODS SDDRO-DMF models and optimizes FED using FLASH dose modifying factor (DMF) models, which can be classified into two categories: (1) the phenomenological model of the FLASH effect, such as the FLASH effectiveness model (FEM); (2) the mechanistic model of the FLASH radiobiology, such as the radiolytic oxygen depletion (ROD) model. The general framework of SDDRO-DMF will be developed, with specific DMF models using FEM and ROD, as a demonstration of general applicability of SDDRO-DMF for proton FLASH via transmission beams (TB) or Bragg peaks (BP) with single-field or multi-field irradiation. The FLASH dose rate is modeled as pencil beam scanning dose rate. The solution algorithm for solving the inverse optimization problem of SDDRO-DMF is based on iterative convex relaxation method. RESULTS SDDRO-DMF is validated in comparison with IMPT and a state-of-the-art method called SDDRO, with demonstrated efficacy and improvement for reducing the high dose and the high-dose volume for OAR in terms of FED. For example, in a SBRT lung case of the dose-limiting factor that the max dose of brachial plexus should be no more than 26 Gy, only SDDRO-DMF met this max dose constraint; moreover, SDDRO-DMF completely eliminated the high-dose (V70%) volume to zero for CTV10mm (a high-dose region as a 10 mm ring expansion of CTV). CONCLUSION We have proposed a new proton FLASH optimization method called SDDRO-DMF that directly optimizes FED using phenomenological or mechanistic models of DMF, and have demonstrated the efficacy of SDDO-DMF in reducing the high-dose volume or/and the high-dose value for OAR, compared to IMPT and a state-of-the-art method SDDRO.
Collapse
Affiliation(s)
- Jiangjun Ma
- Institute of Natural Sciences and School of Mathematics, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Min Tang
- Institute of Natural Sciences and School of Mathematics, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Nan Zhu
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Ronny L Rotondo
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas city, Kansas, USA
| |
Collapse
|
23
|
Orobeti S, Sima LE, Porosnicu I, Diplasu C, Giubega G, Cojocaru G, Ungureanu R, Dobrea C, Serbanescu M, Mihalcea A, Stancu E, Staicu CE, Jipa F, Bran A, Axente E, Sandel S, Zamfirescu M, Tiseanu I, Sima F. First in vitro cell co-culture experiments using laser-induced high-energy electron FLASH irradiation for the development of anti-cancer therapeutic strategies. Sci Rep 2024; 14:14866. [PMID: 38937505 PMCID: PMC11211417 DOI: 10.1038/s41598-024-65137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Radiation delivery at ultrahigh dose rates (UHDRs) has potential for use as a new anticancer therapeutic strategy. The FLASH effect induced by UHDR irradiation has been shown to maintain antitumour efficacy with a reduction in normal tissue toxicity; however, the FLASH effect has been difficult to demonstrate in vitro. The objective to demonstrate the FLASH effect in vitro is challenging, aiming to reveal a differential response between cancer and normal cells to further identify cell molecular mechanisms. New high-intensity petawatt laser-driven accelerators can deliver very high-energy electrons (VHEEs) at dose rates as high as 1013 Gy/s in very short pulses (10-13 s). Here, we present the first in vitro experiments carried out on cancer cells and normal non-transformed cells concurrently exposed to laser-plasma accelerated (LPA) electrons. Specifically, melanoma cancer cells and normal melanocyte co-cultures grown on chamber slides were simultaneously irradiated with LPA electrons. A non-uniform dose distribution on the cell cultures was revealed by Gafchromic films placed behind the chamber slide supporting the cells. In parallel experiments, cell co-cultures were exposed to pulsed X-ray irradiation, which served as positive controls for radiation-induced nuclear DNA double-strand breaks. By measuring the impact on discrete areas of the cell monolayers, the greatest proportion of the damaged DNA-containing nuclei was attained by the LPA electrons at a cumulative dose one order of magnitude lower than the dose obtained by pulsed X-ray irradiation. Interestingly, in certain discrete areas, we observed that LPA electron exposure had a different effect on the DNA damage in healthy normal human epidermal melanocyte (NHEM) cells than in A375 melanoma cells; here, the normal cells were less affected by the LPA exposure than cancer cells. This result is the first in vitro demonstration of a differential response of tumour and normal cells exposed to FLASH irradiation and may contribute to the development of new cell culture strategies to explore fundamental understanding of FLASH-induced cell effect.
Collapse
Affiliation(s)
- Stefana Orobeti
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031, Bucharest, Romania
| | - Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031, Bucharest, Romania
| | - Ioana Porosnicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Constantin Diplasu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Georgiana Giubega
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Gabriel Cojocaru
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Razvan Ungureanu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Cosmin Dobrea
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Mihai Serbanescu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Alexandru Mihalcea
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Elena Stancu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Cristina Elena Staicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Florin Jipa
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Alexandra Bran
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Emanuel Axente
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Simion Sandel
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Marian Zamfirescu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Ion Tiseanu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania
| | - Felix Sima
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, RO-077125, Magurele, Romania.
