1
|
Cathcart B, Cheedipudi SM, Rouhi L, Zhao Z, Gurha P, Marian AJ. DNA double-stranded breaks, a hallmark of aging, defined at the nucleotide resolution, are increased and associated with transcription in the cardiac myocytes in LMNA-cardiomyopathy. Cardiovasc Res 2024:cvae063. [PMID: 38577741 DOI: 10.1093/cvr/cvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
AIMS An intrinsic feature of gene transcription is the formation of DNA superhelices near the transcription bubble, which are resolved upon induction of transient double-stranded breaks (DSBs) by topoisomerases. Unrepaired DSBs are pathogenic as they lead to cell cycle arrest, senescence, inflammation, and organ dysfunction. We posit that DSBs would be more prevalent at the genomic sites that are associated with gene expression. The objectives were to identify and characterize genome-wide DSBs at the nucleotide resolution and determine the association of DSBs with transcription in cardiac myocytes. METHODS AND RESULTS We identified the genome-wide DSBs in ∼1 million cardiac myocytes per heart in three wild-type and three myocyte-specific LMNA-deficient (Myh6-Cre:LmnaF/F) mice by END-Sequencing. The prevalence of DSBs was 0.8% and 2.2% in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively. The END-Seq signals were enriched for 8 and 6764 DSBs in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively (q < 0.05). The DSBs were preferentially localized to the gene regions, transcription initiation sites, cardiac transcription factor motifs, and the G quadruplex forming structures. Because LMNA regulates transcription through the lamin-associated domains (LADs), we defined the LADs in cardiac myocytes by a Cleavage Under Targets & Release Using Nuclease (CUT&RUN) assay (N = 5). On average there were 818 LADs per myocyte. Constitutive LADs (cLADs), defined as LADs that were shared by at least three genomes (N = 2572), comprised about a third of the mouse cardiac myocyte genomes. Transcript levels of the protein-coding genes located at the cLADs (N = 3975) were ∼16-fold lower than those at the non-LAD regions (N = ∼17 778). The prevalence of DSBs was higher in the non-LAD as compared to the cLAD regions. Likewise, DSBs were more common in the loss-of-LAD regions, defined as the genomic regions in the Myh6-Cre:LmnaF/F that were juxtaposed to the LAD regions in the wild-type myocytes. CONCLUSION To our knowledge, this is the first identification of the DSBs, at the nucleotide resolution in the cardiovascular system. The prevalence of DSBs was higher in the genomic regions associated with transcription. Because transcription is pervasive, DSBs are expected to be common and pathogenic in various states and aging.
Collapse
Affiliation(s)
- Benjamin Cathcart
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| |
Collapse
|
2
|
Rouhi L, Cheedipudi SM, Cathcart B, Gurha P, Marian AJ. Cytosolic DNA sensing protein pathway is activated in human hearts with dilated cardiomyopathy. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:32. [PMID: 37577061 PMCID: PMC10421632 DOI: 10.20517/jca.2023.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Introduction The genome is constantly exposed to numerous stressors, which induce DNA lesions, including double-stranded DNA breaks (DSBs). DSBs are the most dangerous, as they induce genomic instability. In response to DNA damage, the cell activates nuclear DNA damage response (DDR) and the cytosolic DNA sensing protein (CDSP) pathways, the latter upon release of the DSBs to the cytosol. The CDSP pathway activates NFκB and IRF3, which induce the expression of the pro-inflammatory genes. There is scant data on the activation of the CDSP pathway in human hearts with dilated cardiomyopathy (DCM). Aim We aimed to determine expression levels of selected components of the CDSP pathway in human hearts with DCM. Methods The DNA strand breaks were detected by the single-cell gel electrophoresis or the comet assay and expression of selected proteins by immunoblotting. Transcript levels were quantified in the RNA-Seq data. Results Single-cell gel electrophoresis showed an approximately 2-fold increase in the number of COMET cells in the DCM hearts. Immunoblotting showed increased levels of cyclic GMP-AMP synthase (CGAS), the canonical CDSP; TANK-binding kinase 1 (TBK1), an intermediary kinase in the pathway; and RELB, P52, and P50 components of the NFκB pathway in human heart samples from patients with DCM. Likewise, transcript levels of over 2 dozen genes involved in inflammatory responses were increased. Conclusions The findings provide the first set of evidence for the activation of the CDSP pathway in human hearts with DCM. The data in conjunction with the previous evidence of activation of the DDR pathway implicate the DSBs in the pathogenesis of human DCM.
Collapse
Affiliation(s)
- Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center. Houston TX 77030, USA
| | - Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center. Houston TX 77030, USA
| | - Benjamin Cathcart
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center. Houston TX 77030, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center. Houston TX 77030, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center. Houston TX 77030, USA
| |
Collapse
|
3
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Kadhim M, Tuncay Cagatay S, Elbakrawy EM. Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol 2021; 98:410-420. [PMID: 34662248 DOI: 10.1080/09553002.2021.1980630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiation-induced non-targeted effects (NTE) have implications in a variety of areas relevant to radiation biology. Here we evaluate the various cargo associated with exosomal signalling and how they work synergistically to initiate and propagate the non-targeted effects including Genomic Instability and Bystander Effects. CONCLUSIONS Extra cellular vesicles, in particular exosomes, have been shown to carry bystander signals. Exosome cargo may contain nucleic acids, both DNA and RNA, as well as proteins, lipids and metabolites. These cargo molecules have all been considered as potential mediators of NTE. A review of current literature shows mounting evidence of a role for ionizing radiation in modulating both the numbers of exosomes released from affected cells as well as the content of their cargo, and that these exosomes can instigate functional changes in recipient cells. However, there are significant gaps in our understanding, particularly regarding modified exosome cargo after radiation exposure and the functional changes induced in recipient cells.
Collapse
Affiliation(s)
- Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Seda Tuncay Cagatay
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| |
Collapse
|
5
|
Salama KF, AlObireed A, AlBagawi M, AlSufayan Y, AlSerheed M. Assessment of occupational radiation exposure among medical staff in health-care facilities in the Eastern Province, Kingdom of Saudi Arabia. Indian J Occup Environ Med 2016; 20:21-5. [PMID: 27390475 PMCID: PMC4922271 DOI: 10.4103/0019-5278.183832] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction: Radiation exposure poses hazards for health-care providers as well as patients in health-care facilities (HCFs). Radiographic imaging is extremely valuable as a diagnostic tool in medicine, but ionizing radiation and computed tomography (CT) scan carry well-known potential risks. Personnel and radiation safety monitoring is an important safety precaution in the practice of radiography. Aim: The study aimed to assess the occupational radiation exposure and safety protection among medical staff in HCFs in the Eastern Province, Kingdom of Saudi Arabia (KSA). Materials and Methods: Total of 4 HCFs with radiological services were randomly selected for the study in the period from January to April 2013. The radiation survey has been carried out by the measurement of radiation in the x-ray and CT-scan room at different points of the diagnostic, imaging, and waiting rooms of different hospitals. The radiation safety was assessed by using a questionnaire Results: The results of our study are surprising and alarming. Data revealed that there are a significant association between the levels of radiation exposure in all selected hospitals concerning imaging and waiting X-ray and CT-scan operating room (P < 0.01). For radiation safety, most hospitals have lead aprons and thyroid shields in place, but only about 50% have lead glasses and lead shields, showing that many hospitals still lack essential equipment. Moreover, actual utilization rate of radiation dosimeters are 57.7% and 68.9%, respectively. Conclusion: All medical staff as well as patients are at risk of exposure to x-ray and CT-scan radiation exposure, and the levels are exceeding the standard guidelines. Many hospitals still lack safety protection tools and there is a complete absence of radiation protection equipment. Further studies should be conducted to highlight different aspects of radiation exposure dose and safety protection tools.
Collapse
Affiliation(s)
- Khaled Fikry Salama
- Department of Environmental Health, College of Applied Medical Sciences, University of Dammam, Dammam, Saudi Arabia
| | - Abdulrahman AlObireed
- Department of Environmental Health, College of Applied Medical Sciences, University of Dammam, Dammam, Saudi Arabia
| | - Mohammed AlBagawi
- Department of Environmental Health, College of Applied Medical Sciences, University of Dammam, Dammam, Saudi Arabia
| | - Yuosef AlSufayan
- Department of Environmental Health, College of Applied Medical Sciences, University of Dammam, Dammam, Saudi Arabia
| | - Mohammed AlSerheed
- Department of Environmental Health, College of Applied Medical Sciences, University of Dammam, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Alavi SS, Taghizadeh Dabbagh S, Abbasi M, Mehrdad R. Radiation Protection Knowledge, Attitude and Practice (RP-KAP) as Predictors of Job Stress Among Radiation Workers in Tehran Province, Iran. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e29394. [PMID: 28180020 PMCID: PMC5287052 DOI: 10.5812/ircmj.29394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/21/2015] [Accepted: 09/20/2015] [Indexed: 11/16/2022]
Abstract
Background In recent years, much attention has been paid to occupational stress, but relatively little or no research has been conducted on the influence of knowledge, attitude, and practice of radiation protection (RP-KAP) on job stress among radiation workers Objectives This study aims to assess job stress among health care workers in Iran who are occupationally exposed to radiation in order to determine the effects of KAP on self-protection against radiation on their job stress. Materials and Methods The population in this descriptive cross-sectional study comprised 670 healthcare workers, including 428 staff with a degree in radiology and 242 other medical personnel who were working in 16 hospitals affiliated with Tehran University of Medical Sciences (TUMS) in Tehran, Iran. The census method was used to sample the workers. In total, 264 staff with a degree in radiology and 149 other medical personnel completed the job content questionnaire (JCQ) and the RP-KAP questionnaire from May to November 2014. Results The prevalence rate of job stress was 22.5% based on calculation formulas and possible scores on the JCQ. Sex, RP-knowledge, attitude, practice, and in-service training predicted 41.8% of the variance in job stress. According to the results of the binary logistic regression, workers with higher scores on knowledge (OR = 0.82, 95% CI: 0.75 - 0.90), attitude (OR = 0.71, 95% CI: 0.63 - 0.82), and practice (OR = 0.78, 95% CI: 0.72 - 0.86) and those who had participated in training programs had significantly lower rates of job stress (OR = 0.51, 95% CI: 0.28 - 0.93). Conclusions The effects of RP knowledge, attitude, and practice on job stress were significant. In order to reduce job stress in radiation environments, ongoing training programs related to self-care and protection principles are recommended.
