1
|
Sha W, Gong C, Xiao G, Hou C, Ren J. Interaction-based screening, Monte Carlo Bayesian inference-based de novo design and in vitro verification of adenine-binding peptide. Food Chem 2024; 448:139076. [PMID: 38537545 DOI: 10.1016/j.foodchem.2024.139076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024]
Abstract
One of the main reasons for hyperuricemia is high purine intake. The primary strategy for treating hyperuricemia is blocking the purine metabolism enzyme. However, by binding the purine bases directly, we suggested a unique therapeutic strategy that might interfere with purine metabolism. There have been numerous reports of extensive interactions between proteins and purine bases. Adenine, constituting numerous protein co-factors, can interact with the adenine-binding motif. Using Bayesian Inference and Markov chain Monte Carlo sampling, we created a novel adenine-binding peptide Ile-Tyr-Val-Thr based on the structure of the adenine-binding motifs. Ile-Tyr-Val-Thr generates a semi-pocket that can clip the adenine within, as demonstrated by docking. Then, using thermodynamic techniques, the interaction between Ile-Tyr-Val-Thr and adenine was confirmed. The KD value is 1.50e-5 (ΔH = -20.2 kJ/mol and ΔG = -27.6 kJ/mol), indicating the high affinity. In brief, the adenine-binding peptide Ile-Tyr-Val-Thr may help lower uric acid level by blocking the absorption of food-derived adenine.
Collapse
Affiliation(s)
- Wanqian Sha
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Congcong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ganhong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanli Hou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Ma H, Qu J, Liao Y, Liu L, Yan M, Wei Y, Xu W, Luo J, Dai Y, Pang Z, Qu Q. Equilibrative nucleotide transporter ENT3 (SLC29A3): A unique transporter for inherited disorders and cancers. Exp Cell Res 2024; 434:113892. [PMID: 38104646 DOI: 10.1016/j.yexcr.2023.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Yongkang Liao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yiwen Wei
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yuxin Dai
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
4
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
5
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
6
|
Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 2021; 116:22. [PMID: 33755785 PMCID: PMC7987637 DOI: 10.1007/s00395-021-00859-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
Collapse
Affiliation(s)
- Ying Zhang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Xin Cao
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, USA
| | - Yong Tang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
7
|
Çağdaş D, Sürücü N, Tan Ç, Kayaoğlu B, Özgül RK, Akkaya-Ulum YZ, Aydınoğlu AT, Aytaç S, Gümrük F, Balci-Hayta B, Balci-Peynircioğlu B, Özen S, Gürsel M, Tezcan İ. Autoinflammation in addition to combined immunodeficiency: SLC29A3 gene defect. Mol Immunol 2020; 121:28-37. [PMID: 32151906 DOI: 10.1016/j.molimm.2020.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION H Syndrome is an autosomal recessive (AR) disease caused by defects in SLCA29A3 gene. This gene encodes the equilibrative nucleoside transporter, the protein which is highly expressed in spleen, lymph node and bone marrow. Autoinflammation and autoimmunity accompanies H Syndrome (HS). AIM The aim was to further elucidate the mechanisms of disease by molecular studies in a patient with SLC29A3 gene defect. PATIENT AND METHODS Mitochondrial dysfunction, lysosomal integrity, cytokine response in response to stimulation with different pattern recognition receptor ligands, and circulating cell-free mitochondrial-DNA(ccf-mtDNA) level in plasma were analyzed compared to controls to understand the cellular triggers of autoinflammation. RNA sequencing (RS) analyses were also performed in monocytes before/after culture with lipopolysaccharide. RESULTS Patient had progressive destructive arthropathy in addition to clinical findings due to combined immunodeficiency. Pure red cell aplasia (PRCA), vitiligo, diabetes, multiple autoantibody positivity, lymphopenia, increased acute phase reactants were present. Recent thymic emigrants (RTE), naïve T cells were decreased, effector memory CD4 + T cells, nonclassical inflammatory monocytes were increased. Patient's peripheral blood mononuclear cells secreted more IL-1β and IL-6, showed lysosomal disruption and significant mitochondrial dysfunction compared to healthy controls. Plasma ccf-mtDNA level was significantly elevated compared to age-matched controls (p < 0.05). RNA sequencing studies revealed decreased expression of NLR Family Caspase Recrument-Domain Containing 4(NLRC4), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4(PFKFB4), serine dehydratase(SDS), heparan sulfate(Glucosamine) 3-O-sulfotransferase 1(HS3ST1), neutral cholesterol ester hydrolase 1 (NCEH1), and interleukin-8 (IL-8) in patient's monocytes compared to controls. Longstanding PRCA, which is possibly autoimmune, resolved after initiating monthly intravenous immunoglobulins (IVIG) and low dose steroids to the patient. CONCLUSION Although autoinflammation and autoimmunity are reported in HS, by functional analyses we here show in the present patient that over-active inflammasome pathway in HS might be related with mitochondrial and lysosomal dysfunction. Increased plasma ccf-mtDNA may be used as a biomarker of inflammasomopathy in HS. HS should be included in the classification of primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Deniz Çağdaş
- Department of Pediatric Immunology, Hacettepe University Medical Faculty, Ankara, Turkey.