| |
Collapse
|
24
|
Gregucci F, Beal K, Knisely JPS, Pagnini P, Fiorentino A, Bonzano E, Vanpouille-Box CI, Cisse B, Pannullo SC, Stieg PE, Formenti SC. Biological Insights and Radiation-Immuno-Oncology Developments in Primary and Secondary Brain Tumors. Cancers (Basel) 2024; 16:2047. [PMID: 38893165 PMCID: PMC11171192 DOI: 10.3390/cancers16112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Malignant central nervous system (CNS) cancers include a group of heterogeneous dis-eases characterized by a relative resistance to treatments and distinguished as either primary tumors arising in the CNS or secondary tumors that spread from other organs into the brain. Despite therapeutic efforts, they often cause significant mortality and morbidity across all ages. Radiotherapy (RT) remains the main treatment for brain cancers, improving associated symptoms, improving tumor control, and inducing a cure in some. However, the ultimate goal of cancer treatment, to improve a patient's survival, remains elusive for many CNS cancers, especially primary tumors. Over the years, there have thus been many preclinical studies and clinical trials designed to identify and overcome mechanisms of resistance to improve outcomes after RT and other therapies. For example, immunotherapy delivered concurrent with RT, especially hypo-fractionated stereotactic RT, is synergistic and has revolutionized the clinical management and outcome of some brain tumors, in particular brain metastases (secondary brain tumors). However, its impact on gliomas, the most common primary malignant CNS tumors, remains limited. In this review, we provide an overview of radioresistance mechanisms, the emerging strategies to overcome radioresistance, the role of the tumor microenviroment (TME), and the selection of the most significant results of radiation-immuno-oncological investigations. We also identify novel therapeutic opportunities in primary and secondary brain tumors with the purpose of elucidating current knowledge and stimulating further research to improve tumor control and patients' survival.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
| | - Kathryn Beal
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Jonathan P. S. Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Paul Pagnini
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, IRCCS San Matteo Polyclinic Foundation, 27100 Pavia, Italy;
| | - Claire I. Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| | - Babacar Cisse
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
| | - Susan C. Pannullo
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Philip E. Stieg
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| |
Collapse
|
25
|
Chow JCL, Ruda HE. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024; 13:835. [PMID: 38786057 PMCID: PMC11120005 DOI: 10.3390/cells13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
26
|
Borghini A, Labate L, Piccinini S, Panaino CMV, Andreassi MG, Gizzi LA. FLASH Radiotherapy: Expectations, Challenges, and Current Knowledge. Int J Mol Sci 2024; 25:2546. [PMID: 38473799 PMCID: PMC10932202 DOI: 10.3390/ijms25052546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Major strides have been made in the development of FLASH radiotherapy (FLASH RT) in the last ten years, but there are still many obstacles to overcome for transfer to the clinic to become a reality. Although preclinical and first-in-human clinical evidence suggests that ultra-high dose rates (UHDRs) induce a sparing effect in normal tissue without modifying the therapeutic effect on the tumor, successful clinical translation of FLASH-RT depends on a better understanding of the biological mechanisms underpinning the sparing effect. Suitable in vitro studies are required to fully understand the radiobiological mechanisms associated with UHDRs. From a technical point of view, it is also crucial to develop optimal technologies in terms of beam irradiation parameters for producing FLASH conditions. This review provides an overview of the research progress of FLASH RT and discusses the potential challenges to be faced before its clinical application. We critically summarize the preclinical evidence and in vitro studies on DNA damage following UHDR irradiation. We also highlight the ongoing developments of technologies for delivering FLASH-compliant beams, with a focus on laser-driven plasma accelerators suitable for performing basic radiobiological research on the UHDR effects.
Collapse
Affiliation(s)
| | - Luca Labate
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | - Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| |
Collapse
|
27
|
Lang X, Hu Z, Zhao Z, Zhou K, Xu Z, Li M, Mao R, Luo F, Huang C, Kang X, Li J, Liu X, Zhou L, Xiao G. Preliminary study of low-pressure ionization chamber for online dose monitoring in FLASH carbon ion radiotherapy. Phys Med Biol 2024; 69:025008. [PMID: 38064745 DOI: 10.1088/1361-6560/ad13d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
The FLASH effect of carbon ion therapy has recently attracted significant attention from the scientific community. However, the radiobiological mechanism of the effect and the exact therapeutic conditions are still under investigation. Therefore, the dosimetry accuracy is critical for testing hypotheses about the effect and quantifying FLASH Radiotherapy. In this paper, the FLASH ionization chamber at low-pressure was designed, and its dose rate dependence was verified with the Faraday cup. In addition, the dose response was tested under the air pressure of the ionization chamber of 10 mbar, 80 mbar and 845 mbar, respectively. The results showed that when the pressure was 10 mbar, the dose linearity was verified and calibrated at the dose rate of ∼50 Gy s-1, and the residuals were less than 2%. In conclusion, the FLASH ionization chamber is a promising instrument for online dose monitoring.
Collapse
Affiliation(s)
- Xinle Lang
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| | - Zhengguo Hu
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| | - Zulong Zhao
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Kai Zhou
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Zhiguo Xu
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Min Li
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Ruishi Mao
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| | - Faming Luo
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| | - Chuan Huang
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xincai Kang
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Juan Li
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Xiaotao Liu
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Libin Zhou
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Guoqing Xiao
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| |
Collapse
|
28
|
Gupta S, Inman JL, De Chant J, Obst-Huebl L, Nakamura K, Costello SM, Marqusee S, Mao JH, Kunz L, Paisley R, Vozenin MC, Snijders AM, Ralston CY. A Novel Platform for Evaluating Dose Rate Effects on Oxidative Damage to Peptides: Toward a High-Throughput Method to Characterize the Mechanisms Underlying the FLASH Effect. Radiat Res 2023; 200:523-530. [PMID: 38014573 PMCID: PMC10754258 DOI: 10.1667/rade-23-00131.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
High dose rate radiation has gained considerable interest recently as a possible avenue for increasing the therapeutic window in cancer radiation treatment. The sparing of healthy tissue at high dose rates relative to conventional dose rates, while maintaining tumor control, has been termed the FLASH effect. Although the effect has been validated in animal models using multiple radiation sources, it is not yet well understood. Here, we demonstrate a new experimental platform for quantifying oxidative damage to protein sidechains in solution as a function of radiation dose rate and oxygen availability using liquid chromatography mass spectrometry. Using this reductionist approach, we show that for both X-ray and electron sources, isolated peptides in solution are oxidatively modified to different extents as a function of both dose rate and oxygen availability. Our method provides an experimental platform for exploring the parameter space of the dose rate effect on oxidative changes to proteins in solution.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Jamie L. Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Jared De Chant
