1
|
Fan M, Jiang Y, Cai C, Wang Z, Chen L, Hu S, Zhang X, Yin H, Qian Z, Huang S, Yang J. Green Tea Ameliorates Depression-Like Behavior and Cognitive Impairment Induced by High-Fat Diet and Chronic Mild Stress. Phytother Res 2025. [PMID: 40242918 DOI: 10.1002/ptr.8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Depression often develops in young individuals and is linked to complications like cognitive impairment. Conventional antidepressants show limited efficacy in restoring cognitive function and may cause adverse effects. Green tea, a safe and health-promoting beverage, offers various health benefits. This study investigated the effects of long-term green tea consumption on stress-induced depression-like behavior and mild cognitive impairment in animal models. We established a rodent model of mild depression and studied the effects of green tea on depression-like behavior and cognitive impairment through comprehensive evaluation, including behavioral assessments, neurotransmitter quantification, gene and protein expression analysis, blood metabolite profiling, and gut microbiota characterization. Results demonstrated significant improvements in mood, long-term memory, and sterol and glycerophospholipid metabolism. Green tea repaired the intestinal barrier and upregulated genes vital for tight junctions and mucin production. It also enhanced gut microbiota composition, reducing the Firmicutes-to-Bacteroidetes ratio and promoting beneficial bacteria such as NK4A136, Muribaculum, and Gordonibacter. These microbiota changes improved liver lipid metabolism and alleviated depressive symptoms. Green tea effectively mitigates depression-like behavior and cognitive deficits by modulating the gut-liver-brain axis.
Collapse
Affiliation(s)
- Minghao Fan
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People's Republic of China
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Yudi Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Lu Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People's Republic of China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People's Republic of China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People's Republic of China
| | - Zhonghua Qian
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People's Republic of China
| | - Shuli Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People's Republic of China
| | - Jiachen Yang
- Westa College, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Fu H, Yang T, Ni H, Li J, Liu F, Liu J, Yin Y. A low-protein soybean-free diet improves carcass traits and meat quality and modulates the colonic microbiota in Daweizi pigs. Front Vet Sci 2025; 11:1516198. [PMID: 39981135 PMCID: PMC11841500 DOI: 10.3389/fvets.2024.1516198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Soybean meal is an excellent protein source and is widely used in pig feed. However, the Americas account for more than 80% of global soybean production, so European and Asia swine production largely depends on soybean imports. The use of safe and functional unconventional feed sources can effectively alleviate worldwide protein shortage problems. Methods Here, we formulated a low-protein soybean-free diet (LPNS) for growing and fattening pigs using rice, potatoes, tea, and other unconventional feed sources. Thirty-six healthy Daweizi pigs (average body weight 23.60 ± 1.34 kg) were raised under the same conditions and randomly assigned to two dietary treatments: (1) Con group, corn-soybean base meal; (2) LPNS group. When the average weight of pigs in the group reached 85 kg, two pigs per pen were randomly selected and euthanized for collection of the colonic digesta and carcass traits and for meat quality determination. Results Compared with the corn-soybean based diet, the LPNS diet decreased the average daily gain (ADG) and feed conversion ratio (FCR) of Daweizi pigs but had a lower cost per kilogram of gain. In addition, the LPNS diet significantly increased leanness and decreased the fat-skin rate and bone rate of Daweizi pigs. The cooking loss of meat decreased, and unsaturated fatty acids such as C22:6 and n-3 PUFA significantly increased in the LPNS group. Moreover, the purine content in the meat substantially decreased with the LPNS diet. The 16S rDNA analysis revealed that the LPNS diet greatly modified the composition of the colonic microbiota community, with a decrease in the Firmicutes/Bacteroidetes ratio and an increase in the abundance of Lactobacillus spp. Discussion The use of functional herbs along with a low-protein diet helped to regulate fat and purine metabolism in fatty-type pigs. The LPNS diet formulated with unconventional-feed sources not only helps reduce the feed cost in swine production but also improves the carcass traits and meat quality of pigs, which is more suitable for small-scale pig farming.