| | - Naz Sürücü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Çağman Tan
- Institute of Child Health, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Başak Kayaoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Rıza Köksal Özgül
- Department of Pediatric Metabolism, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayşe Tülay Aydınoğlu
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Selin Aytaç
- Department of Pediatric Hematology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Fatma Gümrük
- Department of Pediatric Hematology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Seza Özen
- Department of Pediatric Rheumatology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Mayda Gürsel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İlhan Tezcan
- Department of Pediatric Immunology, Hacettepe University Medical Faculty, Ankara, Turkey
| |
Collapse
|
8
|
Simsek E, Simsek T, Eren M, Yilmaz E, Arik D, Cilingir O, Ceylaner S, Harmancı K. Clinical, Histochemical, and Molecular Study of Three Turkish Siblings Diagnosed with H Syndrome, and Literature Review. Horm Res Paediatr 2020; 91:346-355. [PMID: 30625464 DOI: 10.1159/000495190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The term "H syndrome" was coined to denote the major clinical findings, which include hyperpigmentation, hypertrichosis, hearing loss, hepatosplenomegaly, hyperglycaemia, hypogonadism, hallux flexion contractures, and short height. OBJECTIVE To report the clinical, endocrinological, histochemical, and genetic findings of three siblings. METHODS Skin and liver biopsies were taken to investigate the histochemical characteristics of hyperpigmented hypertrichotic skin lesions and massive hepatomegaly. The levels of basal serum thyroid hormones, oestradiol, total testosterone, follicle-stimulating hormone, luteinising hormone, and stimulated growth hormone (GH) were measured to investigate the endocrine aspects of the syndrome. Mutation analysis was carried out in all six exons and exon-intron boundaries of SLC29A3 by direct sequencing. RESULTS Physical examination of the patients revealed common charac-teristic findings of H syndrome. Additional clinical findings were sectorial iris atrophy in the younger sister. Laboratory evaluation revealed microcytic anaemia, markedly increased erythrocyte sedimentation rate and C-reactive protein levels, and humoral immune deficiency in the younger siblings, who presented with recurrent fever and sinopulmonary infection. Two different GH stimulation tests revealed GH deficiency in the younger sister with short stature. Liver and skin biopsies revealed polyclonal lymphohistiocytic and plasma cell infiltration. Sequencing of SLC29A3 in the three siblings revealed a novel homozygous mutation in exon 6, which caused the transition of arginine to tryptophan. CONCLUSION This study not only extended the clinical and mutation spectrum of SLC29A3 in H syndrome, but also showed that short children should be assessed according to the guidelines for short stature in children.
Collapse
Affiliation(s)
- Enver Simsek
- Department of Paediatric Endocrinology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey,
| | - Tulay Simsek
- Department of Ophthalmology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Makbule Eren
- Department of Paediatric Gastroenterology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Evrim Yilmaz
- Department of Pathology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Deniz Arik
- Department of Pathology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Oguz Cilingir
- Department of Molecular Genetics, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | | | - Koray Harmancı
- Department of Paediatric Allergy and Immunology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| |
Collapse
|
9
|
Riachi M, Bas F, Darendeliler F, Hussain K. A novel 3' untranslated region mutation in the SLC29A3 gene associated with pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus syndrome. Pediatr Diabetes 2019; 20:474-481. [PMID: 30821020 DOI: 10.1111/pedi.12839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Accepted: 02/08/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) is one of the rare H syndrome diseases mainly characterized by hyperpigmentation, hypertrichosis, sensorineural hearing loss, cardiac complications, developmental delay, and diabetes mellitus (DM). Mutations in the coding regions of the SLC29A3 gene that encodes for an equilibrative nucleoside transporter (ENT3) have been reported to cause the phenotypic spectrum of the H syndrome. Disease-causing mutations in the untranslated regions (UTRs) of the SLC29A3 gene have not been previously described in the literature. The aim of the study is to describe and assess the pathogenicity of a novel 3'UTR mutation in the SLC29A3 gene associated with the PHID phenotype in two Turkish patients. METHODS The mutation was identified by a targeted gene approach. To understand the pathogenicity of this 3'UTR mutation, RNA and protein expression studies were performed by using the quantitative real-time polymerase chain reaction method and western blotting, respectively, using fibroblasts cultured from the patients' skin biopsies. RESULTS SLC29A3 and ENT3 expression levels were both decreased in the patients compared to controls matched for passage numbers, RNA, and protein extraction methods. CONCLUSIONS A novel 3'UTR mutation in the SLC29A3 gene is associated with the PHID syndrome, highlighting a potentially new pathological mechanism for this disease. The involvement of the 3'UTR has not been previously established in any of the H syndrome disease cluster or in any complex syndrome of DM.