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Lieselotte Obst-Huebl
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Kei Nakamura
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Shawn M. Costello
- Biophysics Graduate Program, Department of Chemistry; California Institute for Quantitative Biosciences, University of California, Berkeley, Califormia; Chan Zuckerberg Biohub, San Francisco, California
| | - Susan Marqusee
- Department of Molecular and Cell Biology, Department of Chemistry; California Institute for Quantitative Biosciences, University of California, Berkeley, Califormia; Chan Zuckerberg Biohub, San Francisco, California
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Louis Kunz
- University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ryan Paisley
- University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| |
Collapse
|
29
|
Metzkes-Ng J, Brack FE, Kroll F, Bernert C, Bock S, Bodenstein E, Brand M, Cowan TE, Gebhardt R, Hans S, Helbig U, Horst F, Jansen J, Kraft SD, Krause M, Leßmann E, Löck S, Pawelke J, Püschel T, Reimold M, Rehwald M, Richter C, Schlenvoigt HP, Schramm U, Schürer M, Seco J, Szabó ER, Umlandt MEP, Zeil K, Ziegler T, Beyreuther E. The DRESDEN PLATFORM is a research hub for ultra-high dose rate radiobiology. Sci Rep 2023; 13:20611. [PMID: 37996453 PMCID: PMC10667545 DOI: 10.1038/s41598-023-46873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - René Gebhardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jeannette Jansen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | - Christian Richter
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joao Seco
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Emília Rita Szabó
- ELI ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
30
|
Barghouth PG, Melemenidis S, Montay-Gruel P, Ollivier J, Viswanathan V, Jorge PG, Soto LA, Lau BC, Sadeghi C, Edlabadkar A, Zhang R, Ru N, Baulch JE, Manjappa R, Wang J, Le Bouteiller M, Surucu M, Yu A, Bush K, Skinner L, Maxim PG, Loo BW, Limoli CL, Vozenin MC, Frock RL. FLASH-RT does not affect chromosome translocations and junction structures beyond that of CONV-RT dose-rates. Radiother Oncol 2023; 188:109906. [PMID: 37690668 PMCID: PMC10591966 DOI: 10.1016/j.radonc.2023.109906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND PURPOSE The impact of radiotherapy (RT) at ultra high vs conventional dose rate (FLASH vs CONV) on the generation and repair of DNA double strand breaks (DSBs) is an important question that remains to be investigated. Here, we tested the hypothesis as to whether FLASH-RT generates decreased chromosomal translocations compared to CONV-RT. MATERIALS AND METHODS We used two FLASH validated electron beams and high-throughput rejoin and genome-wide translocation sequencing (HTGTS-JoinT-seq), employing S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs) in HEK239T cells, to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated after various irradiation doses, dose rates and oxygen tensions (normoxic, 21% O2; physiological, 4% O2; hypoxic, 2% and 0.5% O2). Electron irradiation was delivered using a FLASH capable Varian Trilogy and the eRT6/Oriatron at CONV (0.08-0.13 Gy/s) and FLASH (1x102-5x106 Gy/s) dose rates. Related experiments using clonogenic survival and γH2AX foci in the 293T and the U87 glioblastoma lines were also performed to discern FLASH-RT vs CONV-RT DSB effects. RESULTS Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Furthermore, RT dose rate modality on U87 cells did not change γH2AX foci numbers at 1- and 24-hours post-irradiation nor did this affect 293T clonogenic survival. CONCLUSION Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.
Collapse
Affiliation(s)
- Paul G Barghouth
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrik G Jorge
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Luis A Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brianna C Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne Sadeghi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Edlabadkar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard Zhang
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie Le Bouteiller
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karl Bush
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Richard L Frock
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Topor A, Voda MA, Vasos PR. Earth's field NMR relaxation of pre-polarised water protons for real-time detection of free-radical formation. Chem Commun (Camb) 2023; 59:11672-11675. [PMID: 37695610 DOI: 10.1039/d3cc02502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Real-time imaging of free-radical formation is important in physical chemistry, biochemistry, and radiobiology, especially for the study of radiation dose-rate effects. Herein, we show for the first time that the formation of free radicals during the time course of a chemical reaction can be imaged through NMR relaxation measurements of water protons in the Earth's magnetic field, in an open-coil spectrometer. The relaxation rate constants of water magnetisation are enhanced as reactions leading to the formation of hydroxyl radicals and oxygen proceed on the timescale of tens of minutes. The reaction rate of iodide-catalysed H2O2 decay was followed by Earth-field 1H NMR relaxation in real time. The relaxivities of the reaction product and several other paramagnetic compounds were determined. Spin-trap molecules were then used to capture ˙OH radical species, thus altering the reaction rate in proportion to the formation of new paramagnetic compounds. Thereby, a new experimental method for magnetic resonance imaging of the formation of intermediate and stable radical species in water is proposed.
Collapse
Affiliation(s)
- Alexandru Topor
- Biophysics and Biomedical Applications Group and Laboratory, Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), Reactorului Str. 30, Bucharest-Magurele 077125, Romania
- University of Bucharest, Doctoral School of Chemistry, 4-12 Regina Elisabeta Bd, 030018 Bucharest, Romania
- C. D. Nenitzescu Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenţei Bucharest, Romania
| | - Mihai A Voda
- Biophysics and Biomedical Applications Group and Laboratory, Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), Reactorului Str. 30, Bucharest-Magurele 077125, Romania
| | - Paul R Vasos
- Biophysics and Biomedical Applications Group and Laboratory, Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), Reactorului Str. 30, Bucharest-Magurele 077125, Romania
- University of Bucharest, Interdisciplinary School of Doctoral Studies, ISDS, 4-12 Regina Elisabeta Bd, 030018 Bucharest, Romania.
| |
Collapse
|
32
|
Swarts SG, Flood AB, Swartz HM. Implications of "flash" radiotherapy for biodosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1450-1459. [PMID: 37721059 DOI: 10.1093/rpd/ncad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 09/19/2023]
Abstract
Extremely high dose rate radiation delivery (FLASH) for cancer treatment has been shown to produce less damage to normal tissues while having the same radiotoxic effect on tumor tissue (referred to as the FLASH effect). Research on the FLASH effect has two very pertinent implications for the field of biodosimetry: (1) FLASH is a good model to simulate delivery of prompt radiation from the initial moments after detonating a nuclear weapon and (2) the FLASH effect elucidates how dose rate impacts the biological mechanisms that underlie most types of biological biodosimetry. The impact of dose rate will likely differ for different types of biodosimetry, depending on the specific underlying mechanisms. The greatest impact of FLASH effects is likely to occur for assays based on biological responses to radiation damage, but the consequences of differential effects of dose rates on the accuracy of dose estimates has not been taken into account.