Collapse
Affiliation(s)
- S. Shohreh Alavi
- Center for Research on Occupational Diseases, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Sima Taghizadeh Dabbagh
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Sima Taghizadeh Dabbagh, Imam Khomeini Hospital Complex, Keshavarz Blvd., Tehran, IR Iran. Tel: +98-9122490353, Fax: +98-66581563, E-mail:
| | - Mahya Abbasi
- Center for Research on Occupational Diseases, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ramin Mehrdad
- Center for Research on Occupational Diseases, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
7
|
Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC1638N/+ Mice. Int J Radiat Oncol Biol Phys 2016; 95:131-138. [DOI: 10.1016/j.ijrobp.2015.10.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 01/13/2023]
|
8
|
Massenkeil G, Zschieschang P, Thiel G, Hemmati PG, Budach V, Dörken B, Pross J, Arnold R. Frequent induction of chromosomal aberrations in in vivo skin fibroblasts after allogeneic stem cell transplantation: hints to chromosomal instability after irradiation. Radiat Oncol 2015; 10:266. [PMID: 26715553 PMCID: PMC4696175 DOI: 10.1186/s13014-015-0576-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/21/2015] [Indexed: 11/21/2022] Open
Abstract
Background Total body irradiation (TBI) has been part of standard conditioning regimens before allogeneic stem cell transplantation for many years. Its effect on normal tissue in these patients has not been studied extensively. Method We studied the in vivo cytogenetic effects of TBI and high-dose chemotherapy on skin fibroblasts from 35 allogeneic stem cell transplantation (SCT) patients. Biopsies were obtained prospectively (n = 18 patients) before, 3 and 12 months after allogeneic SCT and retrospectively (n = 17 patients) 23–65 months after SCT for G-banded chromosome analysis. Results Chromosomal aberrations were detected in 2/18 patients (11 %) before allogeneic SCT, in 12/13 patients (92 %) after 3 months, in all patients after 12 months and in all patients in the retrospective group after allogeneic SCT. The percentage of aberrant cells was significantly higher at all times after allogeneic SCT compared to baseline analysis. Reciprocal translocations were the most common aberrations, but all other types of stable, structural chromosomal aberrations were also observed. Clonal aberrations were observed, but only in three cases they were detected in independently cultured flasks. A tendency to non-random clustering throughout the genome was observed. The percentage of aberrant cells was not different between patients with and without secondary malignancies in this study group. Conclusion High-dose chemotherapy and TBI leads to severe chromosomal damage in skin fibroblasts of patients after SCT. Our long-term data suggest that this damage increases with time, possibly due to in vivo radiation-induced chromosomal instability.
Collapse
Affiliation(s)
- G Massenkeil
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany. .,Present address: Department of Internal Medicine, Clinic for Hematology and Oncology, Klinikum Guetersloh, Guetersloh, Germany.
| | - P Zschieschang
- Institute for Medical Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Present address: Medical practice for Human Genetics, Friedrichstrasse, Berlin, Germany
| | - G Thiel
- Institute for Medical Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Present address: Medical practice for Human Genetics, Friedrichstrasse, Berlin, Germany
| | - P G Hemmati
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - V Budach
- Clinic for Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - B Dörken
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - J Pross
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - R Arnold
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Grygoryev D, Dan C, Gauny S, Eckelmann B, Ohlrich AP, Connolly M, Lasarev M, Grossi G, Kronenberg A, Turker MS. Autosomal mutants of proton-exposed kidney cells display frequent loss of heterozygosity on nonselected chromosomes. Radiat Res 2014; 181:452-63. [PMID: 24758577 DOI: 10.1667/rr13654.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High-energy protons found in the space environment can induce mutations and cancer, which are inextricably linked. We hypothesized that some mutants isolated from proton-exposed kidneys arose through a genome-wide incident that causes loss of heterozygosity (LOH)-generating mutations on multiple chromosomes (termed here genomic LOH). To test this hypothesis, we examined 11 pairs of nonselected chromosomes for LOH events in mutant cells isolated from the kidneys of mice exposed to 4 or 5 Gy of 1 GeV protons. The mutant kidney cells were selected for loss of expression of the chromosome 8-encoded Aprt gene. Genomic LOH events were also assessed in Aprt mutants isolated from isogenic cultured kidney epithelial cells exposed to 5 Gy of protons in vitro. Control groups were spontaneous Aprt mutants and clones isolated without selection from the proton-exposed kidneys or cultures. The in vivo results showed significant increases in genomic LOH events in the Aprt mutants from proton-exposed kidneys when compared with spontaneous Aprt mutants and when compared with nonmutant (i.e., nonselected) clones from the proton-exposed kidneys. A bias for LOH events affecting chromosome 14 was observed in the proton-induced Aprt mutants, though LOH for this chromosome did not confer increased radiation resistance. Genomic LOH events were observed in Aprt mutants isolated from proton-exposed cultured kidney cells; however the incidence was fivefold lower than in Aprt mutants isolated from exposed intact kidneys, suggesting a more permissive environment in the intact organ and/or the evolution of kidney clones prior to their isolation from the tissue. We conclude that proton exposure creates a subset of viable cells with LOH events on multiple chromosomes, that these cells form and persist in vivo, and that they can be isolated from an intact tissue by selection for a mutation on a single chromosome.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- a Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon 97239
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Datta K, Suman S, Kallakury BVS, Fornace AJ. Heavy ion radiation exposure triggered higher intestinal tumor frequency and greater β-catenin activation than γ radiation in APC(Min/+) mice. PLoS One 2013; 8:e59295. [PMID: 23555653 PMCID: PMC3605451 DOI: 10.1371/journal.pone.0059295] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/13/2013] [Indexed: 01/11/2023] Open
Abstract
Risk of colorectal cancer (CRC) after exposure to low linear energy transfer (low-LET) radiation such as γ-ray is highlighted by the studies in atom bomb survivors. On the contrary, CRC risk prediction after exposure to high-LET cosmic heavy ion radiation exposure is hindered due to scarcity of in vivo data. Therefore, intestinal tumor frequency, size, cluster, and grade were studied in APCMin/+ mice (n = 20 per group; 6 to 8 wks old; female) 100 to 110 days after exposure to 1.6 or 4 Gy of heavy ion 56Fe radiation (energy: 1000 MeV/nucleon) and results were compared to γ radiation doses of 2 or 5 Gy, which are equitoxic to 1.6 and 4 Gy 56Fe respectively. Due to relevance of lower doses to radiotherapy treatment fractions and space exploration, we followed 2 Gy γ and equitoxic 1.6 Gy 56Fe for comparative analysis of intestinal epithelial cell (IEC) proliferation, differentiation, and β-catenin signaling pathway alterations between the two radiation types using immunoblot, and immunohistochemistry. Relative to controls and γ-ray, intestinal tumor frequency and grade was significantly higher after 56Fe radiation. Additionally, tumor incidence per unit of radiation (per cGy) was also higher after 56Fe radiation relative to γ radiation. Staining for phospho-histone H3, indicative of IEC proliferation, was more and alcian blue staining, indicative of IEC differentiation, was less in 56Fe than γ irradiated samples. Activation of β-catenin was more in 56Fe-irradiated tumor-free and tumor-bearing areas of the intestinal tissues. When considered along with higher levels of cyclin D1, we infer that relative to γ radiation exposure to 56Fe radiation induced markedly reduced differentiation, and increased proliferative index in IEC resulting in increased intestinal tumors of larger size and grade due to preferentially greater activation of β-catenin and its downstream effectors.