Collapse
Affiliation(s)
- Melissa Riachi
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Firdevs Bas
- Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Feyza Darendeliler
- Department of Pediatrics, Pediatric Endocrinology Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Khalid Hussain
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK.,Department of Pediatrics, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| |
Collapse
|
10
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
11
|
Rahman MF, Askwith C, Govindarajan R. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter 3. J Biol Chem 2017; 292:14775-14785. [PMID: 28729424 DOI: 10.1074/jbc.m117.787952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) translocate hydrophilic nucleosides across cellular membranes and are essential for salvage nucleotide synthesis and purinergic signaling. Unlike the prototypic human ENT members hENT1 and hENT2, which mediate plasma membrane nucleoside transport at pH 7.4, hENT3 is an acidic pH-activated lysosomal transporter partially localized to mitochondria. Recent studies demonstrate that hENT3 is indispensable for lysosomal homeostasis, and that mutations in hENT3 can result in a spectrum of lysosomal storage-like disorders. However, despite hENT3's prominent role in lysosome pathophysiology, the molecular basis of hENT3-mediated transport is unknown. Therefore, we sought to examine the mechanistic basis of acidic pH-driven hENT3 nucleoside transport with site-directed mutagenesis, homology modeling, and [3H]adenosine flux measurements in mutant RNA-injected Xenopus oocytes. Scanning mutagenesis of putative residues responsible for pH-dependent transport via hENT3 revealed that the ionization states of Asp-219 and Glu-447, and not His, strongly determined the pH-dependent transport permissible-impermissible states of the transporter. Except for substitution with certain isosteric and polar residues, substitution of either Asp-219 or Glu-447 with any other residues resulted in robust activity that was pH-independent. Dual substitution of Asp-219 and Glu-447 to Ala sustained pH-independent activity over a broad range of physiological pH (pH 5.5-7.4), which also maintained stringent substrate selectivity toward endogenous nucleosides and clinically used nucleoside drugs. Our results suggest a putative pH-sensing role for Asp-219 and Glu-447 in hENT3 and that the size, ionization state, or electronegative polarity at these positions is crucial for obligate acidic pH-dependent activity.
Collapse
Affiliation(s)
- Md Fazlur Rahman
- From the Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | | | - Rajgopal Govindarajan
- From the Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, .,the Translational Therapeutics Program, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
12
|
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
13
|
Huang W, Zeng X, Shi Y, Liu M. Functional characterization of human equilibrative nucleoside transporter 1. Protein Cell 2017; 8:284-295. [PMID: 27995448 PMCID: PMC5359181 DOI: 10.1007/s13238-016-0350-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs), which facilitate cross-membrane transport of nucleosides and nucleoside-derived drugs, play an important role in the salvage pathways of nucleotide synthesis, cancer chemotherapy, and treatment for virus infections. Functional characterization of ENTs at the molecular level remains technically challenging and hence scant. In this study, we report successful purification and biochemical characterization of human equilibrative nucleoside transporter 1 (hENT1) in vitro. The HEK293F-derived, recombinant hENT1 is homogenous and functionally active in proteoliposome-based counter flow assays. hENT1 transports the substrate adenosine with a Km of 215 ± 34 µmol/L and a Vmax of 578 ± 23.4 nmol mg-1 min-1. Adenosine uptake by hENT1 is competitively inhibited by nitrobenzylmercaptopurine ribonucleoside (NBMPR), nucleosides, deoxynucleosides, and nucleoside-derived anti-cancer and anti-viral drugs. Binding of hENT1 to adenosine, deoxyadenosine, and adenine by isothermal titration calorimetry is in general agreement with results of the competitive inhibition assays. These results validate hENT1 as a bona fide target for potential drug target and serve as a useful basis for future biophysical and structural studies.