Collapse
Affiliation(s)
- Steven G Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, United States
| | - Ann Barry Flood
- Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, United States
- Clin-EPR, LLC, Lyme, NH 03769, United States
| | - Harold M Swartz
- Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, United States
- Clin-EPR, LLC, Lyme, NH 03769, United States
| |
Collapse
|
33
|
Børresen B, Arendt ML, Konradsson E, Bastholm Jensen K, Bäck SÅJ, Munck af Rosenschöld P, Ceberg C, Petersson K. Evaluation of single-fraction high dose FLASH radiotherapy in a cohort of canine oral cancer patients. Front Oncol 2023; 13:1256760. [PMID: 37766866 PMCID: PMC10520273 DOI: 10.3389/fonc.2023.1256760] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Background FLASH radiotherapy (RT) is a novel method for delivering ionizing radiation, which has been shown in preclinical studies to have a normal tissue sparing effect and to maintain anticancer efficacy as compared to conventional RT. Treatment of head and neck tumors with conventional RT is commonly associated with severe toxicity, hence the normal tissue sparing effect of FLASH RT potentially makes it especially advantageous for treating oral tumors. In this work, the objective was to study the adverse effects of dogs with spontaneous oral tumors treated with FLASH RT. Methods Privately-owned dogs with macroscopic malignant tumors of the oral cavity were treated with a single fraction of ≥30Gy electron FLASH RT and subsequently followed for 12 months. A modified conventional linear accelerator was used to deliver the FLASH RT. Results Eleven dogs were enrolled in this prospective study. High grade adverse effects were common, especially if bone was included in the treatment field. Four out of six dogs, who had bone in their treatment field and lived at least 5 months after RT, developed osteoradionecrosis at 3-12 months post treatment. The treatment was overall effective with 8/11 complete clinical responses and 3/11 partial responses. Conclusion This study shows that single-fraction high dose FLASH RT was generally effective in this mixed group of malignant oral tumors, but the risk of osteoradionecrosis is a serious clinical concern. It is possible that the risk of osteonecrosis can be mitigated through fractionation and improved dose conformity, which needs to be addressed before moving forward with clinical trials in human cancer patients.
Collapse
Affiliation(s)
- Betina Børresen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maja L. Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Sven ÅJ. Bäck
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Per Munck af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Cuitiño MC, Fleming JL, Jain S, Cetnar A, Ayan AS, Woollard J, Manring H, Meng W, McElroy JP, Blakaj DM, Gupta N, Chakravarti A. Comparison of Gonadal Toxicity of Single-Fraction Ultra-High Dose Rate and Conventional Radiation in Mice. Adv Radiat Oncol 2023; 8:101201. [PMID: 37008254 PMCID: PMC10050676 DOI: 10.1016/j.adro.2023.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Purpose Increasing evidence suggests that ultra-high-dose-rate (UHDR) radiation could result in similar tumor control as conventional (CONV) radiation therapy (RT) while reducing toxicity to surrounding healthy tissues. Considering that radiation toxicity to gonadal tissues can cause hormone disturbances and infertility in young patients with cancer, the purpose of this study was to assess the possible role of UHDR-RT in reducing toxicity to healthy gonads in mice compared with CONV-RT. Methods and Materials Radiation was delivered to the abdomen or pelvis of female (8 or 16 Gy) and male (5 Gy) C57BL/6J mice, respectively, at conventional (∼0.4 Gy/s) or ultrahigh (>100 Gy/s) dose rates using an IntraOp Mobetron linear accelerator. Organ weights along with histopathology and immunostaining of irradiated gonads were used to compare toxicity between radiation modalities. Results CONV-RT and UHDR-RT induced a similar decrease in uterine weights at both studied doses (∼50% of controls), which indicated similarly reduced ovarian follicular activity. Histologically, ovaries of CONV- and UHDR-irradiated mice exhibited a comparable lack of follicles. Weights of CONV- and UHDR-irradiated testes were reduced to ∼30% of controls, and the percentage of degenerate seminiferous tubules was also similar between radiation modalities (∼80% above controls). Pairwise comparisons of all quantitative data indicated statistical significance between irradiated (CONV or UHDR) and control groups (from P ≤ .01 to P ≤ .0001) but not between radiation modalities. Conclusions The data presented here suggest that the short-term effects of UHDR-RT on the mouse gonads are comparable to those of CONV-RT.
Collapse
Affiliation(s)
- Maria C. Cuitiño
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Jessica L. Fleming
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Sagarika Jain
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Ashley Cetnar
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Ahmet S. Ayan
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Jeffrey Woollard
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Heather Manring
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Wei Meng
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Joseph P. McElroy
- Department of Biomedical Informatics, Center for Biostatistics, Ohio State University, Columbus, Ohio
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Nilendu Gupta
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
35
|
Gregucci F, Spada S, Barcellos-Hoff MH, Bhardwaj N, Chan Wah Hak C, Fiorentino A, Guha C, Guzman ML, Harrington K, Herrera FG, Honeychurch J, Hong T, Iturri L, Jaffee E, Karam SD, Knott SR, Koumenis C, Lyden D, Marciscano AE, Melcher A, Mondini M, Mondino A, Morris ZS, Pitroda S, Quezada SA, Santambrogio L, Shiao S, Stagg J, Telarovic I, Timmerman R, Vozenin MC, Weichselbaum R, Welsh J, Wilkins A, Xu C, Zappasodi R, Zou W, Bobard A, Demaria S, Galluzzi L, Deutsch E, Formenti SC. Updates on radiotherapy-immunotherapy combinations: Proceedings of 6 th annual ImmunoRad conference. Oncoimmunology 2023; 12:2222560. [PMID: 37363104 PMCID: PMC10286673 DOI: 10.1080/2162402x.2023.2222560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Fernanda G. Herrera
- Centre Hospitalier Universitaire Vaudois, University of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland
| | - Jamie Honeychurch
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Elisabeth Jaffee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Simon R.V. Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Michele Mondini
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Timmerman
- Departments of Radiation Oncology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA
| | - James Welsh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, Sutton, UK
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
36
|
Camazzola G, Boscolo D, Scifoni E, Dorn A, Durante M, Krämer M, Abram V, Fuss MC. TRAX-CHEMxt: Towards the Homogeneous Chemical Stage of Radiation Damage. Int J Mol Sci 2023; 24:ijms24119398. [PMID: 37298351 DOI: 10.3390/ijms24119398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The indirect effect of radiation plays an important role in radio-induced biological damages. Monte Carlo codes have been widely used in recent years to study the chemical evolution of particle tracks. However, due to the large computational efforts required, their applicability is typically limited to simulations in pure water targets and to temporal scales up to the µs. In this work, a new extension of TRAX-CHEM is presented, namely TRAX-CHEMxt, able to predict the chemical yields at longer times, with the capability of exploring the homogeneous biochemical stage. Based on the species coordinates produced around one track, the set of reaction-diffusion equations is solved numerically with a computationally light approach based on concentration distributions. In the overlapping time scale (500 ns-1 µs), a very good agreement to standard TRAX-CHEM is found, with deviations below 6% for different beam qualities and oxygenations. Moreover, an improvement in the computational speed by more than three orders of magnitude is achieved. The results of this work are also compared with those from another Monte Carlo-based algorithm and a fully homogeneous code (Kinetiscope). TRAX-CHEMxt will allow for studying the variation in chemical endpoints at longer timescales with the introduction, as the next step, of biomolecules, for more realistic assessments of biological response under different radiation and environmental conditions.