Collapse
Affiliation(s)
- Kamal Datta
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensives Cancer Center, Georgetown University, Washington, DC, United States of America
- * E-mail: (KD); (AJF)
| | - Shubhankar Suman
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensives Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Bhaskar V. S. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cell Biology and Lombardi Comprehensives Cancer Center, Georgetown University, Washington, DC, United States of America
- Center of Excellence In Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (KD); (AJF)
| |
Collapse
|
11
|
Shin JM, Lee TH, Park SH, Kang SG, Lee YS, Park SJ, Ku MG, Lee SH, Chung IK, Choi HJ, Moon JH, Cha SW, Cho YD, Kim SJ. A Survey of the Radiation Exposure Protection of Health Care Providers during Endoscopic Retrograde Cholangiopancreatography in Korea. Gut Liver 2012; 7:100-5. [PMID: 23422932 PMCID: PMC3572309 DOI: 10.5009/gnl.2013.7.1.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/02/2012] [Accepted: 02/15/2012] [Indexed: 11/30/2022] Open
Abstract
Background/Aims During endoscopic retrograde cholangiopancreatography (ERCP), all efforts should be made to be aware of radiation hazards and to reduce radiation exposure. The aim of this study was to investigate the status of radiation protective equipment and the awareness of radiation exposure in health care providers performing ERCP in Korean hospitals. Methods A survey with a total of 42 questions was sent to each respondent via mail or e-mail between October 2010 and March 2011. The survey targeted nurses and radiation technicians who participated in ERCP in secondary or tertiary referral centers. Results A total of 78 providers from 38 hospitals responded to the surveys (response rate, 52%). The preparation and actual utilization rates of protective equipment were 55.3% and 61.9% for lead shields, 100% and 98.7% for lead aprons, 47.4% and 37.8% for lead glasses, 97.4% and 94.7% for thyroid shields, and 57.7% and 68.9% for radiation dosimeters, respectively. The common reason for not wearing protective equipment was that the equipment was bothersome, according to 45.7% of the respondents. Conclusions More protective equipment, such as lead shields and lead glasses, should be provided to health care providers involved in ERCP. In particular, the actual utilization rate for lead glasses was very low.
Collapse
Affiliation(s)
- Jae Min Shin
- Digestive Disease Center, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Son BK, Lee KT, Kim JS, Lee SO. Lack of radiation protection for endoscopists performing endoscopic retrograde cholangiopancreatography. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2011; 58:93-99. [PMID: 21873824 DOI: 10.4166/kjg.2011.58.2.93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
BACKGROUND/AIMS ERCP using fluoroscopy should be practiced with an adequate radiation protection. However, the awareness of gastrointestinal endoscopists to radiation protection was considered insufficient. In Korea, a country with a rapid increase the number of ERCP procedures, there is no data about radiation protection practices for gastrointestinal endoscopists. The purpose of this study was to investigate current clinical practices and the awareness on radiation protection in ERCP performing physicians in Korea. METHODS An anonymous questionnaire regarding radiation protection practices was mailed to 100 members of Korean Pancreatobiliary Association who was porforming ERCP. The questionnaire included ERCP volume of each endoscopist, use of protection devices such as apron, thyroid shield, lead glasses and any mobile shield for scattered radiation, and whether they monitored their own radiation exposure dosage. RESULTS All respondents wore lead aprons during ERCP. While 52.5% of endoscopists answered that they always wear thyroid guards, 26.9% rarely or never wore it. Only 14% wore lead glasses during the procedure and 69% never wore it. The preparation rates of mobile shields or lead curtains were only 14% and 24%, respectively. Only 10% of endoscopists attached an X-ray badge and 66.7% never used it. Moreover, 75% of endoscopists responded that they did not monitor their own exposure dose to radiation during ERCP. CONCLUSIONS The lack of radiation protection of ERCP endoscopists in Korea was seemed serious. Awareness of radiation hazard should be more concerned and educated in parallel with the preparation of radiation protection equipments.
Collapse
Affiliation(s)
- Byoung Kwan Son
- Department of Internal Medicine, Eulji University Eulji-General Hospital, Korea
| | | | | | | |
Collapse
|
13
|
Dziegielewski J, Goetz W, Baulch JE. Heavy ions, radioprotectors and genomic instability: implications for human space exploration. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:303-316. [PMID: 20035342 DOI: 10.1007/s00411-009-0261-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
The risk associated with space radiation exposure is unique from terrestrial radiation exposures due to differences in radiation quality, including linear energy transfer (LET). Both high- and low-LET radiations are capable of inducing genomic instability in mammalian cells, and this instability is thought to be a driving force underlying radiation carcinogenesis. Unfortunately, during space exploration, flight crews cannot entirely avoid radiation exposure. As a result, chemical and biological countermeasures will be an important component of successful extended missions such as the exploration of Mars. There are currently several radioprotective agents (radioprotectors) in use; however, scientists continue to search for ideal radioprotective compounds-safe to use and effective in preventing and/or reducing acute and delayed effects of irradiation. This review discusses the agents that are currently available or being evaluated for their potential as radioprotectors. Further, this review discusses some implications of radioprotection for the induction and/or propagation of genomic instability in the progeny of irradiated cells.
Collapse
|
14
|
Vinnikov VA, Maznyk NA, Lloyd D. Delayed chromosomal instability in lymphocytes of cancer patients after radiotherapy. Int J Radiat Biol 2010; 86:271-82. [PMID: 20353337 DOI: 10.3109/09553000903564026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess possible delayed chromosomal instability (DCI) expressed as elevated chromatid breakage in cells containing previously formed chromosome type aberrations in cultured blood lymphocytes of cancer patients after radiotherapy (RT). MATERIALS AND METHODS Twenty patients treated for uterine cancer with external Co(60) RT, without chemotherapy, were selected. Blood was taken before, 1-2 days after RT and one year later. Lymphocytes were cultured for 50 and 100 h. Metaphases were stained with fluorescence-plus-Giemsa and analysed for chromosome and chromatid aberrations in 1st (M1) and 3rd plus later (M3+) mitoses. RESULTS RT caused a significant increase of radiation-specific chromosome aberrations in patients' lymphocytes together with DCI, which was observed as an excessive yield of cells containing both chromosome and chromatid aberrations (defined as C(acs&act)). This DCI passed successfully through mitoses in vitro, and at the end of RT a mean yield of 'extra' C(acs&act) was 3 x 10(-3) x cell(-1) amongst either M1 or M3+ cells. At the end of RT and one year later DCI in M1 lymphocytes appeared at random amongst patients, but some inter-individual variation was found for DCI presence in M3+ cells at both post-irradiation samplings. As time passed, the mean yield of lymphocytes exhibiting DCI decreased in vivo and one year after RT reached the pre-treatment level of 1 x 10(-3) x cell(-1). CONCLUSIONS DCI was demonstrated in descendants of human lymphocytes after therapeutic irradiation. The effect diminished one year later, suggesting that the progeny of patients' irradiated stem cells did not produce new daughter lymphocytes exhibiting DCI during the studied post-irradiation period.
Collapse
Affiliation(s)
- Volodymyr A Vinnikov
- Radiation Cytogenetics Laboratory, Institute for Medical Radiology AMS of Ukraine, Kharkiv, Ukraine.
| | | | | |
Collapse
|
15
|
Postiglione I, Chiaviello A, Palumbo G. Twilight effects of low doses of ionizing radiation on cellular systems: a bird's eye view on current concepts and research. Med Oncol 2009; 27:495-509. [PMID: 19504191 DOI: 10.1007/s12032-009-9241-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 01/10/2023]
Abstract
The debate about the health risks from low doses of radiation is vigorous and often acrimonious since many years and does not appear to weaken. Being far from completeness, this review presents only a bird's eye view on current concepts and research in the field. It is organized and divided in two parts. The first is dedicated to molecular responses determined by radiation-induced DNA ruptures. It focuses its attention on molecular pathways that are activated by ATM and tries to describe the variegated functions and specific roles of Chk2 and p53 and other proteins in sensing, promoting and executing DNA repair. The second part is more concerned with the risk associated with exposure to low dose radiation and possible effects that the radiation-affected cell may undergo. These effects include induction of apoptosis and mitotic catastrophe, bystander effect and genomic instability, senescence and hormetic response. Current hypotheses and research on these issues are briefly discussed.
Collapse
Affiliation(s)
- Ilaria Postiglione
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L Califano and IEOS/CNR, University FEDERICO II, Via Sergio Pansini 5, 80131 Naples, Italy
| | | | | |
Collapse
|
16
|
Bertell R, Ehrle LH, Schmitz-Feuerhake I. Pediatric CT research elevates public health concerns: low-dose radiation issues are highly politicized. INTERNATIONAL JOURNAL OF HEALTH SERVICES 2007; 37:419-39. [PMID: 17844927 DOI: 10.2190/7841-2700-348t-041x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This article presents an analysis of issues related to low-dose radiation, with a focus on pediatric computed tomography (CT). It references several early studies that are seldom quoted in radiation research papers, then quantifies the excess lifetime fatal cancer yield attributable to an estimated 6.5 million pediatric abdominal CT scans. The authors highlight an important policy document issued jointly by the National Cancer Institute and the Society for Pediatric Radiology--specifically, its conclusion that a small dose from CT represents "a public health concern." Finally, the article identifies several contentious issues and proposes policy initiatives that, if implemented, could result in significant reductions of future radiogenic cancers and chronic injuries. The authors call for discussions between professional radiology societies and public interest health organizations, thereby involving all stakeholders.
Collapse
Affiliation(s)
- Rosalie Bertell
- International Science Oversight Board, Organic Consumers Association
| | | | | |
Collapse
|
17
|
The influence of fullerenol on the cell number, cell area and colony forming unit ability in irradiated human erythroleukemic cell line. HEMIJSKA INDUSTRIJA 2007. [DOI: 10.2298/hemind0703167i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DET (dye exclusion test) cell count and cell area by computer analysis of the images were determined in cell lines of human eritroleukemia (K562), which were irradiated with X-rays in one dose of 24 Gy and pretreated with 10 nmol/mL fullerenol (Cgo(OH)24). Cell samples obtained using a citocentrifuge and May-Gr?nvald Giemsi (MGG) during, were analyzed. The cell colony formation ability was monitored using quantative CFU (colony forming unit) test. Irradiation decreases the number of K562 cells, but fullerenol significantly increases cell number on 24th and 48th hour of the experiment. Cell area is larger, and the number of formed cell colonies after irradiation is significantly smaller compared to pretreated groups during the whole experiment. Pretreatment with fullerenol maintains a smaller cell area, and the number of colony formed units was larger compared to the irradiated cells.