Collapse
Affiliation(s)
- Haohua Fu
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Taoming Yang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Hengjia Ni
- Department of Animal Science, Hunan Agriculture University, Changsha, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jing Li
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Fenfen Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yulong Yin
- Department of Animal Science, Hunan Agriculture University, Changsha, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
3
|
Chen Y, Huang Y, Gan Q, Zhang W, Sun H, Zhu L, Wang W. Characterization of tea polysaccharides from Tieguanyin oolong tea and their hepatoprotective effects via AMP-activated protein kinase-mediated signaling pathways. J Food Sci 2024; 89:10064-10078. [PMID: 39636766 DOI: 10.1111/1750-3841.17575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
In the present study, we succeeded in extracting tea polysaccharide (TPS) from Tieguanyin oolong tea, and the TPS was characterized. TPS is an acidic heteropolysaccharide containing rhamnose, arabinose, galactose, glucose (Glc), xylose, mannose, galacturonic acid, and guluronic acid. We found that TPS supplementation partially reversed the elevated levels of serum alanine aminotransferase, total cholesterol, and low-density lipoprotein cholesterol in high-fat diet (HD)-induced nonalcoholic fatty liver disease (NAFLD) mice (p < 0.05), and hepatic steatosis and impaired Glc tolerance were also ameliorated. After HD intervention, the activity of Adenosine 5'-monophosphate-activated protein kinase (AMPK) and its downstream genes, including Sirtuin 1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP1c), acetyl-coenzyme A carboxylase 1 (ACC1), and adipose triglyceride lipase (ATGL), was significantly inhibited (p < 0.05). TPS can increase the expression of these genes. The hepatoprotective effects of TPS in AMPK-/- mice almost completely disappeared. Moreover, the expression levels of SIRT1, SREBP1c, ACC1, and ATGL did not significantly change after TPS supplementation (p > 0.05). Therefore, our findings suggest that TPS protects the liver from hepatic glucolipid metabolism disorders in HD-induced NAFLD mice by activating AMPK-mediated signaling pathways.
Collapse
Affiliation(s)
- Yiqin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanxin Huang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nutrition, The 95th Hospital of Putian, Putian, Fujian, China
| | - Qiaorong Gan
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenhui Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Han Sun
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingling Zhu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Sun Q, Du J, Wang Z, Li X, Fu R, Liu H, Xu N, Zhu G, Wang B. Structural characteristics and biological activity of a water-soluble polysaccharide HDCP-2 from Camellia sinensis. Int J Biol Macromol 2024; 277:134437. [PMID: 39116965 DOI: 10.1016/j.ijbiomac.2024.134437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Large-leaf Yellow tea (LYT) is a traditional beverage from Camellia Sinensis (L.) O. Kuntze in China and has unusual health-regulating functions. This investigation explored the structural characteristics of a polysaccharide extracted from LYT, which possesses anti-inflammatory activity. The polysaccharide HDCP-2, obtained through ethanol fractional precipitation and then DEAE-52 anion exchange column, followed by DPPH radical scavenging screening, exhibited a yield of 0.19 %. The HPGPC method indicated that the molecular weight of HDCP-2 is approximately 2.9 × 104 Da. Analysis of the monosaccharide composition revealed that HDCP-2 consisted of mannose, glucose, xylose, and galacturonic acid, and their molar ratio is approximately 0.4:0.5:1.2:0.7. The structure motif of HDCP-2 was probed carefully through methylation analysis, FT-IR, and NMR analysis, which identified the presence of β-d-Xylp(1→, →2, 4)-β-d-Xylp(1→, →3)-β-d-Manp(1→, α-d-Glcp(1→ and →2, 4)-α-d-GalAp(1→ linkages. A CCK-8 kit assay was employed to evaluate the anti-inflammatory action of HDCP-2. These results demonstrated that HDCP-2 could inhibit the migration and proliferation of the MH7A cells and reduce NO production in an inflammatory model induced by TNF-α. The abundant presence of xylose accounted for 39 % of the LYT polysaccharide structure, and its distinctive linking mode (→2, 4)-β-d-Xylp(1→) appears to be the primary contributing factor to its anti-inflammatory effect.