Collapse
Affiliation(s)
- Weiyun Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Zeng
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Minhao Liu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Oyarzún C, Garrido W, Alarcón S, Yáñez A, Sobrevia L, Quezada C, San Martín R. Adenosine contribution to normal renal physiology and chronic kidney disease. Mol Aspects Med 2017; 55:75-89. [PMID: 28109856 DOI: 10.1016/j.mam.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Adenosine is a nucleoside that is particularly interesting to many scientific and clinical communities as it has important physiological and pathophysiological roles in the kidney. The distribution of adenosine receptors has only recently been elucidated; therefore it is likely that more biological roles of this nucleoside will be unveiled in the near future. Since the discovery of the involvement of adenosine in renal vasoconstriction and regulation of local renin production, further evidence has shown that adenosine signaling is also involved in the tubuloglomerular feedback mechanism, sodium reabsorption and the adaptive response to acute insults, such as ischemia. However, the most interesting finding was the increased adenosine levels in chronic kidney diseases such as diabetic nephropathy and also in non-diabetic animal models of renal fibrosis. When adenosine is chronically increased its signaling via the adenosine receptors may change, switching to a state that induces renal damage and produces phenotypic changes in resident cells. This review discusses the physiological and pathophysiological roles of adenosine and pays special attention to the mechanisms associated with switching homeostatic nucleoside levels to increased adenosine production in kidneys affected by CKD.
Collapse
Affiliation(s)
- Carlos Oyarzún
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Wallys Garrido
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Alarcón
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Yáñez
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
15
|
Aoki JI, Coelho AC, Muxel SM, Zampieri RA, Sanchez EMR, Nerland AH, Floeter-Winter LM, Cotrim PC. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major. PLoS Negl Trop Dis 2016; 10:e0004972. [PMID: 27606425 PMCID: PMC5015992 DOI: 10.1371/journal.pntd.0004972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. CONCLUSIONS/SIGNIFICANCE This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine metabolism is affected by this protein in the parasite. Finally, these findings may be helpful for the development of alternative anti-leishmanial drugs that target purine pathway.
Collapse
Affiliation(s)
- Juliana Ide Aoki
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano Cappellazzo Coelho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Sandra Marcia Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Andrade Zampieri
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Paulo Cesar Cotrim
- Instituto de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
N-linked glycosylation of N48 is required for equilibrative nucleoside transporter 1 (ENT1) function. Biosci Rep 2016; 36:BSR20160063. [PMID: 27480168 PMCID: PMC5006311 DOI: 10.1042/bsr20160063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022] Open
Abstract
Our study confirmed that Asn48 of hENT1 is the only N-glycosylated residue when expressed in HEK293 cells, and loss of the N-glycan resulted in less hENT1 at the plasma membrane, as well as a loss of function and protein–protein self-interaction. Human equilibrative nucleoside transporter 1 (hENT1) transports nucleosides and nucleoside analogue drugs across cellular membranes and is necessary for the uptake of many anti-cancer, anti-parasitic and anti-viral drugs. Previous work, and in silico prediction, suggest that hENT1 is glycosylated at Asn48 in the first extracellular loop of the protein and that glycosylation plays a role in correct localization and function of hENT1. Site-directed mutagenesis of wild-type (wt) hENT1 removed potential glycosylation sites. Constructs (wt 3xFLAG-hENT1, N48Q-3xFLAG-hENT1 or N288Q-3xFLAG-hENT2) were transiently transfected into HEK293 cells and cell lysates were treated with or without peptide–N-glycosidase F (PNGase-F), followed by immunoblotting analysis. Substitution of N48 prevents hENT1 glycosylation, confirming a single N-linked glycosylation site. N48Q-hENT1 protein is found at the plasma membrane in HEK293 cells but at lower levels compared with wt hENT1 based on S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding analysis (wt 3xFLAG-ENT1 Bmax, 41.5±2.9 pmol/mg protein; N48Q-3xFLAG-ENT1 Bmax, 13.5±0.45 pmol/mg protein) and immunofluorescence microscopy. Although present at the membrane, chloroadenosine transport assays suggest that N48Q-hENT1 is non-functional (wt 3xFLAG-ENT1, 170.80±44.01 pmol/mg protein; N48Q-3xFLAG-ENT1, 57.91±17.06 pmol/mg protein; mock-transfected 74.31±19.65 pmol/mg protein). Co-immunoprecipitation analyses suggest that N48Q ENT1 is unable to interact with self or with wt hENT1. Based on these data we propose that glycosylation at N48 is critical for the localization, function and oligomerization of hENT1.
