1
|
Del Casale A, Arena JF, Giannetti F, Minervino A, Biggio G, Girardi P. The use of prolonged-release melatonin in circadian medicine: a systematic review. Minerva Med 2024; 115:125-142. [PMID: 38713204 DOI: 10.23736/s0026-4806.24.09303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Melatonin, a hormone produced by the pineal gland, regulates the sleep-wake cycle and is effective in restoring biological rhythms. Prolonged-release melatonin (PRM) is designed to mimic the natural physiological pattern of melatonin release. In circadian medicine, PRM can be used to treat sleep and circadian rhythm disorders, as well as numerous organic diseases associated with sleep disorders. EVIDENCE ACQUISITION This systematic review analyzed 62 studies and adhered to the PRISMA guidelines, examining the effectiveness of PRM in organic pathologies and mental disorders. EVIDENCE SYNTHESIS The main evidence concerns primary insomnia in subjects over the age of 55, showing significant improvements in sleep quality. In neurodevelopmental disorders, there is evidence of a positive impact on sleep quality and quality of life for patients and their caregivers. PRM shows efficacy in the treatment of sleep disorders in mood disorders, schizophrenia, and neurocognitive disorders, but requires further confirmation. The additional use of PRM is supported for the withdrawal of chronic benzodiazepine therapies. The tolerability and safety of PRM are excellent, with ample evidence supporting the absence of tolerance and dependence. CONCLUSIONS Overall, PRM in circadian medicine is an effective chronopharmaceutical for restoring the sleep-wake rhythm in patients with insomnia disorder. This efficacy may also extend to sleep disorders associated with mood, neurodevelopmental and neurocognitive disorders, suggesting a further potential role in insomnia associated with various organic diseases.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy -
- Emergency and Admissions Department, Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy -
| | - Jan F Arena
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | | | - Giovanni Biggio
- Department of Life and Environmental Sciences, Institute of Neurosciences, University of Cagliari, Cagliari, Italy
| | - Paolo Girardi
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Eastman C. Stories from a life studying circadian rhythms and sleep. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad040. [PMID: 38084297 PMCID: PMC10710544 DOI: 10.1093/sleepadvances/zpad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Indexed: 06/27/2024]
Affiliation(s)
- Charmane Eastman
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Meng Y, Tao Z, Zhou S, Da W, Tao L. Research Hot Spots and Trends on Melatonin From 2000 to 2019. Front Endocrinol (Lausanne) 2021; 12:753923. [PMID: 34917024 PMCID: PMC8669723 DOI: 10.3389/fendo.2021.753923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022] Open
Abstract
Research on melatonin remains one of the major hot spots in the field of disease treatment, but relevant data are numerous. The purpose of this study was to quantitatively and qualitatively analyze the progress of melatonin research through the method of bibliometrics and to predict hot spots and trends in melatonin research. This study retrieved all the studies on melatonin from 2000 to 2019 in the Web of Science and PubMed and analysed the publishing trends in the literature on a bibliometric online analysis platform and CiteSpace software. The research results were also visually analysed to summarize melatonin research hot spots through gCLUTO and pubMR. The study retrieved a total of 20,351 publications, of which the number of US publications ranked first, accounting for 21.46%, with the greatest impact (centrality = 0.31). The University of Texas Health Science Center at San Antonio and Harvard University had the highest average number of citations at 43.19 and 33.96, respectively. Journal of Pineal Research had the highest average number of citations in 2,993 journals. Professor Reiter made the largest contribution to this area. We further analysed 100 highly cited articles for clinical applications and ongoing related clinical drug trials based on the first hot spot. We systematically analysed melatonin for nearly 20 years while predicting the main research trends in the future, which may provide new directions and ideas for melatonin research. The structure and normal physiological functions of melatonin have been intensively studied in the past few years. And clinical application research and target of melatonin treatment for different diseases and target-based drug design will certainly become the focus of melatonin research.
