1
|
Yu K, Choi I, Kim M, Pyung YJ, Lee JS, Choi Y, Won S, Kim Y, Park BC, Han SH, Park TS, Dalgaard TS, Yun CH. Florfenicol-induced dysbiosis impairs intestinal homeostasis and host immune system in laying hens. J Anim Sci Biotechnol 2025; 16:56. [PMID: 40223090 PMCID: PMC11995664 DOI: 10.1186/s40104-025-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Despite growing concerns about the adverse effects of antibiotics in farm animals, there has been little investigation of the effects of florfenicol in laying hens. This study examined the effect of florfenicol on the intestinal homeostasis, immune system, and pathogen susceptibility of laying hens. RESULTS The oral administration of florfenicol at field-relevant levels for 5 d resulted in a decrease in the gut microbiota genera Lactobacillus, Bacillus, and Bacteroides, indicating the development of intestinal dysbiosis. The dysbiosis led to decreased mRNA levels of key regulators peroxisome proliferator-activated receptor gamma (PPAR-γ) and hypoxia-inducible factor-1α (HIF-1α), compromising intestinal hypoxia. Intestinal homeostasis was also disrupted, with decreased expression of Occludin and Mucin 2 (Muc2) genes combined with increased gut epithelial permeability. The breakdown in intestinal homeostasis and immune function provided a favorable environment for opportunistic bacteria like avian pathogenic Escherichia coli (APEC), culminating in systemic infection. Immunologically, florfenicol treatment resulted in increased proportion and absolute number of MRC1L-B+ monocytes/macrophages in the spleen, indicating an exacerbated infection. Furthermore, both the proportion and absolute number of γδ T cells in the lamina propria of the cecum decreased. Treatment with florfenicol reduced butyrate levels in the cecum. However, the administration of butyrate before and during florfenicol treatment restored factors associated with intestinal homeostasis, including PPAR-γ, Occludin, and Muc2, while partially restoring HIF-1α, normalized intestinal hypoxia and gut permeability, and reversed immune cell changes, suppressing APEC systemic infection. CONCLUSION The uncontrolled and widespread use of florfenicol can negatively affect intestinal health in chickens. Specifically, florfenicol was found to impair intestinal homeostasis and immune function in laying hens, including by reducing butyrate levels, thereby increasing their susceptibility to systemic APEC infection. The development of strategies for mitigating the adverse effects of florfenicol on gut health and pathogen susceptibility in laying hens is therefore essential.
Collapse
Affiliation(s)
- Keesun Yu
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inhwan Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minseong Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Sun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youbin Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-Gun, Gangwon-Do, 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-Gun, Gangwon-Do, 25354, Republic of Korea
| | | | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Bennett KA, Sutherland C, Savage AL. A systematic review and meta-analysis of environmental contaminant exposure impacts on weight loss and glucose regulation during calorie-restricted diets in preclinical studies: Persistent organic pollutants may impede glycemic control. Biochem Pharmacol 2024; 225:116300. [PMID: 38782075 DOI: 10.1016/j.bcp.2024.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Epidemiological evidence links chemical exposure with type 2 diabetes (T2DM) risk and prevalence. Chemical exposure may therefore also limit success of weight loss or restoration of glycemic control during calorie restricted diets. Few human studies examine this hypothesis. This systematic review and clustered meta-analysis examines preclinical evidence that exposure to anthropogenic environmental contaminants impedes weight loss and resumption of glycemic control during calorie restriction. Of five eligible papers from 212 unique citations, four used C57BL/6 mice and one used Sprague Dawley rats. In four the animals received high fat diets to induce obesity and impaired glycemic control. All examined persistent organic pollutants (POPs). Polychlorinated biphenyl (PCB) 77 exposure did not affect final mass (standardised mean difference (SMD) = -0.35 [-1.09, 0.39]; n = 5 (experiments); n = 3 (papers)), or response to insulin in insulin tolerance tests (SMD = -1.54 [-3.25, 0.16] n = 3 (experiments); n = 2 (papers)), but impaired glucose control in glucose tolerance tests (SMD = -1.30 [-1.96, -0.63]; n = 6 (experiments); n = 3 (papers)). The impaired glycemic control following perfluoro-octane sulphonic acid (PFOS) exposure and enhanced mass loss following dichlorodiphenyltrichloroethane (DDT) exposure have not been replicated. Animal studies thus suggest some chemical groups, especially PCB and PFOS, could impair glucose control management during calorie restriction, similar to conclusions from limited existing clinical studies. We discuss the research that is urgently required to inform weight management services that are now the mainstay prevention initiative for T2DM.