Collapse
|
17
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
18
|
Roy A, Sahoo D, Tripathy BC. Light-hormone interaction in the red-light-induced suppression of photomorphogenesis in rice seedlings. PROTOPLASMA 2016; 253:393-402. [PMID: 25902895 DOI: 10.1007/s00709-015-0818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Red light perceived by the shoot bottom suppresses photomorphogenesis in rice seedlings mediated by phytochrome A. Shoots of these seedlings grown in red light having their shoot bottom exposed were deficient in chlorophyll and accumulated high concentration of trans-zeatin riboside. However, reduced presence of isopentynyl adenosine, dihydrozeatin riboside was observed in shoots of red-light-grown non-green seedlings in comparison to green seedling. The message abundance of cytokinin receptor (OsHK5), transporters (OsENT1, OsENT2), and response regulators (OsRR4, OsRR10) was downregulated in these red-light-grown non-green seedlings. Attenuation of greening process was reversed by application of exogenous cytokinin analogue, benzyladenine, or supplementing red light with blue light. In the same vein, the suppression of gene expression of cytokinin receptor, transporters, and type-A response regulators was reversed in red-light-grown seedlings treated with benzyladenine suggesting that the disarrayed cytokinin (CK) signaling cascade is responsible for non-greening of seedlings grown in red light. The reversal of red-light-induced suppression of photomorphogenesis by blue light and benzyladenine demonstrates the interaction of light and cytokinin signaling cascades in the regulation of photomorphogenesis. Partial reversal of greening process by exogenous application of benzyladenine suggests, apart from CKs perception, transportation and responsiveness, other factors are also involved in modulation of suppression of photomorphogenesis by red light.
Collapse
Affiliation(s)
- Ansuman Roy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Aseervatham J, Tran L, Machaca K, Boudker O. The Role of Flexible Loops in Folding, Trafficking and Activity of Equilibrative Nucleoside Transporters. PLoS One 2015; 10:e0136779. [PMID: 26406980 PMCID: PMC4583308 DOI: 10.1371/journal.pone.0136779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/07/2015] [Indexed: 11/25/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins, which reside in plasma membranes of all eukaryotic cells and mediate thermodynamically downhill transport of nucleosides. This process is essential for nucleoside recycling, and also plays a key role in terminating adenosine-mediated cellular signaling. Furthermore, ENTs mediate the uptake of many drugs, including anticancer and antiviral nucleoside analogues. The structure and mechanism, by which ENTs catalyze trans-membrane transport of their substrates, remain unknown. To identify the core of the transporter needed for stability, activity, and for its correct trafficking to the plasma membrane, we have expressed human ENT deletion mutants in Xenopus laevis oocytes and determined their localization, transport properties and susceptibility to inhibition. We found that the carboxyl terminal trans-membrane segments are essential for correct protein folding and trafficking. In contrast, the soluble extracellular and intracellular loops appear to be dispensable, and must be involved in the fine-tuning of transport regulation.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar foundation, Education City, Doha, Qatar
| | - Lucky Tran
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States of America
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar foundation, Education City, Doha, Qatar
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Liu B, Czajka A, Malik AN, Hussain K, Jones PM, Persaud SJ. Equilibrative nucleoside transporter 3 depletion in β-cells impairs mitochondrial function and promotes apoptosis: Relationship to pigmented hypertrichotic dermatosis with insulin-dependent diabetes. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2086-95. [PMID: 26163994 DOI: 10.1016/j.bbadis.2015.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/17/2015] [Accepted: 07/07/2015] [Indexed: 02/01/2023]
Abstract
Loss of function recessive mutations in the SLC29A3 gene that encodes human equilibrative nucleoside transporter 3 (ENT3) have been identified in patients with pigmented hypertrichotic dermatosis with insulin-dependent diabetes (PHID). ENT3 is a member of the equilibrative nucleoside transporter (ENT) family whose primary function is mediating transport of nucleosides and nucleobases. The aims of this study were to characterise ENT3 expression in islet β-cells and identify the effects of its depletion on β-cell mitochondrial activity and apoptosis. RT-PCR amplification identified ENT3 expression in human and mouse islets and exocrine pancreas, and in MIN6 β-cells. Immunohistochemistry using human and mouse pancreas sections exhibited extensive ENT3 immunostaining of β-cells, which was confirmed by co-staining with an anti-insulin antibody. In addition, exposure of dispersed human islet cells and MIN6 β-cells to MitoTracker and an ENT3 antibody showed co-localisation of ENT3 to β-cell mitochondria. Consistent with this, Western blot analysis confirmed enhanced ENT3 immunoreactivity in β-cell mitochondria-enriched fractions. Furthermore, ENT3 depletion in β-cells increased mitochondrial DNA content and promoted an energy crisis characterised by enhanced ATP-linked respiration and proton leak. Finally, inhibition of ENT3 activity by dypridamole and depletion of ENT3 by siRNA-induced knockdown resulted in increased caspase 3/7 activities in β-cells. These observations demonstrate that ENT3 is predominantly expressed by islet β-cells where it co-localises with mitochondria. Depletion of ENT3 causes mitochondrial dysfunction which is associated with enhanced β-cell apoptosis. Thus, apoptotic loss of islet β-cells may contribute to the occurrence of autoantibody-negative insulin-dependent diabetes in individuals with non-functional ENT3 mutations.