Collapse
|
4
|
Whelehan DF, Alexander M, Ridgway PF. Would you allow a sleepy surgeon operate on you? A narrative review. Sleep Med Rev 2020; 53:101341. [DOI: 10.1016/j.smrv.2020.101341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/22/2023]
|
5
|
|
6
|
Zhang JJ, Meng X, Li Y, Zhou Y, Xu DP, Li S, Li HB. Effects of Melatonin on Liver Injuries and Diseases. Int J Mol Sci 2017; 18:ijms18040673. [PMID: 28333073 PMCID: PMC5412268 DOI: 10.3390/ijms18040673] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Liver injuries and diseases are serious health problems worldwide. Various factors, such as chemical pollutants, drugs, and alcohol, could induce liver injuries. Liver diseases involve a wide range of liver pathologies, including hepatic steatosis, fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocarcinoma. Despite all the studies performed up to now, therapy choices for liver injuries and diseases are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries and diseases remains a priority. Melatonin is a well-known natural antioxidant, and has many bioactivities. There are numerous studies investigating the effects of melatonin on liver injuries and diseases, and melatonin could regulate various molecular pathways, such as inflammation, proliferation, apoptosis, metastasis, and autophagy in different pathophysiological situations. Melatonin could be used for preventing and treating liver injuries and diseases. Herein, we conduct a review summarizing the potential roles of melatonin in liver injuries and diseases, paying special attention to the mechanisms of action.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Abstract
The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options.
Collapse
Affiliation(s)
- Sabra M Abbott
- Department of Neurology, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 500, Chicago, IL 60611, USA
| | - Kathryn J Reid
- Department of Neurology, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 500, Chicago, IL 60611, USA
| | - Phyllis C Zee
- Department of Neurology, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 500, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
|
9
|
Liira J, Verbeek JH, Costa G, Driscoll TR, Sallinen M, Isotalo LK, Ruotsalainen JH. Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. Cochrane Database Syst Rev 2014; 2014:CD009776. [PMID: 25113164 PMCID: PMC10025070 DOI: 10.1002/14651858.cd009776.pub2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Shift work results in sleep-wake disturbances, which cause sleepiness during night shifts and reduce sleep length and quality in daytime sleep after the night shift. In its serious form it is also called shift work sleep disorder. Various pharmacological products are used to ameliorate symptoms of sleepiness or poor sleep length and quality. OBJECTIVES To evaluate the effects of pharmacological interventions to reduce sleepiness or to improve alertness at work and decrease sleep disturbances whilst off work, or both, in workers undertaking shift work in their present job and to assess their cost-effectiveness. SEARCH METHODS We searched CENTRAL, MEDLINE, EMBASE, PubMed and PsycINFO up to 20 September 2013 and ClinicalTrials.gov up to July 2013. We also screened reference lists of included trials and relevant reviews. SELECTION CRITERIA We included all eligible randomised controlled trials (RCTs), including cross-over RCTs, of pharmacological products among workers who were engaged in shift work (including night shifts) in their present jobs and who may or may not have had sleep problems. Primary outcomes were sleep length and sleep quality while off work, alertness and sleepiness, or fatigue at work. DATA COLLECTION AND ANALYSIS Two authors independently selected studies, extracted data and assessed risk of bias in included trials. We performed meta-analyses where appropriate. MAIN RESULTS We included 15 randomised placebo-controlled trials with 718 participants. Nine trials evaluated the effect of melatonin and two the effect of hypnotics for improving sleep problems. One trial assessed the effect of modafinil, two of armodafinil and one examined caffeine plus naps to decrease sleepiness or to increase alertness.Melatonin (1 to 10 mg) after the night shift may increase sleep length during daytime sleep (mean difference (MD) 24 minutes, 95% confidence interval (CI) 9.8 to 38.9; seven trials, 263 participants, low quality evidence) and night-time sleep (MD 17 minutes, 95% CI 3.71 to 30.22; three trials, 234 participants, low quality evidence) compared to placebo. We did not find a dose-response effect. Melatonin may lead to similar sleep latency times as placebo (MD 0.37minutes, 95% CI - 1.55 to 2.29; five trials, 74 participants, low quality evidence).Hypnotic medication, zopiclone, did not result in significantly longer daytime sleep length compared to placebo in one low quality trial and we could not use the data from the study on lormetazepam.Armodafinil taken before the night shift probably reduces sleepiness by one point on the Karolinska Sleepiness Scale (KSS) (MD -0.99, 95% CI -1.32 to -0.67; range 1 to 10; two trials, 572 participants, moderate quality evidence) and increases alertness by 50 ms in a simple reaction time test (MD -50.0, 95% CI -85.5 to -15.5) at three months' follow-up in shift work sleep disorder patients. Modafinil probably has similar effects on sleepiness (KSS) (MD -0.90, 95% CI -1.45 to -0.35; one trial, 183 participants, moderate quality evidence) and alertness in the psychomotor vigilance test in the same patient group. Post-marketing, severe skin reactions have been reported. Adverse effects reported by trial participants were headache, nausea and a rise in blood pressure. There were no trials in non-patient shift workers.Based on one trial, caffeine plus pre-shift naps taken before the night shift decreased sleepiness (KSS) (MD -0.63, 95% CI -1.09 to -0.17).We judged most trials to have a low risk of bias even though the randomisation method and allocation concealment were often not described. AUTHORS' CONCLUSIONS There is low quality evidence that melatonin improves sleep length after a night shift but not other sleep quality parameters. Both modafinil and armodafinil increase alertness and reduce sleepiness to some extent in employees who suffer from shift work sleep disorder but they are associated with adverse events. Caffeine plus naps reduces sleepiness during the night shift, but the quality of evidence is low. Based on one low quality trial, hypnotics did not improve sleep length and quality after a night shift.We need more and better quality trials on the beneficial and adverse effects and costs of all pharmacological agents that induce sleep or promote alertness in shift workers both with and without a diagnosis of shift work sleep disorder. We also need systematic reviews of their adverse effects.