Collapse
Affiliation(s)
- Gianmarco Camazzola
- Biophysics Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, 64291 Darmstadt, Germany
- Quantum Dynamics and Control Division, Max Planck Institute for Nuclear Physics, 69117 Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Daria Boscolo
- Biophysics Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, 64291 Darmstadt, Germany
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics (INFN), 38123 Povo, Italy
| | - Alexander Dorn
- Quantum Dynamics and Control Division, Max Planck Institute for Nuclear Physics, 69117 Heidelberg, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Michael Krämer
- Biophysics Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, 64291 Darmstadt, Germany
| | - Valentino Abram
- Department of Mathematics, University of Trento, 38123 Povo, Italy
| | - Martina C Fuss
- Biophysics Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, 64291 Darmstadt, Germany
| |
Collapse
|
37
|
Jang YJ, Yang TK, Kim JH, Jang HS, Jeong JH, Kim KB, Kim GB, Park SH, Choi SH. Development of a Real-Time Pixel Array-Type Detector for Ultrahigh Dose-Rate Beams. SENSORS (BASEL, SWITZERLAND) 2023; 23:4596. [PMID: 37430512 DOI: 10.3390/s23104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023]
Abstract
Although research into ultrahigh dose-rate (UHDR) radiation therapy is ongoing, there is a significant lack of experimental measurements for two-dimensional (2D) dose-rate distributions. Additionally, conventional pixel-type detectors result in significant beam loss. In this study, we developed a pixel array-type detector with adjustable gaps and a data acquisition system to evaluate its effectiveness in measuring UHDR proton beams in real time. We measured a UHDR beam at the Korea Institute of Radiological and Medical Sciences using an MC-50 cyclotron, which produced a 45-MeV energy beam with a current range of 10-70 nA, to confirm the UHDR beam conditions. To minimize beam loss during measurement, we adjusted the gap and high voltage on the detector and determined the collection efficiency of the developed detector through Monte Carlo simulation and experimental measurements of the 2D dose-rate distribution. We also verified the accuracy of the real-time position measurement using the developed detector with a 226.29-MeV PBS beam at the National Cancer Center of the Republic of Korea. Our results indicate that, for a current of 70 nA with an energy beam of 45 MeV generated using the MC-50 cyclotron, the dose rate exceeded 300 Gy/s at the center of the beam, indicating UHDR conditions. Simulation and experimental measurements show that fixing the gap at 2 mm and the high voltage at 1000 V resulted in a less than 1% loss of collection efficiency when measuring UHDR beams. Furthermore, we achieved real-time measurements of the beam position with an accuracy of within 2% at five reference points. In conclusion, our study developed a beam monitoring system that can measure UHDR proton beams and confirmed the accuracy of the beam position and profile through real-time data transmission.
Collapse
Affiliation(s)
- Young Jae Jang
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Department of Accelerator Science, Korea University, Sejong 30015, Republic of Korea
| | - Tae Keun Yang
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jeong Hwan Kim
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Hong Suk Jang
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jong Hwi Jeong
- Center for ProtonTherapy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Kum Bae Kim
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Geun-Beom Kim
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Seong Hee Park
- Department of Accelerator Science, Korea University, Sejong 30015, Republic of Korea
| | - Sang Hyoun Choi
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
38
|
Gaito S, Marvaso G, Ortiz R, Crellin A, Aznar MC, Indelicato DJ, Pan S, Whitfield G, Alongi F, Jereczek-Fossa BA, Burnet N, Li MP, Rothwell B, Smith E, Colaco RJ. Proton Beam Therapy in the Oligometastatic/Oligorecurrent Setting: Is There a Role? A Literature Review. Cancers (Basel) 2023; 15:cancers15092489. [PMID: 37173955 PMCID: PMC10177340 DOI: 10.3390/cancers15092489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Stereotactic ablative radiotherapy (SABR) and stereotactic radiosurgery (SRS) with conventional photon radiotherapy (XRT) are well-established treatment options for selected patients with oligometastatic/oligorecurrent disease. The use of PBT for SABR-SRS is attractive given the property of a lack of exit dose. The aim of this review is to evaluate the role and current utilisation of PBT in the oligometastatic/oligorecurrent setting. METHODS Using Medline and Embase, a comprehensive literature review was conducted following the PICO (Patients, Intervention, Comparison, and Outcomes) criteria, which returned 83 records. After screening, 16 records were deemed to be relevant and included in the review. RESULTS Six of the sixteen records analysed originated in Japan, six in the USA, and four in Europe. The focus was oligometastatic disease in 12, oligorecurrence in 3, and both in 1. Most of the studies analysed (12/16) were retrospective cohorts or case reports, two were phase II clinical trials, one was a literature review, and one study discussed the pros and cons of PBT in these settings. The studies presented in this review included a total of 925 patients. The metastatic sites analysed in these articles were the liver (4/16), lungs (3/16), thoracic lymph nodes (2/16), bone (2/16), brain (1/16), pelvis (1/16), and various sites in 2/16. CONCLUSIONS PBT could represent an option for the treatment of oligometastatic/oligorecurrent disease in patients with a low metastatic burden. Nevertheless, due to its limited availability, PBT has traditionally been funded for selected tumour indications that are defined as curable. The availability of new systemic therapies has widened this definition. This, together with the exponential growth of PBT capacity worldwide, will potentially redefine its commissioning to include selected patients with oligometastatic/oligorecurrent disease. To date, PBT has been used with encouraging results for the treatment of liver metastases. However, PBT could be an option in those cases in which the reduced radiation exposure to normal tissues leads to a clinically significant reduction in treatment-related toxicities.