Collapse
Affiliation(s)
- B Liu
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - A Czajka
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - A N Malik
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - K Hussain
- Institute of Child Health, London WC1N 1EH, United Kingdom
| | - P M Jones
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - S J Persaud
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life and Medical Sciences, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
21
|
High yield expression and purification of equilibrative nucleoside transporter 7 (ENT7) from Arabidopsis thaliana. Biochim Biophys Acta Gen Subj 2015; 1850:1921-9. [PMID: 26080001 DOI: 10.1016/j.bbagen.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/31/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Equilibrative nucleoside transporters (ENTs) facilitate the import of nucleosides and their analogs into cells in a bidirectional, non-concentrative manner. However, in contrast to their name, most characterized plant ENTs act in a concentrative manner. A direct characterization of any ENT protein has been hindered due to difficulties in overexpression and obtaining pure recombinant protein. METHODS The equilibrative nucleoside transporter 7 from Arabidopsis thaliana (AtENT7) was expressed in Xenopus laevis oocytes to assess mechanism of substrate uptake. Recombinant protein fused to enhanced green fluorescent protein (eGFP) was expressed in Pichia pastoris to characterize its oligomeric state by gel filtration and substrate binding by microscale thermophoresis (MST). RESULTS AtENT7 expressed in X. laevis oocytes works as a classic equilibrative transporter. The expression of AtENT7-eGFP in the P. pastoris system yielded milligram amounts of pure protein that exists as stable homodimers. The concentration dependent binding of purine and pyrimidine nucleosides to the purified recombinant protein, assessed by MST, confirmed that AtENT7-eGFP is properly folded. For the first time the binding of nucleobases was observed for AtENT7. SIGNIFICANCE The availability of pure recombinant AtENT7 will permit detailed kinetic and structural studies of this unique member of the ENT family and, given the functional similarity to mammalian ENTs, will serve as a good model for understanding the structural basis of translocation mechanism for the family.
Collapse
|
22
|
Playa H, Lewis TA, Ting A, Suh BC, Muñoz B, Matuza R, Passer BJ, Schreiber SL, Buolamwini JK. Dilazep analogues for the study of equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2). Bioorg Med Chem Lett 2014; 24:5801-5804. [PMID: 25454272 PMCID: PMC5695681 DOI: 10.1016/j.bmcl.2014.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 02/02/2023]
Abstract
As ENT inhibitors including dilazep have shown efficacy improving oHSV1 targeted oncolytic cancer therapy, a series of dilazep analogues was synthesized and biologically evaluated to examine both ENT1 and ENT2 inhibition. The central diamine core, alkyl chains, ester linkage and substituents on the phenyl ring were all varied. Compounds were screened against ENT1 and ENT2 using a radio-ligand cell-based assay. Dilazep and analogues with minor structural changes are potent and selective ENT1 inhibitors. No selective ENT2 inhibitors were found, although some analogues were more potent against ENT2 than the parent dilazep.