Collapse
Affiliation(s)
- Juha Liira
- Finnish Institute of Occupational HealthResearch and Development in Occupational Health ServicesTopeliuksenkatu 41 a AHelsinkiFinlandFI‐00250
| | - Jos H Verbeek
- Finnish Institute of Occupational HealthCochrane Occupational Safety and Health Review GroupPO Box 310KuopioFinland70101
| | - Giovanni Costa
- University of MilanDepartment of Clinical Sciences and Community HealthVia S. Barnaba 8MilanItaly20122
| | - Tim R Driscoll
- The University of SydneySchool of Public HealthEdward Ford Building (A27)SydneyNew South WalesAustralia2006
| | - Mikael Sallinen
- Finnish Institute of Occupational HealthCentre of Expertise for the Development of Work and Organizations / Working Hours, Alertness, and Professional Traffic teamTopeliuksenkatu 41 a AHelsinkiFinlandFI‐00250
| | - Leena K Isotalo
- Finnish Institute of Occupational HealthCochrane Occupational Safety and Health Review GroupTopeliuksenkatu 41a AHelsinkiFinlandFI‐00250
| | - Jani H Ruotsalainen
- Finnish Institute of Occupational HealthCochrane Occupational Safety and Health Review GroupPO Box 310KuopioFinland70101
| | | |
Collapse
|
10
|
Smith MR, Eastman CI. Shift work: health, performance and safety problems, traditional countermeasures, and innovative management strategies to reduce circadian misalignment. Nat Sci Sleep 2012; 4:111-32. [PMID: 23620685 PMCID: PMC3630978 DOI: 10.2147/nss.s10372] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There are three mechanisms that may contribute to the health, performance, and safety problems associated with night-shift work: (1) circadian misalignment between the internal circadian clock and activities such as work, sleep, and eating, (2) chronic, partial sleep deprivation, and (3) melatonin suppression by light at night. The typical countermeasures, such as caffeine, naps, and melatonin (for its sleep-promoting effect), along with education about sleep and circadian rhythms, are the components of most fatigue risk-management plans. We contend that these, while better than nothing, are not enough because they do not address the underlying cause of the problems, which is circadian misalignment. We explain how to reset (phase-shift) the circadian clock to partially align with the night-work, day-sleep schedule, and thus reduce circadian misalignment while preserving sleep and functioning on days off. This involves controlling light and dark using outdoor light exposure, sunglasses, sleep in the dark, and a little bright light during night work. We present a diagram of a sleep-and-light schedule to reduce circadian misalignment in permanent night work, or a rotation between evenings and nights, and give practical advice on how to implement this type of plan.