Collapse
Affiliation(s)
- K A Bennett
- Division of Health Sciences, School of Applied Sciences, Kydd Building, Abertay University, Dundee, DD1 1HG.
| | | | - A L Savage
- Division of Health Sciences, School of Applied Sciences, Kydd Building, Abertay University, Dundee, DD1 1HG
| |
Collapse
|
3
|
Chan AML, Ng AMH, Yunus MHM, Idrus RH, Law JX, Yazid MD, Chin KY, Yusof MRM, Ng SN, Koh B, Lokanathan Y. Single high-dose intravenous injection of Wharton's jelly-derived mesenchymal stem cell exerts protective effects in a rat model of metabolic syndrome. Stem Cell Res Ther 2024; 15:160. [PMID: 38835014 DOI: 10.1186/s13287-024-03769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohd Rafizul Mohd Yusof
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - See Nguan Ng
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Venter E, Zandberg L, Venter PVZ, Smuts CM, Kruger HS, Baumgartner J. Female rats consuming an iron and omega-3 fatty acid deficient diet preconception require combined iron and omega-3 fatty acid supplementation for the prevention of bone impairments in offspring. J Dev Orig Health Dis 2024; 15:e6. [PMID: 38653729 DOI: 10.1017/s2040174424000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We previously showed in rats that pre- and postnatal deficiencies in iron and omega-3 (n-3) fatty acids can impair bone development, with additive and potentially irreversible effects when combined. This study aimed to investigate, in female rats consuming a combined iron and n-3 fatty acid deficient (ID + n-3 FAD) diet preconception, whether supplementation with iron and docosahexaenoic/eicosapentaenoic acid (DHA/EPA), alone and in combination, can prevent bone impairments in offspring. Using a 2 × 2 factorial design, female Wistar rats consuming an ID + n-3 FAD diet preconception were randomised to receive an: 1) iron supplemented (Fe + n-3 FAD), 2) DHA/EPA supplemented (ID + DHA/EPA), 3) Fe + DHA/EPA, or 4) ID + n-3 FAD diet from gestational day 10 throughout pregnancy and lactation. Post-weaning, offspring (n = 24/group; male:female = 1:1) remained on the respective experimental diets for three weeks until postnatal day 42-45. Offspring born to female rats consuming a control diet preconception and an Fe+DHA/EPA diet throughout pregnancy and lactation served as non-deficient reference group (Control+Fe+DHA/EPA). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry and bone strength using three-point bending tests. Only offspring in the Fe+DHA/EPA group had significantly higher spine and femur BMD, and higher femur stiffness than offspring in the ID + n-3 FAD group, and had similar spine BMD and femur stiffness as the Control + Fe + DHA/EPA group. Offspring in the Fe + DHA/EPA group further had significantly higher femur strength (ultimate load) than the other experimental groups, and a similar femur strength as the Control + Fe + DHA/EPA group. This study shows that only combined iron and DHA/EPA supplementation can prevent bone impairments in offspring of female rats consuming an iron and n-3 FA deficient diet preconception.