Collapse
Affiliation(s)
- Hilaire Playa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Ste 327 Johnson, 847, Monroe, Memphis, TN 38163, USA
| | - Timothy A Lewis
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Amal Ting
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Byung-Chul Suh
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Benito Muñoz
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Robert Matuza
- Neurosurgery Department, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Brent J Passer
- Neurosurgery Department, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - John K Buolamwini
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Ste 327 Johnson, 847, Monroe, Memphis, TN 38163, USA.
| |
Collapse
|
23
|
Trincavelli ML, Daniele S, Giacomelli C, Taliani S, Da Settimo F, Cosimelli B, Greco G, Novellino E, Martini C. Osteoblast differentiation and survival: A role for A2B adenosine receptor allosteric modulators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2957-66. [PMID: 25241343 DOI: 10.1016/j.bbamcr.2014.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/08/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
The A2B adenosine receptor (A2B AR), activated in response to high levels of endogenous adenosine, is the major AR subtype involved in mesenchymal stem cell (MSC) differentiation to osteoblasts and bone formation. For this reason, targeting of A2B AR with selective allosteric modulators may represent a promising pharmacological approach to the treatment of bone diseases. Herein, we report the characterization of a 3-keto-indole derivative, 2-(1-benzyl-1H-indol-3-yl)-2-oxo-N-phenylacetamide (KI-7), as A2B AR positive allosteric modulator in MSCs, demonstrating that this compound is able to potentiate the effects of either adenosine and synthetic orthosteric A2B AR agonists in mediating osteoblast differentiation in vitro. In detail, we observed that MSC treatment with KI-7 determined an increase in the expression of osteoblast-related genes (Runx2 and osterix) and osteoblast marker proteins (phosphatase alkaline and osteocalcin), associated with a stimulation of osteoblast mineralization. In the early phase of differentiation programme, KI-7 significantly potentiated physiological and A2B AR agonist-mediated down-regulation of IL-6 release. Conversely, during the late stage of differentiation, when most of the cells have an osteoblast phenotype, KI-7 caused a sustained raise in IL-6 levels and an improvement in osteoblast viability. These data suggest that a positive allosteric modulation of A2B AR not only favours MSC commitment to osteoblasts, but also ensures a greater survival of mature osteoblasts. Our study paves the way for a therapeutic use of selective positive allosteric modulators of A2B AR in the control of osteoblast differentiation, bone formation and fracture repair.
Collapse
Affiliation(s)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Barbara Cosimelli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanni Greco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
24
|
Boswell-Casteel RC, Johnson JM, Duggan KD, Roe-Žurž Z, Schmitz H, Burleson C, Hays FA. FUN26 (function unknown now 26) protein from saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter. J Biol Chem 2014; 289:24440-51. [PMID: 25035431 DOI: 10.1074/jbc.m114.553503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that transport nucleosides and, to a lesser extent, nucleobases across cell membranes. ENTs modulate efficacy for a range of human therapeutics and function in a diffusion-controlled bidirectional manner. A detailed understanding of ENT function at the molecular level has remained elusive. FUN26 (function unknown now 26) is a putative ENT homolog from S. cerevisiae that is expressed in vacuole membranes. In the present system, proteoliposome studies of purified FUN26 demonstrate robust nucleoside and nucleobase uptake into the luminal volume for a broad range of substrates. This transport activity is sensitive to nucleoside modifications in the C(2')- and C(5')-positions on the ribose sugar and is not stimulated by a membrane pH differential. [(3)H]Adenine nucleobase transport efficiency is increased ∼4-fold relative to nucleosides tested with no observed [(3)H]adenosine or [(3)H]UTP transport. FUN26 mutational studies identified residues that disrupt (G463A or G216A) or modulate (F249I or L390A) transporter function. These results demonstrate that FUN26 has a unique substrate transport profile relative to known ENT family members and that a purified ENT can be reconstituted in proteoliposomes for functional characterization in a defined system.