Collapse
|
18
|
The influence of fullerenol on antioxidative enzyme activity in irradiated human erythroleukemic cell line (K562). HEMIJSKA INDUSTRIJA 2007. [DOI: 10.2298/hemind0703164b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cell culture K562 samples were treated with fullerenol (C6o(OH)24) at a concentration of 10 nmol/mL and thereafter irradiated with X-rays (24Gy). The activity of gamma-glutamyltransfrease (?-GT), total superoxide-dismutase (SOD) and glutathion-peroxidase (GSH-Px) was determined 1, 24 and 48 hours after irradiation. Irradiation induces an increase in the activity of all the investigated enzymes. Fullerenol in the applied dose decreased the ?-GT activity 24 and 48 h after irradiation. The total SOD activity is increased in both pretreated groups except in the iradiated group at the 48th hour. Treatment with fullerenol before irradiation increased GSH-Px activity in irradiated groups and decreased it in the control groups.
Collapse
|
19
|
Mothersill C, Seymour CB. Radiation-induced bystander effects and the DNA paradigm: an "out of field" perspective. Mutat Res 2006; 597:5-10. [PMID: 16414088 DOI: 10.1016/j.mrfmmm.2005.10.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 08/19/2005] [Accepted: 10/22/2005] [Indexed: 10/25/2022]
Abstract
Over the past 20 years there has been increasing evidence that cells and the progeny of cells surviving a very low dose of ionizing radiation [micro-mGy] can exhibit a wide range of non-monotonic effects such as adaptive responses, low dose hypersensitivity and other delayed effects. These effects are inconsistent with the expected dose-response, when based on extrapolation of high dose data and cast doubt on the reliability of extrapolating from high dose data to predict low dose effects. Recently the cause of many of these effects has been tentatively ascribed to so-called "bystander effects". These are effects that occur in cells not directly hit by an ionizing track but which are influenced by signals from irradiated cells and are thus highly relevant in situations where the dose is very low. Not all bystander effects may be deleterious although most endpoints measured involve cell damage or death. In this commentary, we consider how these effects impact the historical central dogma of radiobiology and radiation protection, which is that DNA double strand breaks are the primary radiation-induced lesion which can be quantifiably related to received dose and which determine the probability that a cancer will result from a radiation exposure. We explore the low dose issues and the evidence and conclude that in the very low dose region, the primary determinant of radiation exposure outcome is the genetic and epigenetic background of the individual and not solely the dose. What this does is to dissociate dose from effect as a quantitative relationship, but it does not necessarily mean that the effect is ultimately unrelated to DNA damage. The fundamental thesis we present is that at low doses fundamentally different mechanisms underlie radiation action and that at these doses, effect is not quantitatively related to dose.
Collapse
Affiliation(s)
- Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Unit, McMaster University, Hamilton, Ont., Canada L8S 4K1.
| | | |
Collapse
|
20
|
Devi PU, Satyamitra M. Tracing radiation induced genomic instabilityin vivoin the haemopoietic cells from fetus to adult mouse. Br J Radiol 2005; 78:928-33. [PMID: 16177016 DOI: 10.1259/bjr/18119329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The present experiment was aimed at studying the delayed expression of fetal irradiation induced genomic instability in the mouse haemopoietic cells in vivo. The abdominal area of 14 day pregnant Swiss albino mice was exposed to 0-1.5 Gy of gamma radiation. Chromosomal aberrations were studied in three passages of spleen colonies (short-term repopulating stem cells, STRSC) derived from 24 h post-irradiation fetal liver cells and in the 1-20 months postpartum bone marrow (long-term repopulating stem cells, LTRSC). Irradiation produced a significant and dose-dependent increase in the aberrant metaphases in the first passage spleen colony (CFU-S1) cells, which decreased in subsequent passages and reached normal levels by the third passage (CFU-S3). Bone marrow at 1-6 months postpartum showed similar chromosomal picture in the 0 Gy control and after 0.5-1.5 Gy, but there was a clear increase in aberrant cells from 9 months postpartum in the irradiated groups. Some mice in all irradiated groups showed a 2.5- to 5-fold increase in peripheral leukocyte counts. Bone marrow of these animals exhibited severe aneuploidy, the chromosome number ranging from less than 1n to 6n at 20 months of age. Our results indicate that unstable chromosome aberrations induced in the fetal haemopoietic STRSC are eliminated during subsequent cell divisions. However, genomic instability induced in the LTRSC persists and is expressed as chromosomal aberrations at advanced ages. Induction of chromosome aneuploidy could be an early step in the chain of events leading to adult leukaemia after prenatal irradiation.
Collapse
Affiliation(s)
- P Uma Devi
- Department of Research, Jawaharlal Nehru Cancer Hospital and Research Centre, Idgah Hills, Bhopal, India
| | | |
Collapse
|
21
|
Abstract
A number of phenotypes persist in the progeny of irradiated cells for many generations including delayed reproductive death, cell transformation, genomic instability, and mutations. It appears likely that persistent phenotypes are inherited by an epigenetic mechanism, although very little is known about the nature of such a mechanism or how it is established. One hypothesis is that radiation causes a heritable increase in oxy-radical activity. In the present study, intracellular levels of reactive oxygen species (ROS) in human lymphoblast clones derived from individually X-irradiated cells were monitored for about 55 generations after exposure. A number of clones derived from irradiated cells had an increase in dichlorofluorescein (DCF) fluorescence at various times. Cells with abrogated TP53 expression had a decreased oxidant response. Flow cytometry analysis of clones with increased fluorescence did not detect increases in the sub-G(1) fraction or decreased cell viability compared to nonirradiated clones, indicating that increased levels of apoptosis and cell death were not present. The oxidative stress response protein heme oxygenase 1 (HO1) was induced in some cultures derived from X-irradiated cells but not in cultures derived from unirradiated cells. The expression of the dual specificity mitogen-activated protein (MAP) kinase phosphatase (MPK1/CL100), which is inducible by oxidative stress and has a role in modulating ERK signaling pathways, was also increased in the progeny of some irradiated cells. Finally, there was an increase in the phosphorylated tyrosine content of a prominent protein band of about 45 kDa. These results support the hypothesis that increased oxy-radical activity is a persistent effect in X-irradiated mammalian cells and further suggest that this may lead to changes in the expression of proteins involved in signal transduction.
Collapse
Affiliation(s)
- Rebecca E Rugo
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
22
|
Roff SR. Establishing the possible radiogenicity of morbidity and mortality from participation in UK nuclear weapons development. Med Confl Surviv 2004; 20:218-41. [PMID: 15508887 DOI: 10.1080/1362369042000248820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
To succeed in compensation claims for radiogenic injuries induced by their participation in the United Kingdom's atomic and nuclear weapons tests of the 1950s and 1960s, the 22,000 nuclear test veterans will have to satisfy Hill's Principles of Causation. Although they are blocked by legal restraints from suing the Crown, the evidential case for the veterans has been strengthening in recent years to a point where it would probably succeed in a UK court of law. The delay in mounting such a case has worked in favour of the veterans; if the legal constraints are removed, their chances of success are greater than if they had gone into court a decade ago. The article examines the evidence in support of their claims in relation to each of Hill's Principles.
Collapse
|
23
|
Brooks AL. Developing a scientific basis for radiation risk estimates: goal of the DOE Low Dose Research Program. HEALTH PHYSICS 2003; 85:85-93. [PMID: 12852475 DOI: 10.1097/00004032-200307000-00016] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The U.S. Department of Energy's Low Dose Radiation Research Program is a 10 y activity currently funded at $21 million per year. It focuses on biological responses to low doses (<0.1 Gy) of low-LET ionizing radiation. The overall goal of this program is to provide a sound scientific basis for the radiation protection standards. The program supports basic research that combines modern genomic, molecular, and cellular techniques with recent advances in scientific instrumentation. These combinations make it possible to detect responses and test paradigms associated with the mechanisms of low dose radiation action not previously measurable or testable. Research to date is briefly reviewed and suggests the need for some major paradigm shifts. Exposure of the extracellular matrix can modify both the pattern of gene expression and the phenotype of the cells which result in cell transformation without direct mutation. Low dose radiation exposure results in a range of dose-response relationships for changes in the number, types, and patterns of gene expression. Such studies suggest an increased role for gene expression relative to single mutations for radiation induced cancer. Low dose research using microbeams demonstrated that cells do not require a direct "hit" to result in significant biological alterations. These "bystander effects" demonstrate that "non-hit" cells respond with changes in gene expression, DNA repair, chromosome aberrations, mutations, and cell killing. Research to link genomic instability with cancer is also being conducted and will be discussed. Detection of radiosensitivity genes as markers of genetic susceptibility in individuals and populations can be used in epidemiological studies to determine how molecular changes may impact risk. It is not possible to determine how this research will influence current radiation standards. However, the Low Dose Research Program will help ensure that radiation standards are set using the best scientific data available, and that they are adequate and appropriate for the protection of workers and the public.