Collapse
Affiliation(s)
- Estelle Venter
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Philip vZ Venter
- Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Herculina S Kruger
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Jeannine Baumgartner
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
5
|
Semwogerere F, Chikwanha OC, Katiyatiya CLF, Marufu MC, Mapiye C. Nutrient intake, digestibility, and utilization in goats fed graded levels of hempseed cake finisher diets. Trop Anim Health Prod 2023; 56:21. [PMID: 38112933 PMCID: PMC10730684 DOI: 10.1007/s11250-023-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Globally, the price of soybean meal, the most common proteinaceous ingredient in livestock diets, has become highly expensive prompting a search for alternative ingredients. Hemp seed cake is a promising alternative but could be limited by its high neutral detergent fiber and ether extract contents which impede nutrient intake and digestibility. However, some ruminant species such as goats have superior ability to digest high fiber and ether extract diets. Thus, the current research evaluated nutrient intake and digestibility, rumen fermentation, and microbial protein synthesis of goats fed hempseed cake as a substitute for soybean meal in finisher diets. A total of 25 Kalahari Red castrates (27 ± 3 kg, 4-5 months old) were assigned to five dietary treatments (5 goats/ diet) in a completely randomized design. A maize-lucerne-based finishing diet was formulated with hempseed cake substituting soybean meal as the primary protein ingredient at 0, 25, 50, 75, or 100 g/kg dry matter. Ether extract intake exhibited a positive linear trend (P ≤ 0.05) while crude protein intake and microbial nitrogen supply exhibited a negative linear trend (P ≤ 0.05) with dietary inclusion of hempseed cake. However, feeding hempseed cake did not influence (P > 0.05) apparent nutrient digestibility, rumen fermentation parameters and nitrogen use efficiency. In conclusion, the substitution of soybean meal for hempseed cake decreased crude protein intake and microbial nitrogen supply in goat finisher diets without compromising nutrient digestibility and nitrogen use efficiency. The study recommends partial or full replacement of soybean meal with hempseed cake in goat finisher diets.
Collapse
Affiliation(s)
- Farouk Semwogerere
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Chenaimoyo L F Katiyatiya
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Munyaradzi C Marufu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
6
|
Penndorf P, Jabs J. A new approach to making scientific research more efficient - rethinking sustainability. FEBS Lett 2023; 597:2371-2374. [PMID: 37737013 DOI: 10.1002/1873-3468.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
As interest in sustainability grows, many researchers raise questions about changing scientific practices. To enable effective change, we reconceptualize sustainability as an approach that optimizes the efficiency of procedures, thereby benefiting scientists and minimizing environmental footprints. Since the implementation of sustainable approaches can be challenging, we describe the 6R concept as a framework to arrive at actionable steps.
Collapse
Affiliation(s)
- Patrick Penndorf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
7
|
Domarecka E, Szczepek AJ. Universal Recommendations on Planning and Performing the Auditory Brainstem Responses (ABR) with a Focus on Mice and Rats. Audiol Res 2023; 13:441-458. [PMID: 37366685 DOI: 10.3390/audiolres13030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Translational audiology research aims to transfer basic research findings into practical clinical applications. While animal studies provide essential knowledge for translational research, there is an urgent need to improve the reproducibility of data derived from these studies. Sources of variability in animal research can be grouped into three areas: animal, equipment, and experimental. To increase standardization in animal research, we developed universal recommendations for designing and conducting studies using a standard audiological method: auditory brainstem response (ABR). The recommendations are domain-specific and are intended to guide the reader through the issues that are important when applying for ABR approval, preparing for, and conducting ABR experiments. Better experimental standardization, which is the goal of these guidelines, is expected to improve the understanding and interpretation of results, reduce the number of animals used in preclinical studies, and improve the translation of knowledge to the clinic.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
8
|
Song Y, Du Y, An Y, Zheng J, Lu Y. A systematic review and meta-analysis of cognitive and behavioral tests in rodents treated with different doses of D-ribose. Front Aging Neurosci 2022; 14:1036315. [PMID: 36438006 PMCID: PMC9681890 DOI: 10.3389/fnagi.2022.1036315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 05/27/2024] Open