Collapse
Affiliation(s)
- Qiaoxu Sun
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Jiao Du
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Zhen Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Xinyue Li
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Ranze Fu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Hui Liu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
| | - Bin Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China; Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine, Hefei 230038, PR China.
| |
Collapse
|
5
|
Mo L, Li J, Lu H, Lu S, Fu H, Huang B, Zhao C. Aloe polysaccharides ameliorate obesity-associated cognitive dysfunction in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity. Food Funct 2024; 15:8070-8086. [PMID: 38989726 DOI: 10.1039/d4fo01844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Aloe polysaccharides (APs) display cognition-improving properties, but the underlying mechanisms remain unclear. Herein, AP supplementation for 24 weeks significantly improved cognitive behavioral disturbances caused by a high-fat diet. Moreover, APs notably reshaped the structure of the gut microbiota, which was manifested by increasing the relative abundance of Alloprevotella, Alistipes, Romboutsia, Turicibacter, Prevotellaceae_UCG-001, and Akkermansia while reducing the abundance of Parasutterella, Staphylococcus, Helicobacter, Enterococcus, and Erysipelatoclostridium. Notably, the gut barrier damage and LPS leakage caused by HF were recovered by APs. Additionally, with the improvement of intestinal barrier integrity, oxidative stress and inflammation in the brain and jejunum were significantly ameliorated. Furthermore, the expression of genes associated with cognitive impairment and the intestinal tract barrier was up-regulated (CREB, BDNF, TrkB, ZO-1 and occludin), while the expression of genes associated with inflammatory factors was down-regulated (IL-1β, IL-6, and TNF-α). Finally, we observed a significant correlation among cognition-related genes, gut microbiota, oxidative stress, and inflammation in the HF-AP group. Together, our findings suggest that altered gut microbiota composition and improved gut barrier integrity may be important targets for potentially improving high-fat diet-induced cognitive impairment.
Collapse
Affiliation(s)
- Ling Mo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Jingjing Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Hangsun Lu
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Shaoda Lu
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Henghui Fu
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Bo Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
| | - Chaochao Zhao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
6
|
Zhang Z, Sun L, Chen R, Li Q, Lai X, Wen S, Cao J, Lai Z, Li Z, Sun S. Recent insights into the physicochemical properties, bioactivities and their relationship of tea polysaccharides. Food Chem 2024; 432:137223. [PMID: 37669580 DOI: 10.1016/j.foodchem.2023.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Tea polysaccharides (TPS) is receiving global concern in past years due to their therapeutic effects in many diseases such as obesity and diabetes. Many publications imply that the unique physicochemical properties and bioactivities of TPS are prerequisites for its use as a biofilm, drug carrier and emulsifier. Despite numerous healthy benefits, studies on the in-deep structure-activity relationship of TPS still not well explored and explained yet. The main reasons for the research limitation are attributed mainly to the unbreakable advanced structural research technology and the formation of TPS conjugates. The present review also summarizes some similar parameters in primary structure of TPS with better bioactivities, discusses the relationships between their physicochemical properties and bioactivities, and suggests that function-specific TPS would be obtained in the future if the links between preparation methods, physicochemical properties and bioactivities of TPS could be well understood and established.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
7
|
Zheng C, Chen S, Deng YY, Qian XP, Chen YY, Hong CZ, Zeng YF, Li QM, Pan LH, Luo JP, Li XY, Zha XQ. Purification, structural characteristics and anti-atherosclerosis activity of a novel green tea polysaccharide. Int J Biol Macromol 2024; 254:127705. [PMID: 37913884 DOI: 10.1016/j.ijbiomac.2023.127705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
A new homogeneous polysaccharide (TPS3A) was isolated and purified from Tianzhu Xianyue fried green tea by DEAE-52 cellulose and Sephacryl S-500 column chromatography. Structural characterization indicated that TPS3A mainly consisted of arabinose, galactose, galacturonic acid and rhamnose in a molar ratio of 5.84: 4.15: 2.06: 1, with an average molecular weight of 1.596 × 104 kDa. The structure of TPS3A was characterized as a repeating unit consisting of 1,3-Galp, 1,4-Galp, 1,3,6-Galp, 1,3-Araf, 1,5-Araf, 1,2,4-Rhap and 1-GalpA, with two branches on the C6 of 1,3,6-Galp and C2 of 1,2,4-Rhap, respectively. To investigate the preventive effects of TPS3A on atherosclerosis, TPS3A was administered orally to ApoE-deficient (ApoE-/-) mice. Results revealed that TPS3A intervention could effectively delay the atherosclerotic plaque progression, modulate dyslipidemia, and reduce the transformation of vascular smooth muscle cells (VSMCs) from contractile phenotype to synthetic phenotype by activating the expression of contractile marker alpha-smooth muscle actin (α-SMA) and inhibiting the expression of synthetic marker osteopontin (OPN) in high-fat diet-induced ApoE-/- mice. Our findings suggested that TPS3A markedly alleviated atherosclerosis by regulating dyslipidemia and phenotypic transition of VSMCs, and might be used as a novel functional ingredient to promote cardiovascular health.