Collapse
Affiliation(s)
- Antone L Brooks
- Washington State University Tri-Cities, 2710 University Drive, Richland, WA 99352, USA.
| |
Collapse
|
24
|
Schwartz JL, Jordan R, Evans HH, Lenarczyk M, Liber H. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells. Radiat Res 2003; 159:730-6. [PMID: 12751955 DOI: 10.1667/rr3005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.
Collapse
Affiliation(s)
- Jeffrey L Schwartz
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6069, USA.
| | | | | | | | | |
Collapse
|
25
|
Miyazawa T, Sato H, Hatakeyama K, Kitagawa T, Kominami R. Allelic losses in mouse skin tumors induced by gamma-irradiation of p53 heterozygotes. Jpn J Cancer Res 2002; 93:994-9. [PMID: 12359052 PMCID: PMC5927138 DOI: 10.1111/j.1349-7006.2002.tb02475.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Skin tumors were induced by gamma-irradiation in F(1) mice between C3H/He or BALB/c and MSM carrying a p53-deficient allele. The incidence was 39.1% (34/87) in p53(KO/+) mice of the C3H/MSM genetic background and 14.3% (19/133) in those of the BALB/MSM background. Interestingly, most of the tumors (82%) lost the wild-type p53 allele and no skin tumor was found in p53(+ / +) F(1) mice. This suggests a requirement of p53 loss for the skin cancer development. Genome scan localized a chromosomal locus showing frequent allelic losses near D12Mit2, which may harbor a tumor suppressor gene. In addition, 23 loci distributed on 13 chromosomes exhibited allelic losses at frequencies of more than 20%. The genome-wide occurrence of allelic losses suggests that genomic instability of the skin tumors may be implicated in radiation-induced carcinogenesis. The present study is the first to report a mouse model system useful for the analysis of radiation induction of skin cancer in man.
Collapse
Affiliation(s)
- Tomonori Miyazawa
- Department of Gene Regulation, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | | | | | | | | |
Collapse
|
26
|
Rugo RE, Secretan MB, Schiestl RH. X radiation causes a persistent induction of reactive oxygen species and a delayed reinduction of TP53 in normal human diploid fibroblasts. Radiat Res 2002; 158:210-9. [PMID: 12105992 DOI: 10.1667/0033-7587(2002)158[0210:xrcapi]2.0.co;2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Multiple genetic changes are required for the development of a malignant cell. The frequency of such changes in cancer cells is higher than can be explained through random mutation, and it was proposed that a subpopulation of cells develop a persistent mutator phenotype. Evidence for such a phenotype has been observed in mammalian cells after treatment with ionizing radiation. The mechanism that promotes this effect has not been defined, but proposed explanations include increased levels of reactive oxygen species (ROS) in irradiated cells and their progeny. The tumor suppressor TP53 is of prime importance in coordinating the cellular response to damage, and it has been suggested to have a role in regulating the cellular redox state. We investigated the persistence of induced levels of ROS in normal diploid human cells for 1 month after X-ray exposure and the role of TP53 in this oxidant response. X radiation induced an oxidant response that persisted for 2 weeks after exposure in cells with normal TP53 function. ROS levels in cells with abrogated TP53 function were decreased in magnitude and duration. X radiation caused a primary transient induction of TP53 followed by a reinduction of TP53 5 days after irradiation. This reinduction persisted for at least 2 days and coincided with the largest induction of apoptosis. The persistently elevated levels of ROS and delayed reinduction of TP53 reported here are further evidence of the delayed effects of ionizing radiation and add to the growing number of such observations.
Collapse
Affiliation(s)
- R E Rugo
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
27
|
Phillipson RP, Tobi SE, Morris JA, McMillan TJ. UV-A induces persistent genomic instability in human keratinocytes through an oxidative stress mechanism. Free Radic Biol Med 2002; 32:474-80. [PMID: 11864787 DOI: 10.1016/s0891-5849(01)00829-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ultraviolet-A (UV-A, 320 to 400 nm) radiation comprises 95% of the solar ultraviolet radiation (UVR) reaching the earth's surface. It has been associated experimentally and epidemiologically with malignant melanoma. In this study we investigated whether UV-A radiation can induce a persistent, heritable hypermutability in mammalian cells similar to that observed following ionising radiation (IR). Using the immortalized human skin keratinocyte cell line HaCaT we found that UV-A radiation does lead to a continuing reduction in plating efficiency, an increased "spontaneous" mutant fraction, and an increase in micronucleus formation up to 21 d after initial exposure. Reversal of these effects using catalase may indicate a role for hydrogen peroxide in this phenomenon. These results add to the significance of UV-A radiation as a risk factor in skin carcinogenesis.
Collapse
Affiliation(s)
- Ross P Phillipson
- Department of Biological Sciences, Lancaster University, Bailrigg, UK
| | | | | | | |
Collapse
|
28
|
Schwartz JL, Jordan R, Evans HH. Characteristics of chromosome instability in the human lymphoblast cell line WTK1. CANCER GENETICS AND CYTOGENETICS 2001; 129:124-30. [PMID: 11566342 DOI: 10.1016/s0165-4608(01)00440-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The characteristics of spontaneous and radiation-induced chromosome instability were determined in each of 50 individual clones isolated from control populations of human lymphoblasts (WTK1), as well as from populations of these cells previously exposed to two different types of ionizing radiation, Fe-56 and Cs-137. The types of chromosome instability did not appear to change in clones surviving radiation exposure. Aneuploidy, polyploidy, chromosome dicentrics and translocations, and chromatid breaks and gaps were found in both control and irradiated clones. The primary effect of radiation exposure was to increase the number of cells within any one clone that had chromosome alterations. Chromosome instability was associated with telomere shortening and elevated levels of apoptosis. The results suggest that the proximal cause of chromosome instability is telomere shortening.
Collapse
Affiliation(s)
- J L Schwartz
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
29
|
Abramsson-Zetterberg L, Grawé J. Extended exposure of adult and fetal mice to 50 Hz magnetic field does not increase the incidence of micronuclei in erythrocytes. Bioelectromagnetics 2001; 22:351-7. [PMID: 11424159 DOI: 10.1002/bem.61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The flow cytometer-based micronucleus assay was used to study the effects on chromosomes in erythroid cells of CBA/Ca mice after extended exposure to 50 Hz magnetic field (MF), 14 microT, peak-to-peak (p-p). The study included two different experiments: (a) mice exposed in utero during 18 days of their prenatal stage, and (b) adult mice exposed for 18 days. In experiment (a) 35 days after exposure was terminated, peripheral blood was drawn from the mice exposed in utero to determine whether the exposure had a genotoxic effect on the pluripotent erythroid stem cells. About 200000 polychromatic erythrocytes (PCE) and 200000 normochromatic erythrocytes (NCE) were analysed from each of 20 exposed mice. The EMF exposure did not significantly change the frequency of micronucleated PCE or NCE in comparison with 20 sham-irradiated mice. There was no difference in the proportion of PCE between exposed and unexposed animals. Similarly, in experiment (b) no differences were seen between EMF exposed and unexposed adult mice when samples of peripheral blood were taken at the end of exposure and analyzed for micronuclei in PCE and NCE. The proportion of PCE was the same in both groups. The results indicate that exposure to EMF does not induce direct or indirect effects on chromosomes in erythroid cells expressed as increased levels of micronucleated erythrocytes of mice. No indications of delayed genetic effects were found.
Collapse
|
30
|
Brennan RJ, Schiestl RH. Persistent Genomic Instability in the YeastSaccharomyces cerevisiaeInduced by Ionizing Radiation and DNA-Damaging Agents. Radiat Res 2001; 155:768-77. [PMID: 11352758 DOI: 10.1667/0033-7587(2001)155[0768:pgiity]2.0.co;2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A "hypermutable" genome is a common characteristic of cancer cells, and it may contribute to the progressive accumulation of mutations required for the development of cancer. It has been reported that mammalian cells surviving exposure to gamma radiation display several highly persistent genomic instability phenotypes which may reflect a hypermutability similar to that seen in cancer. These phenotypes include an increased mutation frequency and a decreased plating efficiency, and they continue to be observed many generations after the radiation exposure. The underlying causes of this genomic instability have not been fully determined. We show here that exposure to gamma radiation and other DNA-damaging treatments induces a similar genomic instability in the yeast Saccharomyces cerevisiae. A dose-dependent increase in intrachromosomal recombination was observed in cultures derived from cells surviving gamma irradiation as many as 50 generations after the exposure. Increased forward mutation frequencies and low colony-forming efficiencies were also observed. Persistently elevated recombination frequencies in haploid cells were dominant after these cells were mated to nonirradiated partners, and the elevated recombination phenotype was also observed after treatment with the DNA-damaging agents ultraviolet light, hydrogen peroxide, and ethyl methanesulfonate. Radiation-induced genomic instability in yeast may represent a convenient model for the hypermutability observed in cancer cells.