Abstract
Background D-ribose is an aldehyde sugar and a necessary component of all living cells. Numerous reports have focused on D-ribose intervention in animal models to assess the negative effects of D-ribose on cognition. However, the results across these studies are inconsistent and the doses and actual effects of D-ribose on cognition remain unclear. This systematic review aimed to evaluate the effect of D-ribose on cognition in rodents. Methods The articles from PubMed, Embase, Sciverse Scopus, Web of Science, the Chinese National Knowledge Infrastructure, SinoMed, Wanfang, and Cqvip databases were screened. The results from the abstract on cognitive-related behavioral tests and biochemical markers from the included articles were extracted and the reporting quality was assessed. Results A total of eight trials involving 289 rodents met the eligibility criteria, and both low- and high-dose groups were included. Meta-analyses of these studies showed that D-ribose could cause a significant decrease in the number of platform crossings (standardized mean difference [SMD]: -0.80; 95% CI: -1.14, -0.46; p < 0.00001), percentage of distance traversed in the target quadrant (SMD: -1.20; 95% CI: -1.47, -0.92; p < 0.00001), percentage of time spent in the target quadrant (SMD: -0.93; 95% CI: -1.18, -0.68; p < 0.00001), and prolonged escape latency (SMD: 0.41; 95% CI: 0.16, 0.65; p = 0.001) in the Morris water maze test. Moreover, D-ribose intervention increased the levels of advanced glycation end products (AGEs) in the brain (SMD: 0.49; 95% CI: 0.34, 0.63; p < 0.00001) and blood (SMD: 0.50; 95% CI: 0.08, 0.92; p = 0.02). Subsequently, subgroup analysis for the dose of D-ribose intervention revealed that high doses injured cognitive function more significantly than low D-ribose doses. Conclusion D-ribose treatment caused cognitive impairment, and cognition deteriorated with increasing dose. Furthermore, the increase in AGEs in the blood and brain confirmed that D-ribose may be involved in cognitive impairment through non-enzymatic glycosylation resulting in the generation of AGEs. These findings provide a new research idea for unveiling basic mechanisms and prospective therapeutic targets for the prevention and treatment of patients with cognitive impairment.
Collapse
Affiliation(s)
- Ying Song
- School of Nursing, Peking University, Beijing, China
| | - Yage Du
- School of Nursing, Peking University, Beijing, China
| | - Yu An
- Department of Endocrinology, Beijing Chaoyang Hospital, Beijing, China
| | - Jie Zheng
- School of Nursing, Peking University, Beijing, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing, China
| |
Collapse
|
9
|
Strydom E, Zandberg L, Kemp ET, Venter PVZ, Smuts CM, Kruger HS, Baumgartner J. Effects and Reversibility of Pre- and Post-natal Iron and Omega-3 Fatty Acid Deficiency, Alone and in Combination, on Bone Development in Rats. Front Nutr 2022; 8:802609. [PMID: 35111798 PMCID: PMC8801778 DOI: 10.3389/fnut.2021.802609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Both iron and omega-3 (n-3) polyunsaturated fatty acids may play an important role in bone development. The aim of this study was to investigate the effects of pre- and post-natal iron and n-3 fatty acid deficiency (FAD), alone and in combination, on bone development in rats, and to determine whether effects are reversible when a sufficient diet is provided post-weaning. Using a 2×2-factorial design, 56 female Wistar rats were allocated to one of four diets: (1) control, (2) iron deficient (ID), (3) n-3 FAD or (4) ID and n-3 FAD, and were maintained on the respective diets throughout gestation and lactation. At weaning (post-natal day [PND] 21), offspring (n = 24/group; male:female=1:1) were randomly allocated to either continue with their respective diets or to switch to the control diet until PND 42-45. Bone mineral density (BMD) and bone strength were determined using dual X-ray absorptiometry and three-point bending tests, respectively. Pre- and post-natal ID resulted in significantly lower BMD in the spine and bone strength in the left femur. Both ID and n-3 FAD resulted in lower BMD in the right femur, with an additive reduction in the combined ID and n-3 FAD group vs. controls. While negative effects of pre- and post-natal ID alone were reversed in offspring switched to a control diet post-weaning, lower BMD and bone strength persisted in offspring with combined ID and n-3 FAD during the prenatal and early post-natal period. Effects were not sex-specific. These results indicate that ID during early life may negatively influence bone development, with potential additive effects of n-3 FAD. While the effects of ID alone seem reversible, a combined ID and n-3 FAD may result in irreversible deficits in bone development.