Collapse
Affiliation(s)
- Mark R Smith
- Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, USA
| | - Charmane I Eastman
- Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
Srinivasan V, Brzezinski A, Pandi-Perumal SR, Spence DW, Cardinali DP, Brown GM. Melatonin agonists in primary insomnia and depression-associated insomnia: are they superior to sedative-hypnotics? Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:913-23. [PMID: 21453740 DOI: 10.1016/j.pnpbp.2011.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 01/20/2023]
Abstract
Current pharmacological treatment of insomnia involves the use of sedative-hypnotic benzodiazepine and non-benzodiazepine drugs. Although benzodiazepines improve sleep, their multiple adverse effects hamper their application. Adverse effects include impairment of memory and cognitive functions, next-day hangover and dependence. Non-benzodiazepines are effective for initiating sleep but are not as effective as benzodiazepines for improving sleep quality or efficiency. Furthermore, their prolonged use produces adverse effects similar to those observed with benzodiazepines. Inasmuch as insomnia may be associated with decreased nocturnal melatonin, administration of melatonin is a strategy that has been increasingly used for treating insomnia. Melatonin can be effective for improving sleep quality without the adverse effects associated with hypnotic-sedatives. Ramelteon, a synthetic analog of melatonin which has a longer half life and a stronger affinity for MT1 and MT2 melatonergic receptors, has been reportedly effective for initiating and improving sleep in both adult and elderly insomniacs without showing hangover, dependence, or cognitive impairment. Insomnia is also a major complaint among patients suffering from depressive disorders and is often aggravated by conventional antidepressants especially the specific serotonin reuptake inhibitors. The novel antidepressant agomelatine, a dual action agent with affinity for melatonin MT1 and MT2 receptors and 5-HT2c antagonistic properties, constitutes a new approach to the treatment of major depressive disorders. Agomelatine ameliorates the symptoms of depression and improves the quality and efficiency of sleep. Taken together, the evidence indicates that MT1/MT2 receptor agonists like ramelteon or agomelatine may be valuable pharmacological tools for insomnia and for depression-associated insomnia.
Collapse
Affiliation(s)
- Venkatramanujan Srinivasan
- Sri Sathya Sai Medical Educational and Research Foundation, Prsanthi Nilayam, Plot-40 Kovai Thirunagar, Coimbatore-641014, India
| | | | | | | | | | | |
Collapse
|
12
|
Turk J. Sleep disorders in children and adolescents with learning disabilities and their management. ACTA ACUST UNITED AC 2010. [DOI: 10.5042/amhld.2010.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Pévet P, Agez L, Bothorel B, Saboureau M, Gauer F, Laurent V, Masson-Pévet M. Melatonin in the multi‐oscillatory mammalian circadian world. Chronobiol Int 2009; 23:39-51. [PMID: 16687278 DOI: 10.1080/07420520500482074] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In mammals, the complex interaction of neural, hormonal, and behavioral outputs from the suprachiasmatic nucleus (SCN) drives circadian expression of events, either directly or through coordination of the timing of peripheral oscillators. Melatonin, one of the endocrine output signals of the clock, provides the organism with circadian information and can be considered as an endogenous synchronizer, able to stabilize and reinforce circadian rhythms and to maintain their mutual phase-relationship at the different levels of the circadian network. Moreover, exogenous melatonin, through an action on the circadian clock, affects all levels of the circadian network. The molecular mechanisms underlying this chronobiotic effect have also been investigated in rats. REV-ERB alpha seems to be the initial molecular target.
Collapse
Affiliation(s)
- P Pévet
- Institut des Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes, Université L. Pasteur, Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Portaluppi F. Consistency and Accuracy of the Medical Subject Headings® Thesaurus for Electronic Indexing and Retrieval of Chronobiologic References. Chronobiol Int 2009; 24:1213-29. [DOI: 10.1080/07420520701791570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Abstract
Shift work is highly prevalent in industrialized societies (>20%) but, when it includes night work, it has pronounced negative effects on sleep, subjective and physiological sleepiness, performance, accident risk, as well as on health outcomes such as cardiovascular disease and certain forms of cancer. The reason is the conflict between the day oriented circadian physiology and the requirement for work and sleep at the "wrong" biological time of day. Other factors that negatively impact work shift sleepiness and accident risk include long duration shifts greater than 12 hours and individual vulnerability for phase intolerance that may lead to a diagnosis of shift work disorder; i.e., those shift workers with the greatest sleepiness and performance impairment during the biological night and insomnia during the biological day. Whereas some countermeasures may be used to ameliorate the negative impact of shift work on nighttime sleepiness and daytime insomnia (combined countermeasures may be the best available), there seems at present to be no way to eliminate most of the negative effects of shift work on human physiology and cognition.