Collapse
Affiliation(s)
- R J Brennan
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115-6021, USA
| | | |
Collapse
|
31
|
Bartkowiak D, Högner S, Nothdurft W, Röttinger EM. Cell cycle and growth response of CHO cells to X-irradiation: threshold-free repair at low doses. Int J Radiat Oncol Biol Phys 2001; 50:221-7. [PMID: 11316567 DOI: 10.1016/s0360-3016(01)01455-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To test the hypothesis of a threshold for induced repair of DNA damage (IR) and, secondarily, of hyperradiosensitivity (HRS) to low-dose X-irradiation. METHODS AND MATERIALS Exponentially growing Chinese hamster ovary cells (CHO) were X-irradiated with doses from 0.2 to 8 Gy. Survival data were established by conventional colony-forming assay and flow-cytometric population counting. The early cell cycle response to radiation was studied based on DNA-profiles and bromodeoxyuridine pulse-labeling experiments. RESULTS Colony-forming data were consistent with HRS. However, these data were of low statistic significance. Population counting provided highly reproducible survival curves that were in perfect accord with the linear-quadratic (LQ) model. The dominant cell cycle reaction was a dose-dependent delay of G2 M and late S-phase. CONCLUSION There was no evidence for a threshold of IR and for low-dose HRS in X-irradiated CHO cells. It is suggested that DNA damage repair activity is constitutively expressed during S-phase and is additionally induced in a dose-dependent and threshold-free manner in late S-phase and G2. The resulting survival is precisely described by the LQ model.
Collapse
Affiliation(s)
- D Bartkowiak
- Department of Radio-oncology, University Hospital Ulm, Robert-Koch-Str. 6, D-89081 Ulm, Germany.
| | | | | | | |
Collapse
|
32
|
Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 2000. [PMID: 10955814 DOI: 10.1093/carcin/21.8.1623] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor cells stimulate the formation of stroma that secretes various mediators pivotal for tumor growth, including growth factors, cytokines, and proteases. However, little is known about the local regulation of these soluble mediators in the human tumor microenvironment. In this study, the local expression of cytokines, chemokines, and angiogenic factors was investigated in primary breast cancer tissue. The concentrations of interleukin (IL)-1, IL-4, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-alpha, IFN-gamma, IL-8, macrophage chemoattractant protein (MCP)-1, epithelial-neutrophil activating peptide-78, vascular endothelial growth factor, and thymidine phosphorylase (TP) were measured in 151 primary breast cancer extracts by ELISA. Tumor-associated macrophages (TAMs) were also examined by immunohistochemistry with anti-CD68 antibodies. The correlation between soluble mediators and the relationship between TAM count and soluble mediators were evaluated. MCP-1 concentration was correlated significantly with the level of vascular endothelial growth factor, TP, TNF-alpha, and IL-8, which are potent angiogenic factors. IL-4 concentration was correlated significantly with IL-8 and IL-10. On the other hand, an inverse association was observed between TP and IL-12. The level of MCP-1 was associated significantly with TAM accumulation. In the immunohistochemical analysis, MCP-1 expression was observed in both infiltrating macrophages and tumor cells. Prognostic analysis revealed that high expression of MCP-1, as well as of VEGF, was a significant indicator of early relapse. These findings indicate that interaction between the immune network system and angiogenesis is important for progression of human breast cancer, and that MCP-1 may play an important role in the regulation of angiogenesis and the immune system.
Collapse
Affiliation(s)
- T Ueno
- Breast Oncology and Department of Pathology, Tokyo Metropolitan Komagome Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Our basic understanding of the biological responses to cosmic radiations comes in large part from an international series of ground-based laboratory studies, where accelerators have provided the source of representative charged particle radiations. Most of the experimental studies have been performed using acute exposures to a single radiation type at relatively high doses and dose rates. However, most exposures in flight occur from low doses of mixed radiation fields at low-dose rates. This paper provides a brief overview of existing pertinent clinical and biological radiation data and the limitations associated with data available from specific components of the radiation fields in airflight and space travel.
Collapse
Affiliation(s)
- E A Blakely
- Ernest Orlando Lawrence Berkeley National Laboratory, CA 94702, USA.
| |
Collapse
|
34
|
Taga M, Shiraishi K, Shimura T, Uematsu N, Oshimura M, Niwa O. Increased frequencies of gene and chromosome mutations after X-irradiation in mouse embryonal carcinoma cells transfected with the bcl-2 gene. Jpn J Cancer Res 2000; 91:994-1000. [PMID: 11050469 PMCID: PMC5926261 DOI: 10.1111/j.1349-7006.2000.tb00876.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Preimplantation stage mouse embryos are known to be highly sensitive to the killing effect of DNA-damaging agents such as radiation. Interestingly, however, this stage of development is well protected from radiation induction of malformation and carcinogenesis in postnatal life. In recent years, it has become clear that the stem cells of preimplantation stage embryos undergo extensive apoptosis after DNA damage. It has been postulated that this apoptosis is likely to be responsible for the resistance to malformation, by excluding cells carrying deleterious DNA damage. We have tested the possible role of apoptosis in elimination of gene and chromosome mutations in undifferentiated mouse embryonal carcinoma cell line, F9, transfected with human bcl-2 cDNA. The colony radiosensitivity of F9 cells was not affected by overexpression of the bcl-2 gene, but the apoptotic cell death was suppressed, as examined by DNA ladder assay and Hoechst staining. This suppression was accompanied by an increase in the frequencies of hprt mutation and micronucleus formation after X-irradiation. These results support the idea that maintenance of genomic integrity during early development is likely to be executed by apoptotic elimination of cells at risk.
Collapse
Affiliation(s)
- M Taga
- Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cells of higher eukaryotes possess several very efficient systems for the repair of radiation-induced lesions in DNA. Different strategies have been adopted at the cellular level to remove or even tolerate various types of lesions in order to assure survival and limit the mutagenic consequences. In mammalian cells, the main DNA repair systems comprise direct reversion of damage, excision of damage and exchange mechanisms with intact DNA. Among these, the direct ligation of single strand breaks (SSB) by a DNA ligase and the multi-enzymatic repair systems of mismatch repair, base and nucleotide excision repair as well as the repair of double strand breaks (DSB) by homologous recombination or non homologous end-joining are the most important systems. Most of these processes are error-free except the non homologous end-joining pathway used mainly for the repair of DSB. Moreover, certain lesions can be tolerated by more or less accurately acting polymerases capable of performing translesional DNA syntheses. The DNA repair systems are intimately integrated in the network of cellular regulation. Some of their components are DNA damage inducible. Radiation-induced mutagenesis is largely due to unrepaired DNA damage but also involves error-prone repair processes like the repair of DSB by non-homologous end-joining. Generally, mammalian cells are well prepared to repair radiation-induced lesions. However, some questions remain to be asked about mechanistic details and efficiencies of the systems for removing certain types of radiation-damage and about their order and timing of action. The answers to these questions would be important for radioprotection as well as radiotherapy.
Collapse
Affiliation(s)
- D Averbeck
- Institut Curie, laboratoires Raymond-Latarjet, UMR2027 CNRS, centre universitaire d'Orsay, France
| |
Collapse
|
36
|
Caron RM, Nagasawa H, Yu Y, Pfenning T, Vetrovs H, Little JB. Evidence for a role for genomic instability in radiation-induced mutagenesis. RADIATION ONCOLOGY INVESTIGATIONS 2000; 5:119-23. [PMID: 9303068 DOI: 10.1002/(sici)1520-6823(1997)5:3<119::aid-roi7>3.0.co;2-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R M Caron
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Domracheva EV, Rivkind NB, Aseeva EA, Obukhova TN, D'achenko LV, Vorobiov AI. Stable and unstable aberrations in lymphocytes of Chernobyl accident clearance workers carrying rogue cells. Appl Radiat Isot 2000; 52:1153-9. [PMID: 10836422 DOI: 10.1016/s0969-8043(00)00063-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cells with multiple chromosomal aberrations, the so-called rogue cells, were found in blood samples from more than 100 Chernobyl accident clearance workers. A comparative analysis of frequencies of stable and unstable chromosomal aberrations in two worker groups--those with or without rogue cells was made. A higher level of unstable aberrations in persons carrying rogue cells was observed. No difference in the level of stable aberrations between the groups was seen. The possibility of low dose alpha irradiation causing the chromosomal damage is raised.
Collapse
Affiliation(s)
- E V Domracheva
- Karyology Laboratory, National Research Center for Hematology, Russian Academy of Medical Sciences, Moscow.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Manned space missions recently increased in number and duration, thus it became important to estimate the biological risks encountered by astronauts. They are exposed to cosmic and galactic rays, a complex mixture of different radiations. In addition to the measurements realized by physical dosimeters, it becomes essential to estimate real biologically effective doses and compare them to physical doses. Biological dosimetry of radiation exposures has been widely performed using cytogenetic analysis of chromosomes. This approach has been used for many years in order to estimate absorbed doses in accidental or chronic overexposures of humans. In addition to conventional techniques (Giemsa or FPG staining, R- or G-banding), faster and accurate means of analysis have been developed (fluorescence in situ hybridization [FISH] painting). As results accumulate, it appears that strong interindividual variability exists in the basal level of aberrations. Moreover, some aberrations such as translocations exhibit a high background level. Radiation exposures seem to induce variability between individual responses. Its extent strongly differs with the mode of exposure, the doses delivered, the kind of radiation, and the cytogenetic method used. This paper aims to review the factors that may influence the reliability of cytogenetic dosimetry. The emphasis is on the exposure to high linear energy transfer (LET) particles in space as recent studies demonstrated interindividual variations in doses estimated from aberration analysis after long-term space missions. In addition to the problem of dose estimates, the heterogeneity of cosmic radiation raises questions relating to the real numbers of damaged cells in an individual, and potential long-term risks. Actually, densely ionizing particles are extremely potent to induce late chromosomal instability, and again, interindividual variability exists in the expression of damage.