Collapse
Affiliation(s)
- Simona Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester M20 4BX, UK
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Giulia Marvaso
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, 20126 Milan, Italy
| | - Ramon Ortiz
- Department of Radiation Oncology, University of California, San Francisco, CA 94720, USA
| | - Adrian Crellin
- National Lead Proton Beam Therapy NHSe, Manchester M20 4BX, UK
| | - Marianne C Aznar
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, FL 32206, USA
| | - Shermaine Pan
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester M20 3DA, UK
| | - Gillian Whitfield
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester M20 3DA, UK
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Ospedale Sacro Cuore don Calabria, 37024 Verona, Italy
- Division of Radiology and Radiotherapy, University of Brescia, 25121 Brescia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, 20126 Milan, Italy
| | - Neil Burnet
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester M20 3DA, UK
| | - Michelle P Li
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester M20 3DA, UK
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Bethany Rothwell
- Division of Physics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ed Smith
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester M20 4BX, UK
- Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester M20 3DA, UK
| | - Rovel J Colaco
- Department of Proton Beam Therapy, The Christie Proton Beam Therapy Centre, Manchester M20 3DA, UK
| |
Collapse
|
39
|
Alaghband Y, Allen BD, Kramár EA, Zhang R, Drayson OG, Ru N, Petit B, Almeida A, Doan NL, Wood MA, Baulch JE, Ballesteros-Zebadua P, Vozenin MC, Limoli CL. Uncovering the Protective Neurologic Mechanisms of Hypofractionated FLASH Radiotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:725-737. [PMID: 37377749 PMCID: PMC10135433 DOI: 10.1158/2767-9764.crc-23-0117] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/29/2023]
Abstract
Implementation of ultra-high dose-rate FLASH radiotherapy (FLASH-RT) is rapidly gaining traction as a unique cancer treatment modality able to dramatically minimize normal tissue toxicity while maintaining antitumor efficacy compared with standard-of-care radiotherapy at conventional dose rate (CONV-RT). The resultant improvements in the therapeutic index have sparked intense investigations in pursuit of the underlying mechanisms. As a preamble to clinical translation, we exposed non-tumor-bearing male and female mice to hypofractionated (3 × 10 Gy) whole brain FLASH- and CONV-RT to evaluate differential neurologic responses using a comprehensive panel of functional and molecular outcomes over a 6-month follow-up. In each instance, extensive and rigorous behavioral testing showed FLASH-RT to preserve cognitive indices of learning and memory that corresponded to a similar protection of synaptic plasticity as measured by long-term potentiation (LTP). These beneficial functional outcomes were not found after CONV-RT and were linked to a preservation of synaptic integrity at the molecular (synaptophysin) level and to reductions in neuroinflammation (CD68+ microglia) throughout specific brain regions known to be engaged by our selected cognitive tasks (hippocampus, medial prefrontal cortex). Ultrastructural changes in presynaptic/postsynaptic bouton (Bassoon/Homer-1 puncta) within these same regions of the brain were not found to differ in response to dose rate. With this clinically relevant dosing regimen, we provide a mechanistic blueprint from synapse to cognition detailing how FLASH-RT reduces normal tissue complications in the irradiated brain. Significance Functional preservation of cognition and LTP after hypofractionated FLASH-RT are linked to a protection of synaptic integrity and a reduction in neuroinflammation over protracted after irradiation times.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, California
| | - Barrett D. Allen
- Department of Radiation Oncology, University of California, Irvine, California
| | - Eniko A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Richard Zhang
- Department of Radiation Oncology, University of California, Irvine, California
| | - Olivia G.G. Drayson
- Department of Radiation Oncology, University of California, Irvine, California
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, California
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aymeric Almeida
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, California
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, California
| | - Paola Ballesteros-Zebadua
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, México City, México
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|
40
|
Froidevaux P, Grilj V, Bailat C, Geyer WR, Bochud F, Vozenin MC. FLASH irradiation does not induce lipid peroxidation in lipids micelles and liposomes. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Barghouth PG, Melemenidis S, Montay-Gruel P, Ollivier J, Viswanathan V, Jorge PG, Soto LA, Lau BC, Sadeghi C, Edlabadkar A, Manjappa R, Wang J, Le Bouteiller M, Surucu M, Yu A, Bush K, Skinner L, Maxim PG, Loo BW, Limoli CL, Vozenin MC, Frock RL. FLASH-RT does not affect chromosome translocations and junction structures beyond that of CONV-RT dose-rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534408. [PMID: 37034651 PMCID: PMC10081175 DOI: 10.1101/2023.03.27.534408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The molecular and cellular mechanisms driving the enhanced therapeutic ratio of ultra-high dose-rate radiotherapy (FLASH-RT) over slower conventional (CONV-RT) radiotherapy dose-rate remain to be elucidated. However, attenuated DNA damage and transient oxygen depletion are among several proposed models. Here, we tested whether FLASH-RT under physioxic (4% O 2 ) and hypoxic conditions (≤2% O 2 ) reduces genome-wide translocations relative to CONV-RT and whether any differences identified revert under normoxic (21% O 2 ) conditions. We employed high-throughput rejoin and genome-wide translocation sequencing ( HTGTS-JoinT-seq ), using S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs), to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated by electron beam CONV-RT (0.08-0.13Gy/s) and FLASH-RT (1×10 2 -5×10 6 Gy/s), under varying ionizing radiation (IR) doses and oxygen tensions. Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Thus, Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.
Collapse
Affiliation(s)
- Paul G. Barghouth
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Switzerland
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Switzerland
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrik G. Jorge
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Luis A. Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brianna C. Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne Sadeghi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Edlabadkar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie Le Bouteiller
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karl Bush
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter G. Maxim
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Switzerland
| | - Richard L. Frock
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Böhlen TT, Germond JF, Bochud F, Bailat C, Moeckli R, Bourhis J, Vozenin MC, Ozsahin EM. In Reply to Horst et al. Int J Radiat Oncol Biol Phys 2023; 115:1007-1009. [PMID: 36822773 DOI: 10.1016/j.ijrobp.2022.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 02/24/2023]
Affiliation(s)
- Till Tobias Böhlen
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Claude Bailat
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Jean Bourhis
- **Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- **Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- **Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
43
|
Konishi T, Kusumoto T, Hiroyama Y, Kobayashi A, Mamiya T, Kodaira S. Induction of DNA strand breaks and oxidative base damages in plasmid DNA by ultra-high dose rate proton irradiation. Int J Radiat Biol 2023; 99:1405-1412. [PMID: 36731459 DOI: 10.1080/09553002.2023.2176562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation cancer therapy with ultra-high dose rate (UHDR) exposure, so-called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response to therapy. The aim of this study was to clarify whether a 59.5 MeV proton beam at an UHDR of 48.6 Gy/s could effectively reduce the DNA damage of pBR322 plasmid DNA in solution compared to the conventional dose rate (CONV) of 0.057 Gy/s. MATERIALS AND METHODS A simple system, consisting of pBR322 plasmid DNA in 1× Tris-EDTA buffer, was initially employed for proton beam exposure. We then used formamidopyrimidine-DNA glycosylase (Fpg) enzymes. which convert oxidative base damages of oxidized purines to DNA strand breaks, to quantify DNA single strand breaks (SSBs) and double strand breaks (DSBs) by agarose gel electrophoresis. RESULTS Our findings showed that the SSB induction rate (SSB per plasmid DNA/Gy) at UHDR and the induction of Fpg enzyme sensitive sites (ESS) were significantly reduced in UHDR compared to CONV. However, there was no significant difference in DSB induction and non-DSB cluster damages. CONCLUSIONS UHDR of a 59.5 MeV proton beam could reduce non-clustered, non-DSB damages, such as SSB and sparsely distributed ESS. However, this effect may not be significant in reducing lethal DNA damage that becomes apparent only in acute radiation effects of mammalian cells and in vivo studies.