Collapse
Affiliation(s)
- Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Shun Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Xin-Ping Qian
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
8
|
Guo C, Shen W, Jin W, Jia X, Ji Z, Li J, Li B. Dynamic Formation of Green Tea Cream and the Identification of Key Components Using the "Knock-Out/Knock-In" Method. Foods 2023; 12:2987. [PMID: 37627986 PMCID: PMC10453089 DOI: 10.3390/foods12162987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The composition of green tea cream is extremely complex, and identification of key components is a prerequisite for elucidating its microstructure formation mechanism. This study examined the dynamic changes in the content of components and properties of colloid particles during the formation process of tea cream by chemical analysis and dynamic laser scattering (DLS). A "knock-out/knock-in" method was developed and used to further explore the relationship between the interaction of these components and the microstructure formation of tea cream. The results revealed that polysaccharides, proteins, epigallocatechin gallate (EGCG), and caffeine were the main components involved in tea cream formation. These components participated in the formation process in the form of polysaccharide-protein and EGCG-caffeine colloidal particles. Consequently, there were synchronized dynamic changes in the levels of polysaccharides, proteins, EGCG, and caffeine. The "knock-out/knock-in" experiment revealed that the interactions between EGCG or caffeine and macro-molecule components were not the key factors in tea cream microstructure formation. However, it was found that the complexation between EGCG and caffeine played a crucial role in the formation of tea cream. The findings suggested that decreasing the concentrations of EGCG and caffeine could be useful in controlling tea cream formation during tea beverage processing and storage.
Collapse
Affiliation(s)
- Cheng Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.G.); (W.S.); (W.J.); (X.J.); (Z.J.); (J.L.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.G.); (W.S.); (W.J.); (X.J.); (Z.J.); (J.L.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.G.); (W.S.); (W.J.); (X.J.); (Z.J.); (J.L.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiwu Jia
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.G.); (W.S.); (W.J.); (X.J.); (Z.J.); (J.L.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhili Ji
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.G.); (W.S.); (W.J.); (X.J.); (Z.J.); (J.L.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinling Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.G.); (W.S.); (W.J.); (X.J.); (Z.J.); (J.L.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Wu G, Gu W, Chen G, Cheng H, Li D, Xie Z. Interactions of tea polysaccharides with gut microbiota and their health-promoting effects to host: Advances and perspectives. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
10
|
Hong T, Zhao J, Yin J, Nie S, Xie M. Structural Characterization of a Low Molecular Weight HG-Type Pectin From Gougunao Green Tea. Front Nutr 2022; 9:878249. [PMID: 35495904 PMCID: PMC9044067 DOI: 10.3389/fnut.2022.878249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Tea is a popular beverage with a long history of safe and healthy use. Tea polysaccharide is a bioactive component extracted from tea, which has attracted more and more attention in recent decades. In this article, an acidic polysaccharide Gougunao tea polysaccharide (GPS) was isolated from Gougunao green tea by hot water extraction and ethanol precipitation. After purification by a diethylaminoethyl (DEAE) Sepharose Fast Flow column and a Sephacryl S-400 column, several homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) fractions were obtained. Fraction GPS2b with the highest yield was selected for structural characterization by methylation and nuclear magnetic resonance (NMR) analysis. GPS2b was found to be an HG-type pectic polysaccharide (degree of methyl esterification [DE], 51.6%) with low molecular weight (Mw, 36.8 kDa). It was mainly composed of →4)-α-GalpA- (1→ and →4)-α-GalpA-6-OMe-(1→. In addition, a minor highly branched RG-I domain was identified in this fraction. The investigation of structural features of tea polysaccharides can provide insights to understand their structure-bioactivity relationship.