Collapse
|
16
|
Wasdell MB, Jan JE, Bomben MM, Freeman RD, Rietveld WJ, Tai J, Hamilton D, Weiss MD. A randomized, placebo-controlled trial of controlled release melatonin treatment of delayed sleep phase syndrome and impaired sleep maintenance in children with neurodevelopmental disabilities. J Pineal Res 2008; 44:57-64. [PMID: 18078449 DOI: 10.1111/j.1600-079x.2007.00528.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to determine the efficacy of controlled-release (CR) melatonin in the treatment of delayed sleep phase syndrome and impaired sleep maintenance of children with neurodevelopmental disabilities including autistic spectrum disorders. A randomized double-blind, placebo-controlled crossover trial of CR melatonin (5 mg) followed by a 3-month open-label study was conducted during which the dose was gradually increased until the therapy showed optimal beneficial effects. Sleep characteristics were measured by caregiver who completed somnologs and wrist actigraphs. Clinician rating of severity of the sleep disorder and improvement from baseline, along with caregiver ratings of global functioning and family stress were also obtained. Fifty-one children (age range 2-18 years) who did not respond to sleep hygiene intervention were enrolled. Fifty patients completed the crossover trial and 47 completed the open-label phase. Recordings of total night-time sleep and sleep latency showed significant improvement of approximately 30 min. Similarly, significant improvement was observed in clinician and parent ratings. There was additional improvement in the open-label somnolog measures of sleep efficiency and the longest sleep episode in the open-label phase. Overall, the therapy improved the sleep of 47 children and was effective in reducing family stress. Children with neurodevelopmental disabilities, who had treatment resistant chronic delayed sleep phase syndrome and impaired sleep maintenance, showed improvement in melatonin therapy.
Collapse
Affiliation(s)
- Michael B Wasdell
- Melatonin Research Group, Department of Psychiatry, BC Children's Hospital, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Crowley SJ, Acebo C, Carskadon MA. Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med 2007; 8:602-12. [PMID: 17383934 DOI: 10.1016/j.sleep.2006.12.002] [Citation(s) in RCA: 676] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/14/2006] [Accepted: 12/04/2006] [Indexed: 11/21/2022]
Abstract
Sleep/wake timing shifts later in young humans during the second decade of life. In this review we describe sleep/wake patterns, changes in these patterns across adolescence, and evidence for the role of environmental, psychosocial, and biological factors underlying these changes. A two-process model incorporating circadian (Process C) and sleep/wake homeostatic (Process S) components is outlined. This model may help us to understand how developmental changes translate to shifted sleep/wake patterns. Delayed sleep phase syndrome (DSPS), which has a typical onset during the second decade of life, may be an extreme manifestation of homeostatic and circadian changes in adolescence. We describe symptoms, prevalence, and possible etiology of DSPS, as well as treatment approaches in adolescents.
Collapse
|
18
|
Akerstedt T. Altered sleep/wake patterns and mental performance. Physiol Behav 2006; 90:209-18. [PMID: 17049569 DOI: 10.1016/j.physbeh.2006.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 09/04/2006] [Indexed: 11/16/2022]
Abstract
Altered sleep/wake patterns involve, by definition, displaced sleep. The present review concludes that mental performance is strongly influenced by many forms of displaced sleep. Being exposed to the circadian low (during work/activity), extended time awake or reduced duration of sleep will impair performance. The effect is most pronounced in the laboratory setting, however, even if a number of studies have shown effects of for example night work on neuropsychological tests, and simulated work. In real shift work situations performance changes have been less pronounced. No studies have evaluated the effects on production, but accidents and serious mistakes have been clearly established in road transport and there seems to be clear effects also in health care. The effects are similar in connection with flights across several time zones (jet lag) but less data are available. It is suggested that there is a need for establishing the significance of impaired performance due to work hours in white collar and service work. Also the notion of individual differences in performance impairment is an important issue.
Collapse
|
19
|
Abstract
Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines 'biological night.' It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, saliva, or its major metabolite, 6-sulphatoxymelatonin [aMT6s] in urine) is the best peripheral index of the timing of the human circadian pacemaker. Light suppression and phase-shifting of the melatonin 24 h profile enables the characterization of human circadian photoreception, and circulating concentrations of the hormone are used to investigate the general properties of the human circadian system in health and disease. Suppression of melatonin by light at night has been invoked as a possible influence on major disease risk as there is increasing evidence for its oncostatic effects. Exogenous melatonin acts as a 'chronobiotic.' Acutely, it increases sleep propensity during 'biological day.' These properties have led to successful treatments for serveal circadian rhythm disorders. Endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. The future holds much promise for melatonin as a research tool and as a therapy for various conditions.
Collapse
Affiliation(s)
- Josephine Arendt
- Centre for Chronobiology, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, England.
| |
Collapse
|