Collapse
Affiliation(s)
- Teruaki Konishi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Tamon Kusumoto
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Yota Hiroyama
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
| | - Alisa Kobayashi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Taisei Mamiya
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Satoshi Kodaira
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| |
Collapse
|
44
|
Iturri L, Bertho A, Lamirault C, Juchaux M, Gilbert C, Espenon J, Sebrie C, Jourdain L, Pouzoulet F, Verrelle P, De Marzi L, Prezado Y. Proton FLASH Radiation Therapy and Immune Infiltration: Evaluation in an Orthotopic Glioma Rat Model. Int J Radiat Oncol Biol Phys 2022:S0360-3016(22)03639-2. [PMID: 36563907 DOI: 10.1016/j.ijrobp.2022.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE FLASH radiation therapy (FLASH-RT) is a promising radiation technique that uses ultrahigh doses of radiation to increase the therapeutic window of the treatment. FLASH-RT has been observed to provide normal tissue sparing at high dose rates and similar tumor control compared with conventional RT, yet the biological processes governing these radiobiological effects are still unknown. In this study, we sought to investigate the potential immune response generated by FLASH-RT in a high dose of proton therapy in an orthotopic glioma rat model. METHODS AND MATERIALS We cranially irradiated rats with a single high dose (25 Gy) using FLASH dose rate proton irradiation (257 ± 2 Gy/s) or conventional dose rate proton irradiation (4 ± 0.02 Gy/s). We first assessed the protective FLASH effect that resulted in our setup through behavioral studies in naïve rats. This was followed by a comprehensive analysis of immune cells in blood, healthy tissue of the brain, and tumor microenvironment by flow cytometry. RESULTS Proton FLASH-RT spared memory impairment produced by conventional high-dose proton therapy and induced a similar tumor infiltrating lymphocyte recruitment. Additionally, a general neuroinflammation that was similar in both dose rates was observed. CONCLUSIONS Overall, this study demonstrated that FLASH proton therapy offers a neuro-protective effect even at high doses while mounting an effective lymphoid immune response in the tumor.
Collapse
Affiliation(s)
- Lorea Iturri
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
| | - Annaïg Bertho
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Charlotte Lamirault
- Institut Curie, PSL University, Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Paris, France
| | - Marjorie Juchaux
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Cristèle Gilbert
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Julie Espenon
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Catherine Sebrie
- CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Laurène Jourdain
- CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Frédéric Pouzoulet
- Institut Curie, PSL University, Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Paris, France
| | - Pierre Verrelle
- Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO (U1288), Orsay, 91898 France; Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, Orsay, 91898 France
| | - Ludovic De Marzi
- Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO (U1288), Orsay, 91898 France; Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, Orsay, 91898 France
| | - Yolanda Prezado
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| |
Collapse
|
45
|
FLASHlab@PITZ: New R&D platform with unique capabilities for electron FLASH and VHEE radiation therapy and radiation biology under preparation at PITZ. Phys Med 2022; 104:174-187. [PMID: 36463582 DOI: 10.1016/j.ejmp.2022.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
At the Photo Injector Test facility at DESY in Zeuthen (PITZ), an R&D platform for electron FLASH and very high energy electron radiation therapy and radiation biology is being prepared (FLASHlab@PITZ). The beam parameters available at PITZ are worldwide unique. They are based on experiences from 20 + years of developing high brightness beam sources and an ultra-intensive THz light source demonstrator for ps scale electron bunches with up to 5 nC bunch charge at MHz repetition rate in bunch trains of up to 1 ms length, currently 22 MeV (upgrade to 250 MeV planned). Individual bunches can provide peak dose rates up to 1014 Gy/s, and 10 Gy can be delivered within picoseconds. Upon demand, each bunch of the bunch train can be guided to a different transverse location, so that either a "painting" with micro beams (comparable to pencil beam scanning in proton therapy) or a cumulative increase of absorbed dose, using a wide beam distribution, can be realized at the tumor. Full tumor treatment can hence be completed within 1 ms, mitigating organ movement issues. With extremely flexible beam manipulation capabilities, FLASHlab@PITZ will cover the current parameter range of successfully demonstrated FLASH effects and extend the parameter range towards yet unexploited short treatment times and high dose rates. A summary of the plans for FLASHlab@PITZ and the status of its realization will be presented.
Collapse
|
46
|
Kranzer R, Schüller A, Gómez Rodríguez F, Weidner J, Paz-Martín J, Looe HK, Poppe B. Charge collection efficiency, underlying recombination mechanisms, and the role of electrode distance of vented ionization chambers under ultra-high dose-per-pulse conditions. Phys Med 2022; 104:10-17. [PMID: 36356499 PMCID: PMC9719440 DOI: 10.1016/j.ejmp.2022.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/23/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Investigating and understanding of the underlying mechanisms affecting the charge collection efficiency (CCE) of vented ionization chambers under ultra-high dose rate pulsed electron radiation. This is an important step towards real-time dosimetry with ionization chambers in FLASH radiotherapy. METHODS Parallel-plate ionization chambers (PPIC) with three different electrode distances were build and investigated with electron beams with ultra-high dose-per-pulse (DPP) up to 5.4 Gy. The measurements were compared with simulations. The experimental determination of the CCE was done by comparison against the reference dose based on alanine dosimetry. The numerical solution of a system of partial differential equations taking into account charge creations by the radiation, their transport and reaction in an applied electric field was used for the simulations of the CCE and the underlying effects. RESULTS A good agreement between the experimental results and the simulated CCE could be achieved. The recombination losses found under ultra-high DPP could be attributed to a temporal and spatial charge carrier imbalance and the associated electric field distortion. With ultra-thin electrode distances down to 0.25 mm and a suitable chamber voltage, a CCE greater than 99 % could be achieved under the ultra-high DPP conditions investigated. CONCLUSIONS Well-guarded ultra-thin PPIC are suited for real-time dosimetry under ultra-high DPP conditions. This allows dosimetry also for FLASH RT according to common codes of practice, traceable to primary standards. The numerical approach used allows the determination of appropriate correction factors beyond the DPP ranges where established theories are applicable to account for remaining recombination losses.