Collapse
|
11
|
Liu J, Lin J, Huang Z, Zheng Q, Lin F, Wu L. Chemical characterization of Tianshan green tea polysaccharides and its protective effects on cell oxidative injury. J Food Biochem 2021; 46:e14000. [PMID: 34825388 DOI: 10.1111/jfbc.14000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to analyze the chemical characterization of Tianshan green tea polysaccharides (TSPS), and evaluate its antioxidant activity by chemical-based and cellular-based antioxidant models in vitro. The results showed that the TSPS were composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose with a molar ratio of 14.5:33.5:10.5:6.5:111.5:22.3:59.5:51: 1.0, and an average molecular weight of 19.49 kDa. TSPS exhibited excellent antioxidant ability to DPPH radical, hydroxyl radical, and ABTS radical, and enhanced the ferric-reducing power (FRAP). The antioxidation model of LO2 and HepG2 cells was established, and found that TSPS had no significant toxicity to either of the two cells at the range of 0.1-5 mg/mL, but clearly protected cells from H2 O2 -induced apoptosis and significantly reduced intracellular ROS level. In addition, the activities of antioxidant-associated enzymes were detected in LO2 cells, which suggested that TSPS could significantly improve the activities of SOD and CAT enzyme when the concentration was higher than 0.5 mg/mL. Furthermore, TSPS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway by promoting Nrf2 nuclear translocation and inhibited the expression of Kelch-like ECH-associated protein 1 (Keap-1) and enhanced the expression of heme oxygenase-1 (HO-1). PRACTICAL APPLICATIONS: Tianshan green tea, a local variety in Fujian Province, belongs to unfermented tea. Polysaccharide is considered as the most promising component in Tianshan green tea. This study showed that TSPS had excellent antioxidant activity and had no significant toxicity to cells, which provides a scientific foundation and new idea for its further development and application in functional foods.
Collapse
Affiliation(s)
- Jianbing Liu
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Jun Lin
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Zuohua Huang
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuxia Zheng
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Feng Lin
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Liyun Wu
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| |
Collapse
|
12
|
Deng Q, Wang W, Zhang Q, Chen J, Zhou H, Meng W, Li J. Extraction optimization of polysaccharides from Gougunao tea and assessment of the antioxidant and hypoglycemic activities of its fractions in vitro. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2021; 26:100287. [DOI: 10.1016/j.bcdf.2021.100287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Xu A, Lai W, Chen P, Awasthi MK, Chen X, Wang Y, Xu P. A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Deng X, Hou Y, Zhou H, Li Y, Xue Z, Xue X, Huang G, Huang K, He X, Xu W. Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. Food Sci Nutr 2021; 9:1160-1170. [PMID: 33598200 PMCID: PMC7866600 DOI: 10.1002/fsn3.2096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Microbial fermentation significantly affects the flavor and efficacy of tea. It is generally believed that fermented tea is more effective in lowering lipids, while unfermented tea can more effectively inhibit inflammation. However, there is not sufficient evidence to support this claim. To systematically compare the hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation, hyperlipidemic rats and inflammatory injury cells were treated with Monascus purpureus-fermented pu-erh tea water extract (MPT) and sun-dried green tea water extract (SGT), respectively. RESULTS MPT, with higher levels of theabrownins, flavonoids, gallic acid (GA), and lovastatin, was more effective in reducing serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and inflammatory cytokines (TNF-α, IL-1β, and IL-6), while SGT, with higher levels of tea polyphenols, amino acids, (-)-epigallocatechin gallate (EGCG), and theaflavins, was more effective in increasing serum high-density lipoprotein cholesterol (HDL-C) in hyperlipidemic rats. The foam cells on the arterial wall of the rats in the MPT group were visibly less, and the thrombosis time was longer than that in the SGT group. Cell experiments showed that MPT was more effective in protecting endothelial cells from damage than SGT. CONCLUSION Surprisingly, Monascus purpureus-fermented pu-erh tea not only had better hypolipidemic and anti-atherosclerotic effects than its raw material (sun-dried green tea), but also was superior in anti-inflammatory effects to the latter, which was possibly attributable to the great changes in functional ingredients during microbial fermentation.