Collapse
Affiliation(s)
- I Testard
- CEA, Commissariat a l'Energie Atomique, DSV/DRR, Laboratoire de Radiobiologie et Oncologie, BP6, Fontenay-aux-Roses, France
| | | |
Collapse
|
39
|
Carls N, Schiestl RH. Effect of ionizing radiation on transgenerational appearance of p(un) reversions in mice. Carcinogenesis 1999; 20:2351-4. [PMID: 10590232 DOI: 10.1093/carcin/20.12.2351] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple genetic changes are required for the development of a malignant tumor cell and many environmentally induced cancers show a delayed onset of > 20 years following exposure. In fact, the frequency of genetic changes in cancer cells is higher than can be explained by random mutation. A high level of genetic instability in a subpopulation of cells may be caused by a mutator phenotype transmitted through many cell divisions. We have determined the effects of irradiation of parental male mice on the frequency and characteristics of mitotically occurring DNA deletion events at the p(un) locus in the offspring. Reversion of the p(un) marker in mouse embryos is due to deletion of 70 kb of DNA resulting in fur spots in the offspring. We found that irradiation of male mice caused a significantly higher frequency of large spots in the offspring, indicative of the induction of DNA deletions early in embryo development. These deletion events occurred, however, many cell divisions after irradiation. The present data indicate that exposure of the germline to ionizing radiation results in induction of delayed DNA deletions in offspring mice.
Collapse
Affiliation(s)
- N Carls
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Mustonen R, Bouvier G, Wolber G, Stöhr M, Peschke P, Bartsch H. A comparison of gamma and neutron irradiation on Raji cells: effects on DNA damage, repair, cell cycle distribution and lethality. Mutat Res 1999; 429:169-79. [PMID: 10526202 DOI: 10.1016/s0027-5107(99)00123-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Comet assay (microgel electrophoresis) was used to study DNA damage in Raji cells, a B-lymphoblastoid cell line, after treatment with different doses of neutrons (0.5 to 16 Gy) or gamma rays (1.4 to 44.8 Gy). A better growth recovery was observed in cells after gamma-ray treatments compared with neutron treatments. The relative biological effectiveness (RBE) of neutron in cell killing was determined to be 2.5. Initially, the number of damaged cells per unit dose was approximately the same after neutron and gamma-ray irradiation. One hour after treatment, however, the number of normal cells per unit dose was much lower for neutrons than for gamma rays, suggesting a more efficient initial repair for gamma rays. Twenty-four hours after treatment, the numbers of damaged cells per unit dose of neutrons or gamma rays were again at comparable level. Cell cycle kinetic studies showed a strong G2/M arrest at equivalent unit dose (neutrons up to 8 Gy; gamma rays up to 5.6 Gy), suggesting a period in cell cycle for DNA repair. However, only cells treated with low doses (up to 2 Gy) seemed to be capable of returning into normal cell cycle within 4 days. For the highest dose of neutrons, decline in the number of normal cells seen at already 3 days after treatment was deeper compared with equivalent unit doses of gamma rays. Our present results support different mechanisms of action by these two irradiations and suggest the generation of locally multiply damaged sites (LMDS) for high linear energy transfer (LET) radiation which are known to be repaired at lower efficiency.
Collapse
Affiliation(s)
- R Mustonen
- Division of Toxicology and Cancer Risk Factors, German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Mendonca MS, Temples TM, Farrington DL, Bloch C. Evidence for a role of delayed death and genomic instability in radiation-induced neoplastic transformation of human hybrid cells. Int J Radiat Biol 1998; 74:755-64. [PMID: 9881721 DOI: 10.1080/095530098141032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
HeLa x skin fibroblast human hybrid cells have been developed into a model of radiation-induced neoplastic transformation. The authors' studies indicate that the loss of putative tumour suppressor loci on fibroblast chromosomes 11 and 14 is evident after radiation-induced neoplastic transformation. How these fibroblast chromosomes/putative tumour suppressor loci are lost after radiation exposure is currently being investigated. It has been shown that the appearance of transformed foci correlates with the onset of the delayed reduction in plating efficiency or delayed death. This delayed death appears to be the result of the onset of a novel delayed apoptosis in the irradiated progeny beginning around day 8 post-irradiation. It was proposed that the reduction in plating efficiency and subsequent neoplastic transformation are all the result of a radiation-induced genomic instability. The instability process has two relevant outcomes: (1) cell death due to the induction of a delayed apoptosis in cells; and (2) neoplastic transformation of a small subset of survivors that have lost fibroblast chromosomes 11 and 14 (tumour suppressor loci) but either have not acquired enough genetic damage to induce the apoptotic response or have undergone molecular changes allowing them to bypass apoptosis. Data from the genomic instability and delayed death literature will be reviewed in terms of relevance to radiation-induced neoplastic transformation. New data are presented which demonstrate that use of growth media supplemented with a specific lot of calf serum was found to increase the number of cells undergoing radiation-induced neoplastic transformation, compared with standard serum after a fixed dose of radiation. This correlates with an increase in delayed death in the irradiated progeny which the authors propose is the result of increased genomic instability post-irradiation of cells grown in this serum. Preliminary data are presented indicating that a delayed apoptosis is also seen after high-energy He- particle exposure in this system.
Collapse
Affiliation(s)
- M S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | |
Collapse
|
42
|
Lambert B, Holmberg K, Hackman P, Wennborg A. Radiation induced chromosomal instability in human T-lymphocytes. Mutat Res 1998; 405:161-70. [PMID: 9748554 DOI: 10.1016/s0027-5107(98)00133-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosomal instability in proliferating mammalian cells is characterized by a persistent increase of chromosomal aberrations and rearrangements occurring de novo during successive cell generations. Recent results from many laboratories using a variety of cells and cytogenetic end points show that this phenotype can be induced by low as well as high LET irradiation. A typical feature of chromosomal instability in primary human G0-lymphocytes exposed to gamma-irradiation at both high dose rate (45 Gy h-1) and low dose rate (0.024 Gy h-1) is the appearance of novel aberrations in the clonal progeny of the irradiated cell, many generations after the exposure. The same phenotype was observed in lymphocytes that were allowed to recover for 5 days in G0 after the radiation exposure, as well as in hprt-mutant T cell clones. These results demonstrate that neither the acute genotoxic stress caused by high dose rate as compared to low dose rate irradiation, nor a hypothesized conflict between mitogen induced growth stimulation and growth arrest due to radiation damage, seem to be critical conditions for the development chromosomal instability in these cells. In contrast to observations in other cells, no evidence of a persistent decrease of cloning ability was observed in the progeny of radiation-exposed human lymphocytes, and no alteration was observed in their sensitivity to a second radiation exposure. Furthermore, the frequency of CA-repeat length variation at three loci was not increased in the progeny of X-irradiated T cells as compared to non-irradiated cells, which indicates that microsatellite instability is not part of the chromosomal instability phenotype in human T-lymphocytes.
Collapse
Affiliation(s)
- B Lambert
- The Karolinska Institute, Department of Biosciences, CNT/Novum, 141 57, Huddinge, Sweden.
| | | | | | | |
Collapse
|
43
|
Abstract
The early observations on the possible induction of transmissible genomic instability after exposure to ionising radiation has received a strong support in the literature during the last 10 years. Aided by new research tools in biology, the better understanding of the mechanisms behind genomic instability leads to conclusions which are challenging the existing views on the interaction and response of the genome to radiation or chemicals. It has become commonly accepted that the full revelation of biological pathways leading to the loss of stability of the genome will also be a major step in the understanding of carcinogenesis. In this short review, some aspects of the recent knowledge and their implications are discussed.
Collapse
Affiliation(s)
- M Harms-Ringdahl
- Swedish Radiation Protection Institute, S-171 16 Stockholm, Sweden.
| |
Collapse
|
44
|
Testard I, Dutrillaux B, Sabatier L. Chromosomal aberrations induced in human lymphocytes by high-LET irradiation. Int J Radiat Biol 1997; 72:423-33. [PMID: 9343107 DOI: 10.1080/095530097143194] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High linear energy transfer (LET) particles are more efficient than sparsely ionizing radiations in inducing chromosomal aberrations, in particular complex rearrangements. We analysed R-banded chromosome rearrangements in human lymphocytes irradiated with several ions having a wide range of LET (31.3-1435 keV/micron). The frequency of chromosome breaks unrejoined or inferred from observed rearrangements, and of complex rearrangements induced by a single particle, increased with the LET up to about 100-150 keV/micron and seemed to level off for higher LET values. Additional study was focused on damage induced by oxygen ions of three different energies. Significant cell cycle delay, and multiple chromosome rearrangements and breaks were demonstrated using Giemsa and Fluorescence-plus-Giemsa stainings, coupled with chromosome painting. Damage increased with the fluence and the LET, but at the higher LET damage decreased for fluences > 10(7) particles/cm2. Cell death and G2 block might be involved in this phenomenon. Chromosome 1 painting exhibited a high frequency of breaks and complex rearrangements, which would not have been detected using a standard staining. Complex rearrangements were induced by as few as one particle per cell nucleus and may be considered as a biological fingerprint of high-LET irradiation.