Collapse
Affiliation(s)
- Estelle Strydom
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Erna T. Kemp
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Philip vZ. Venter
- School of Mechanical and Nuclear Engineering, North-West University, Potchefstroom, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Herculina S. Kruger
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Jeannine Baumgartner
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
- *Correspondence: Jeannine Baumgartner
| |
Collapse
|
10
|
Hayford FEA, Dolman RC, Ozturk M, Nienaber A, Ricci C, Loots DT, Brombacher F, Blaauw R, Smuts CM, Parihar SP, Malan L. Adjunct n-3 Long-Chain Polyunsaturated Fatty Acid Treatment in Tuberculosis Reduces Inflammation and Improves Anemia of Infection More in C3HeB/FeJ Mice With Low n-3 Fatty Acid Status Than Sufficient n-3 Fatty Acid Status. Front Nutr 2021; 8:695452. [PMID: 34504860 PMCID: PMC8421789 DOI: 10.3389/fnut.2021.695452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 02/02/2023] Open
Abstract
Populations at risk for tuberculosis (TB) may have a low n-3 polyunsaturated fatty acid (PUFA) status. Our research previously showed that post-infection supplementation of n-3 long-chain PUFA (LCPUFA) in TB without TB medication was beneficial in n-3 PUFA sufficient but not in low-status C3HeB/FeJ mice. In this study, we investigated the effect of n-3 LCPUFA adjunct to TB medication in TB mice with a low compared to a sufficient n-3 PUFA status. Mice were conditioned on an n-3 PUFA-deficient (n-3FAD) or n-3 PUFA-sufficient (n-3FAS) diet for 6 weeks before TB infection. Post-infection at 2 weeks, both groups were switched to an n-3 LCPUFA [eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA)] supplemented diet and euthanized at 4- and 14- days post-treatment. Iron and anemia status, bacterial loads, lung pathology, lung cytokines/chemokines, and lung lipid mediators were measured. Following 14 days of treatment, hemoglobin (Hb) was higher in the n-3FAD than the untreated n-3FAS group (p = 0.022), whereas the n-3FAS (drug) treated control and n-3FAS groups were not. Pro-inflammatory lung cytokines; interleukin-6 (IL-6) (p = 0.011), IL-1α (p = 0.039), MCP1 (p = 0.003), MIP1- α (p = 0.043), and RANTES (p = 0.034); were lower, and the anti-inflammatory cytokine IL-4 (p = 0.002) and growth factor GMCSF (p = 0.007) were higher in the n-3FAD compared with the n-3FAS mice after 14 days. These results suggest that n-3 LCPUFA therapy in TB-infected mice, in combination with TB medication, may improve anemia of infection more in low n-3 fatty acid status than sufficient status mice. Furthermore, the low n-3 fatty acid status TB mice supplemented with n-3 LCPUFA showed comparatively lower cytokine-mediated inflammation despite presenting with lower pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Du Toit Loots
- Laboratory of Infectious Disease Metabolomics, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Renée Blaauw
- Division of Human Nutrition, Stellenbosch University, Cape Town, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Hayford FEA, Ozturk M, Dolman RC, Blaauw R, Nienaber A, Loots DT, Brombacher F, Smuts CM, Parihar SP, Malan L. Longer-Term Omega-3 LCPUFA More Effective Adjunct Therapy for Tuberculosis Than Ibuprofen in a C3HeB/FeJ Tuberculosis Mouse Model. Front Immunol 2021; 12:659943. [PMID: 33995381 PMCID: PMC8113969 DOI: 10.3389/fimmu.2021.659943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Advancement in the understanding of inflammation regulation during tuberculosis (TB) treatment has led to novel therapeutic approaches being proposed. The use of immune mediators like anti-inflammatory and pro-resolving molecules for such, merits attention. Drug repurposing is a widely used strategy that seeks to identify new targets to treat or manage diseases. The widely explored nonsteroidal anti-inflammatory drug (NSAID) ibuprofen and a more recently explored pharmaconutrition therapy using omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), have the potential to modulate the immune system and are thus considered potential repurposed drugs in this context. These approaches may be beneficial as supportive therapy to the already existing treatment regimen to improve clinical outcomes. Here, we applied adjunct ibuprofen and n-3 LCPUFA therapy, respectively, with standard anti-TB treatment, in a C3HeB/FeJ murine model of