Collapse
Affiliation(s)
- Xiujuan Deng
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Yan Hou
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Hongjie Zhou
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Yali Li
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Zhiqiang Xue
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Xiaoting Xue
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Ganghua Huang
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Rovkina KI, Krivoshchekov SV, Guriev AM, Yusubov MS, Belousov MV. Development of a Technique for Obtaining Polysaccharides from Leaves of the Birch (Betula pendula Roth. and Betula pubescens Ehrh.). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162020070134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Xiang-Li, Si-Chen, Zhao ZT, Meng-Zhao, Yi-Han, Ye XM, Qi-An, Ouyang KH, Wang WJ. Effects of polysaccharides from Yingshan Yunwu tea on meat quality, immune status and intestinal microflora in chickens. Int J Biol Macromol 2020; 155:61-70. [PMID: 32224178 DOI: 10.1016/j.ijbiomac.2020.03.198] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
The present study was aimed to investigate the effects of the addition of Yingshan Yunwu green tea polysaccharide conjugates (GTPC) on meat quality, immune response and gut microflora in chickens. A total of 200 chickens with average initial body weight were randomly allotted to 4 groups. Intestinal samples were collected at the end of experiment for bacterial culture and microbial community analysis by 16S rDNA gene sequencing using Illumina MiSeq. Chicken breast muscle and serum were also sampled for analysis of meat quality and immune function. The results showed that dietary GTPC addition increased (P < 0.05) chicken breast muscle pH and redness-greenness (a*) value and decreased (P < 0.05) the values of lightness (L*), yellowness-blueness (b*), hardness, toughness and adhesiveness. In addition, dietary supplementation of GTPC increased (P < 0.05) the weight of thymus and bursa and serum concentrations of IgA and IgG. Furthermore, of the 10 bacterial phyla, the predominant taxa across all sampling time-points were Bacteroidetes, Firmicutes, Proteobacteria, and Deferribacteres, representing >97% of all sequences. GTPC increased the abundance of Bacteroidetes and Lactobacillus, and decreased the abundance of Proteobacteria. These findings provided some references of the application of GTPC in the poultry industry.
Collapse
Affiliation(s)
- Xiang-Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si-Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Tong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng-Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi-Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Mei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi-An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China..
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China..
| |
Collapse
|
17
|
Xiang-Li, Si-Chen, Zhao ZT, Meng-Zhao, Yi-Han, Ye XM, Qi-An, Ouyang KH, Wang WJ. Effects of polysaccharides from Yingshan Yunwu tea on meat quality, immune status and intestinal microflora in chickens. Int J Biol Macromol 2020. [DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
19
|
Chen G, Chen R, Chen D, Ye H, Hu B, Zeng X, Liu Z. Tea Polysaccharides as Potential Therapeutic Options for Metabolic Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5350-5360. [PMID: 30474370 DOI: 10.1021/acs.jafc.8b05338] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tea polysaccharides (TPS) are regarded as some of the main bioactive constituents of tea made from the leaves and buds of the tea plant ( Camellia sinensis L.). An increasing number of studies have demonstrated that TPS can reduce the risk of type 2 diabetes, obesity, and other metabolic diseases. However, the potential mechanisms responsible for antidiabetic and antiobesogenic activities of TPS remain unclear. Therefore, the cellular and physiological mechanisms that underlie the antidiabetic and antiobesogenic effects, including antioxidant and anti-inflammation effects, inhibition of digestive enzymes, prevention of macronutrient absorption, and expression of gene and protein, were summarized in this review. Furthermore, the gastrointestinal functions of TPS and the role of gut microbiota in the prevention and treatment of metabolic diseases were discussed. It is expected that the present review will be helpful for enhancing our knowledge about the health-promoting effects of TPS on metabolic diseases and stimulating further works on TPS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha , Hunan 410128 , People's Republic of China
| |
Collapse
|
20
|
Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata. Int J Biol Macromol 2019; 129:608-614. [DOI: 10.1016/j.ijbiomac.2019.01.226] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/06/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
|
21
|
Abebe W. Review of herbal medications with the potential to cause bleeding: dental implications, and risk prediction and prevention avenues. EPMA J 2019; 10:51-64. [PMID: 30984314 DOI: 10.1007/s13167-018-0158-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Medicinal plant products have been used in health care since time immemorial. During the past three decades, the use of herbal supplements has been on the rise in the USA. A number of these products have been shown to possess the potential to interfere with blood clotting. This paper is a review of blood-thinning herbal supplements commonly used in the USA, accompanied by discussion of the dental implications of their use along with suggestions for prediction and prevention of the risk of bleeding. Twenty herbal supplements belonging to four pharmacological groups are identified and reviewed. While the majority (45%) of the supplements reviewed possesses antiplatelet properties, the remaining are dispersed among anticoagulant (15%), a combination of antiplatelet and anticoagulant (15%), and other diverse groups (25%). The literature reveals that most of the available information on blood-thinning herbs is based on in vitro experiments, animal studies, and individual clinical case reports. Some herbal effects are also speculated based on theoretical grounds. These observations, together with the deficiency of the law regulating herbal supplements, indicate limitations of the literature and the regulatory mechanisms related to these products, further implying the need for additional research and improved regulation. While emphasizing the dental implications of the findings reported in the literature, suggestions were made for prediction and prevention of the risk of bleeding caused by herbal medications, based on the concepts of predictive, preventive, and personalized medicine.