Collapse
Affiliation(s)
- I Testard
- CEA, DSV/DRR/Laboratoire de Radiobiologie et Oncologie, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
45
|
Neubauer S, Dunst J, Gebhart E. The impact of complex chromosomal rearrangements on the detection of radiosensitivity in cancer patients. Radiother Oncol 1997; 43:189-95. [PMID: 9192966 DOI: 10.1016/s0167-8140(97)01932-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Lymphocytes of a small fraction of cancer patients responded to in vitro irradiation with an extreme chromosomal reaction. A large portion of the observed chromosome aberrations were complex chromosomal rearrangements (CCR). The present study is an attempt to define the impact of CCR on the predictive detection of an intrinsic clinical radiosensitivity in cancer patients in more detail. MATERIALS AND METHODS A three-colour 'FISH-painting' technique (chromosome in situ suppression (CISS) hybridization) was used for the detection of chromosomal rearrangements, induced by in vitro irradiation, in 81 samples of peripheral blood lymphocytes from 66 cancer patients. Thirty-three of those were assigned for radiation therapy, the others having just undergone radiation therapy. Seven healthy individuals served as controls. RESULTS CCRs are a very rare event in non-irradiated cells. Lymphocytes of patients who had just undergone therapeutic irradiation, however, not only exhibited high basic frequencies of CCR but also responded to in vitro irradiation with a more drastic increase of CCR than did the lymphocytes of non-exposed patients. A high inter-individual variability of the reaction to in vitro irradiation could be generally stated. The lymphocytes of patients with clinical signs of an outstanding radiosensitivity responded with an unusually high frequency of CCR. The total number of CCRs detected by CISS was found to be dependent on the interval from a previous radiation therapy and was slightly influenced by previous cytostatic therapy. Irrespective of these influences, patients with clinically defined radiation hypersensitivity were those with the highest radiosensitivity also in cytogenetic terms (including CCR). CONCLUSION The successful use of FISH-painting for the detection of CCR, in addition to the general breakage frequency, highlights its suitability in the identification of individual hypersensitivity to ionizing radiation. The time-consuming cytogenetic examination can be considerably reduced by its use.
Collapse
Affiliation(s)
- S Neubauer
- Institute of Human Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
46
|
Grosovsky AJ, Parks KK, Giver CR, Nelson SL. Clonal analysis of delayed karyotypic abnormalities and gene mutations in radiation-induced genetic instability. Mol Cell Biol 1996; 16:6252-62. [PMID: 8887655 PMCID: PMC231628 DOI: 10.1128/mcb.16.11.6252] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many tumors exhibit extensive chromosomal instability, but karyotypic alterations will be significant in carcinogenesis only by influencing specific oncogenes or tumor suppressor loci within the affected chromosomal segments. In this investigation, the specificity of chromosomal rearrangements attributable to radiation-induced genomic instability is detailed, and a qualitative and quantitative correspondence with mutagenesis is demonstrated. Chromosomal abnormalities preferentially occurred near the site of prior rearrangements, resulting in complex abnormalities, or near the centromere, resulting in deletion or translocation of the entire chromosome arm, but no case of an interstitial chromosomal deletion was observed. Evidence for chromosomal instability in the progeny of irradiated cells also included clonal karyotypic heterogeneity. The persistence of instability was demonstrated for at least 80 generations by elevated mutation rates at the heterozygous, autosomal marker locus tk. Among those TK- mutants that showed a loss of heterozygosity, a statistically significant increase in mutation rate was observed only for those in which the loss of heterozygosity encompasses the telomeric region. This mutational specificity corresponds with the prevalence of terminal deletions, additions, and translocations, and the absence of interstitial deletions, in karyotypic analysis. Surprisingly, the elevated rate of TK- mutations is also partially attributable to intragenic base substitutions and small deletions, and DNA sequence analysis of some of these mutations is presented. Complex chromosomal abnormalities appear to be the most significant indicators of a high rate of persistent genetic instability which correlates with increased rates of both intragenic and chromosomal-scale mutations at tk.
Collapse
Affiliation(s)
- A J Grosovsky
- Biomedical Sciences, Graduate Program, University of California, Riverside, USA.
| | | | | | | |
Collapse
|
47
|
Campbell F, Williams GT, Appleton MA, Dixon MF, Harris M, Williams ED. Post-irradiation somatic mutation and clonal stabilisation time in the human colon. Gut 1996; 39:569-73. [PMID: 8944567 PMCID: PMC1383271 DOI: 10.1136/gut.39.4.569] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Colorectal crypts are clonal units in which somatic mutation of marker genes in stem cells leads to crypt restricted phenotypic conversion initially involving part of the crypt, later the whole crypt. Studies in mice show that the time taken for the great majority of mutated crypts to be completely converted, the clonal stabilisation time, is four weeks in the colon and 21 weeks in the ileum. Differences in the clonal stabilisation time between tissues and species are thought to reflect differences in stem cell organisation and crypt kinetics. AIM To study the clonal stabilisation time in the human colorectum. METHODS Stem cell mutation can lead to crypt restricted loss of O-acetylation of sialomucins in subjects heterozygous for O-acetyltransferase gene activity. mPAS histochemistry was used to visualise and quantify crypts partially or wholly involved by the mutant phenotype in 21 informative cases who had undergone colectomy up to 34 years after radiotherapy. RESULTS Radiotherapy was followed by a considerable increase in the discordant crypt frequency that remained significantly increased for many years. The proportion of discordant crypts showing partial involvement was initially high but fell to normal levels about 12 months after irradiation. CONCLUSIONS Crypts wholly involved by a mutant phenotype are stable and persistent while partially involved crypts are transient. The clonal stabilisation time is approximately one year in the human colon compared with four weeks in the mouse. The most likely reason for this is a difference in the number of stem cells in a crypt stem cell niche, although differences in stem cell cycle time and crypt fission may also contribute. These findings are of relevance to colorectal gene therapy and carcinogenesis in stem cell systems.
Collapse
Affiliation(s)
- F Campbell
- Department of Pathology, University of Wales, College of Medicine, Cardiff
| | | | | | | | | | | |
Collapse
|
48
|
Jamali M, Trott KR. Increased micronucleus frequency in the progeny of irradiated Chinese hamster cells. Int J Radiat Biol 1996; 69:301-7. [PMID: 8613679 DOI: 10.1080/095530096145850] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
V79 Chinese hamster cells were irradiated with doses of 1-12 Gy 300 kV X-rays. Their colony-forming ability and the frequency of micronuclei in binucleate cells after treatment with cytochalasin B was determined at various times after irradiation. The frequency of micronuclei determined within the first 24 h after irradiation increased with doses up to 4 Gy and decreased as the dose increased further. Up to 4 Gy there was a close correlation between surviving fraction and the fraction of cells without micronuclei although the surviving fraction was 2-3 times lower than the fraction of cells without micronuclei. Six, 10 or 13 days after irradiation with either 9 or 12 Gy the plating efficiency and the frequency of micronuclei after cytokinesis block with cytochalasin B was determined in the irradiated, but surviving, cells. The delayed plating efficiency of irradiated cells was significantly decreased. The proportion of binucleated cells was in the normal range at 6-13 days after irradiation, indicating that the proliferative activity of irradiated but surviving cells was not depressed at that time. The micronucleus frequency, however, was significantly increased at all times after irradiation. There was little heterogeneity of plating efficiency and micronucleus frequency among 12 clones which had been isolated for irradiated cultures, 3 weeks after 12 Gy.
Collapse
Affiliation(s)
- M Jamali
- Department of Radiation Biology, St. Bartholomew's Hospital Medical College, London, UK
| | | |
Collapse
|
49
|
Reid LH, West A, Gioeli DG, Phillips KK, Kelleher KF, Araujo D, Stanbridge EJ, Dowdy SF, Gerhard DS, Weissman BE. Localization of a tumor suppressor gene in 11p15.5 using the G401 Wilms' tumor assay. Hum Mol Genet 1996; 5:239-47. [PMID: 8824880 DOI: 10.1093/hmg/5.2.239] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple studies have underscored the importance of loss of tumor suppressor genes in the development of human cancer. To identify these genes, we used somatic cell hybrids in a functional assay for tumor suppression in vivo. A tumor suppressor gene in 11p15.5 was detected by transferring single human chromosomes into the G401 Wilms' tumor cell line. In order to better map this gene, we created a series of radiation-reduced t(X;11) chromosomes and characterized them at 24 loci between H-RAS and beta-globin. Interestingly, three of the chromosomes were indistinguishable as determined by genomic and cytogenetic analyses. Each contains an interstitial deletion with one breakpoint in 11p14.1 and the other breakpoint between the D11S601 and D11S648 loci in 11p15.5. PFGE analysis localized the 11p15.5 breakpoints to a 175 kb MluI fragment that hybridized to D11S601 and D11S648 probes. Genomic fragments from this 175 kb region were hybridized to DNA from mouse hybrid lines containing the delta t(X;11) chromosomes. This analysis detected the identical 11p15.5 breakpoint which disrupts a 7.8 kb EcoRI fragment in all three of the delta t(X;11) chromosomes, suggesting they are subclones of the same parent colony. Upon transfer into G401 cells, one of the chromosomes suppressed tumor formation in nude mice, while the other two chromosomes lacked this ability. Thus, our mapping data indicate that the gene in 11p15.5 which suppresses tumor formation in G401 cells must lie telomeric to the D11S601 locus. Koi et al. (Science 260: 361-364, 1993) have used a similar functional assay to localize a growth suppressor gene for the RD cell line centromeric to the D11S724 locus. The combination of functional studies by our lab and theirs significantly narrows the location of the tumor suppressor gene in 11p15.5 to the approximately 500 kb region between D11S601 and D11S724.
Collapse
Affiliation(s)
- L H Reid
- Department of Pathology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Role of induced genetic instability in the mutagenic effects of chemicals and radiation. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0165-1218(96)90017-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|