TB. Bacterial loads, lung pathology, lung cytokines/chemokines and lung lipid mediators were measured as outcomes. Lung bacterial load on day 14 post-treatment (PT) was lower in the n-3 LCPUFA, compared to the ibuprofen group (p = 0.039), but was higher in the ibuprofen group than the treated control group (p = 0.0315). Treated control and ibuprofen groups had more free alveolar space initially as compared to the n-3 LCPUFA group (4 days PT, p= 0.0114 and p= 0.002, respectively); however, significantly more alveolar space was present in the n-3 LCPUFA group as compared to the ibuprofen group by end of treatment (14 days PT, p = 0.035). Interleukin 6 (IL-6) was lower in the ibuprofen group as compared to the treated control, EPA/DHA and untreated control groups at 4 days PT (p = 0.019, p = 0.019 and p = 0.002, respectively). Importantly, pro-resolving EPA derived 9-HEPE, 11-HEPE, 12-HEPE and 18-HEPE lipid mediators (LMs) were significantly higher in the EPA/DHA group as compared to the ibuprofen and treated control groups. This suggests that n-3 LCPUFAs do improve pro-resolving and anti-inflammatory properties in TB, and it may be safe and effective to co-administer as adjunct therapy with standard TB treatment, particularly longer-term. Also, our results show host benefits upon short-term co-administration of ibuprofen, but not throughout the entire TB treatment course.
Collapse
Affiliation(s)
- Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Laboratory of Infectious Disease Metabolomics, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb) 2021; 31:010502. [PMID: 33380887 PMCID: PMC7745163 DOI: 10.11613/bm.2021.010502] [Citation(s) in RCA: 550] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
Calculating the sample size in scientific studies is one of the critical issues as regards the scientific contribution of the study. The sample size critically affects the hypothesis and the study design, and there is no straightforward way of calculating the effective sample size for reaching an accurate conclusion. Use of a statistically incorrect sample size may lead to inadequate results in both clinical and laboratory studies as well as resulting in time loss, cost, and ethical problems. This review holds two main aims. The first aim is to explain the importance of sample size and its relationship to effect size (ES) and statistical significance. The second aim is to assist researchers planning to perform sample size estimations by suggesting and elucidating available alternative software, guidelines and references that will serve different scientific purposes.
Collapse
Affiliation(s)
- Ceyhan Ceran Serdar
- Medical Biology and Genetics, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Murat Cihan
- Ordu University Training and Research Hospital, Ordu, Turkey
| | - Doğan Yücel
- Department of Medical Biochemistry, Lokman Hekim University School of Medicine, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
13
|
RESTREPO-GALLEGO M, DÍAZ LE, OSPINA-VILLA JD, CHINCHILLA-CÁRDENAS D. Vitamin A deficiency regulates the expression of ferritin in young male Wistar rats. REV NUTR 2021. [DOI: 10.1590/1678-9865202134e200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Objective Iron deficiency and vitamin A deficiency are two of the main micronutrient deficiencies. Both micronutrients are essential for human life and children's development. This study aimed to investigate the effects of vitamin A deficiency on ferritin and transferrin receptors' expression and its relationship with iron deficiency. Methods Five diets with different vitamin A-to-iron ratios were given to thirty five 21-day-old male Wistar rats (separated in groups of seven animals each). The animals received the diet for six weeks before being euthanized. Serum iron and retinol levels were measured as biochemical parameters. Their duodenums, spleens, and livers were analyzed for the expression of ferritin and transferrin receptors by Western Blotting. Results Regarding biochemical parameters, the results show that when both vitamin A and iron are insufficient, the serum iron content (74.74µg/dL) is significantly lower than the control group (255.86µg/dL). The results also show that vitamin A deficiency does not influence the expression of the transferrin receptor, but only of the ferritin one. Conclusion Vitamin A deficiency regulates the expression of ferritin in young male Wistar rats.
Collapse
|