Collapse
Affiliation(s)
- Worku Abebe
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, CL-2130, Augusta, GA 30912-1128 USA
| |
Collapse
|
22
|
Sun XY, Wang JM, Ouyang JM, Kuang L. Antioxidant Activities and Repair Effects on Oxidatively Damaged HK-2 Cells of Tea Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5297539. [PMID: 30584463 PMCID: PMC6280578 DOI: 10.1155/2018/5297539] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 01/04/2023]
Abstract
This study aims at investigating the antioxidant activity and repair effect of green tea polysaccharide (TPS) with different molecular weights (Mw) on damaged human kidney proximal tubular epithelial cells (HK-2). Scavenging activities on hydroxyl radical (·OH) and ABTS radical and reducing power of four kinds of TPS with Mw of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.31 kDa (TPS3) were detected. A damaged cell model was established using 2.6 mmol/L oxalate to injure HK-2 cells. Then, different concentrations of TPSs were used to repair the damaged cells. Index changes of subcellular organelles of HK-2 cells were detected before and after repair. The four kinds of TPSs possessed radical scavenging activity and reducing power, wherein TPS2 with moderate Mw presented the strongest antioxidant activity. After repair by TPSs, cell morphology of damaged HK-2 cells was gradually restored to normal conditions. Reactive oxygen species production decreased, and mitochondrial membrane potential (Δψm) of repaired cells increased. Cells of G1 phase arrest were inhibited, and cell proportion in the S phase increased. Lysosome integrity improved, and cell apoptotic rates significantly reduced in the repaired group. The four kinds of TPSs with varying Mw displayed antioxidant activity and repair effect on the mitochondria, lysosomes, and intracellular DNA. TPS2, with moderate Mw, showed the strongest antioxidant activity and repair effect; it may become a potential drug for prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Li Kuang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
23
|
Liu LQ, Nie SP, Shen MY, Hu JL, Yu Q, Gong D, Xie MY. Tea Polysaccharides Inhibit Colitis-Associated Colorectal Cancer via Interleukin-6/STAT3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4384-4393. [PMID: 29656647 DOI: 10.1021/acs.jafc.8b00710] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interleukin-6 (IL-6)/signal transducer and activator of transcription (STAT)-3 signaling pathway regulates proliferation and survival of intestinal epithelial cells and has profound impact on the tumorigenesis of colitis-associated cancer (CAC). Tea polysaccharides (TPS) are the major nutraceutical component isolated from tea-leaves and are known to possess antioxidant, anti-inflammatory, and antitumor bioactivities. Here, we investigated the antitumor activities of TPS on CAC using the azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and IL-6-induced colorectal cancer cell line (CT26) and determined whether TPS exerted its antitumor effects through the IL-6/STAT3 pathway. Results demonstrated that TPS significantly decreased the tumor incidence, tumor size, and markedly inhibited the infiltration of pro-inflammatory cells and the secretion of pro-inflammatory cytokines via balancing cellular microenvironment. Furthermore, we found that TPS suppressed the activation of STAT3 and transcriptionally regulated the expressions of downstream genes including MMP2, cyclin Dl, survivin, and VEGF both in vivo and in vitro. Thus, it was concluded that TPS attenuated the progress of CAC via suppressing IL-6/STAT3 pathway and downstream genes' expressions, which indicated that TPS may be a hopeful antitumor agent for the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Deming Gong
- New Zealand Institute of Natural Medicine Research , Auckland 2104 , New Zealand
| | | |
Collapse
|