Collapse
Affiliation(s)
- Rafael Kranzer
- PTW-Freiburg (R&D), Freiburg 79115, Germany; University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, 26121, Germany
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt, Braunschweig 38116, Germany
| | - Faustino Gómez Rodríguez
- Departamento de Fisica de Particulas, Universidad de Santiago, Santiago de Compostela, Spain; Laboratorio de Radiofisica, Universidad de Santiago, Santiago de Compostela, Spain
| | | | - Jose Paz-Martín
- Departamento de Fisica de Particulas, Universidad de Santiago, Santiago de Compostela, Spain
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, 26121, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, 26121, Germany
| |
Collapse
|
47
|
Zou W, Kim H, Diffenderfer ES, Carlson DJ, Koch CJ, Xiao Y, Teo BK, Kim MM, Metz JM, Fan Y, Maity A, Koumenis C, Busch TM, Wiersma R, Cengel KA, Dong L. A phenomenological model of proton FLASH oxygen depletion effects depending on tissue vasculature and oxygen supply. Front Oncol 2022; 12:1004121. [PMID: 36518319 PMCID: PMC9742361 DOI: 10.3389/fonc.2022.1004121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Radiation-induced oxygen depletion in tissue is assumed as a contributor to the FLASH sparing effects. In this study, we simulated the heterogeneous oxygen depletion in the tissue surrounding the vessels and calculated the proton FLASH effective-dose-modifying factor (FEDMF), which could be used for biology-based treatment planning. Methods The dose and dose-weighted linear energy transfer (LET) of a small animal proton irradiator was simulated with Monte Carlo simulation. We deployed a parabolic partial differential equation to account for the generalized radiation oxygen depletion, tissue oxygen diffusion, and metabolic processes to investigate oxygen distribution in 1D, 2D, and 3D solution space. Dose and dose rates, particle LET, vasculature spacing, and blood oxygen supplies were considered. Using a similar framework for the hypoxic reduction factor (HRF) developed previously, the FEDMF was derived as the ratio of the cumulative normoxic-equivalent dose (CNED) between CONV and UHDR deliveries. Results Dynamic equilibrium between oxygen diffusion and tissue metabolism can result in tissue hypoxia. The hypoxic region displayed enhanced radio-resistance and resulted in lower CNED under UHDR deliveries. In 1D solution, comparing 15 Gy proton dose delivered at CONV 0.5 and UHDR 125 Gy/s, 61.5% of the tissue exhibited ≥20% FEDMF at 175 μm vasculature spacing and 18.9 μM boundary condition. This percentage reduced to 34.5% and 0% for 8 and 2 Gy deliveries, respectively. Similar trends were observed in the 3D solution space. The FLASH versus CONV differential effect remained at larger vasculature spacings. A higher FLASH dose rate showed an increased region with ≥20% FEDMF. A higher LET near the proton Bragg peak region did not appear to alter the FLASH effect. Conclusion We developed 1D, 2D, and 3D oxygen depletion simulation process to obtain the dynamic HRF and derive the proton FEDMF related to the dose delivery parameters and the local tissue vasculature information. The phenomenological model can be used to simulate or predict FLASH effects based on tissue vasculature and oxygen concentration data obtained from other experiments.
Collapse
|
48
|
Vanreusel V, Gasparini A, Galante F, Mariani G, Pacitti M, Cociorb M, Giammanco A, Reniers B, Reulens N, Shonde TB, Vallet H, Vandenbroucke D, Peeters M, Leblans P, Ma B, Felici G, Verellen D, de Freitas Nascimento L. Point scintillator dosimetry in ultra-high dose rate electron “FLASH” radiation therapy: A first characterization. Phys Med 2022; 103:127-137. [DOI: 10.1016/j.ejmp.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
|
49
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
50
|
Léost F, Delpon G, Garcion E, Gestin JF, Hatt M, Potiron V, Rbah-Vidal L, Supiot S. ["Adaptation of the tumour and its ecosystem to radiotherapies: Mechanisms, imaging and therapeutic approaches" XIVth edition of the workshop organised by the "Vectorisation, Imagerie, Radiothérapies" network of the Cancéropôle Grand-Ouest, 22-25 September 2021, Le Bono, France]. Bull Cancer 2022; 109:1088-1093. [PMID: 35908990 DOI: 10.1016/j.bulcan.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 10/16/2022]
Abstract
The fourteenth edition of the workshop covered the latest advances in internal and external radiotherapy obtained through a better understanding of the adaptive capacity of the tumor and its microenvironment, from different disciplinary angles, chemistry, biology, physics, and medicine, paving the way for numerous technological innovations. The biological aspects and the contribution of imaging in monitoring and understanding the adaptation of tumors to radiotherapy were presented, before focusing on innovative radiotherapy strategies and machine learning and data-driven techniques. Finally, the challenges were explored in the radiobiology of targeted radionuclide therapy as well as data science and machine learning in radiomics.
Collapse
Affiliation(s)
- Françoise Léost
- Cancéropôle Grand-Ouest, IRS-UN, 8, quai Moncousu, 44007 Nantes cedex 1, France.
| | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, département de physique médicale, boulevard Jacques-Monod, 44800 Nantes Saint-Herblain, France
| | - Emmanuel Garcion
- Université d'Angers, Nantes université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, 49000 Angers, France
| | - Jean-François Gestin
- Nantes Université, université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, 44000 Nantes, France
| | - Mathieu Hatt
- LaTIM, Inserm, UMR 1101, IBSAM, UBO, UBL, 22, rue Camille-Desmoulins, 29238 Brest, France
| | - Vincent Potiron
- Institut de cancérologie de l'Ouest, département de radiothérapie, boulevard Jacques-Monod, 44800 Nantes Saint-Herblain, France
| | - Latifa Rbah-Vidal
- Nantes Université, université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, 44000 Nantes, France
| | - Stéphane Supiot
- Institut de cancérologie de l'Ouest, département de radiothérapie, boulevard Jacques-Monod, 44800 Nantes Saint-Herblain, France
| |
Collapse
|