Collapse
Affiliation(s)
| | | | - Kelli D Duggan
- From the Department of Biochemistry and Molecular Biology and
| | - Zygy Roe-Žurž
- the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143
| | - Hannah Schmitz
- From the Department of Biochemistry and Molecular Biology and
| | - Carter Burleson
- From the Department of Biochemistry and Molecular Biology and
| | - Franklin A Hays
- From the Department of Biochemistry and Molecular Biology and the Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104 and
| |
Collapse
|
25
|
Ashraf T, Kis O, Banerjee N, Bendayan R. Drug Transporters At Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-4711-5_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Valdés R, Shinde U, Landfear SM. Cysteine cross-linking defines the extracellular gate for the Leishmania donovani nucleoside transporter 1.1 (LdNT1.1). J Biol Chem 2012; 287:44036-45. [PMID: 23150661 DOI: 10.1074/jbc.m112.414433] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equilibrative nucleoside transporters are a unique family of proteins that enable uptake of nucleosides/nucleobases into a wide range of eukaryotes and internalize a myriad of drugs used in the treatment of cancer, heart disease, AIDs, and parasitic infections. In previous work we generated a structural model for such a transporter, the LdNT1.1 nucleoside permease from the parasitic protozoan Leishmania donovani, using ab initio computation. The model suggested that aromatic residues present in transmembrane helices 1, 2, and 7 interact to form an extracellular gate that closes the permeation pathway in the inward-open conformation. Mutation of residues Phe-48(TM1) and Trp-75(TM2) abrogated transport activity, consistent with such prediction. In this study cysteine mutagenesis and oxidative cross-linking were combined to analyze proximity relationships of helices 1, 2, and 7 in LdNT1.1. Disulfide bond formation between introduced paired cysteines at the interface of such helices (A61C(TM1)/F74C(TM2), A61C(TM1)/G350C(TM7), and F74C(TM2)/G350C(TM7)) was analyzed by transport measurement and gel mobility shifts upon oxidation with Cu (II)-(1,10-phenanthroline)(3). In all cases cross-linking inhibited transport. However, if LdNT1.1 ligands were included during cross-linking, inhibition of transport was reduced, suggesting that ligands moved the three gating helices apart. Moreover, all paired cysteine mutants exhibited a mobility shift upon oxidation, corroborating the formation of a disulfide bond. These data support the notion that helices 1, 2, and 7 constitute the extracellular gate of LdNT1.1, thus further validating the computational model and the previously demonstrated importance of F48(TM1) and Trp-75(TM2) in tethering together helices that are part of the gate.
Collapse
Affiliation(s)
- Raquel Valdés
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
27
|
Fukuda Y, Schuetz JD. ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol 2012; 83:1073-83. [PMID: 22285911 DOI: 10.1016/j.bcp.2011.12.042] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 11/30/2011] [Accepted: 12/30/2011] [Indexed: 01/12/2023]
Abstract
ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-mediated uptake step followed by phosphorylation by nucleoside kinases, and defects in uptake or kinase activation were considered the primary mechanisms of nucleoside drug resistance. However, recent studies demonstrate that members of the ABCC transporter subfamily reduce the intracellular concentration of monophosphorylated nucleoside drugs. In addition to the ABCC subfamily members, ABCG2 has been shown to transport nucleoside drugs and nucleoside-monophosphate derivatives of clinically relevant nucleoside drugs such as cytarabine, cladribine, and clofarabine to name a few. This review will discuss ABC transporters and how they interact with other processes affecting the efficacy of nucleoside based drugs.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
28
|
Bolze A, Abhyankar A, Grant AV, Patel B, Yadav R, Byun M, Caillez D, Emile JF, Pastor-Anglada M, Abel L, Puel A, Govindarajan R, de Pontual L, Casanova JL. A mild form of SLC29A3 disorder: a frameshift deletion leads to the paradoxical translation of an otherwise noncoding mRNA splice variant. PLoS One 2012; 7:e29708. [PMID: 22238637 PMCID: PMC3251605 DOI: 10.1371/journal.pone.0029708] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/01/2011] [Indexed: 02/06/2023] Open
Abstract
We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3). Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD) in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the 'rescue' role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic.
Collapse
Affiliation(s)
- Alexandre Bolze
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Miles ED, Xue Y, Strickland JR, Boling JA, Matthews JC. Ergopeptines bromocriptine and ergovaline and the dopamine type-2 receptor inhibitor domperidone inhibit bovine equilibrative nucleoside transporter 1-like activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9691-9699. [PMID: 21790119 DOI: 10.1021/jf201713m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neotyphodium coenophialum-infected tall fescue contains ergopeptines. Except for interactions with biogenic amine receptors (e.g., dopamine type-2 receptor, D2R), little is known about how ergopeptines affect animal metabolism. The effect of ergopeptines on bovine nucleoside transporters (NT) was evaluated using Madin-Darby bovine kidney (MDBK) cells. Equilibrative NT1 (ENT1)-like activity accounted for 94% of total NT activity. Inhibitory competition (IC(50)) experiments found that this activity was inhibited by both bromocriptine (a synthetic model ergopeptine and D2R agonist) and ergovaline (a predominant ergopeptine of tall fescue). Kinetic inhibition analysis indicated that bromocriptine inhibited ENT1-like activity through a competitive and noncompetitive mechanism. Domperidone (a D2R antagonist) inhibited ENT1 activity more in the presence than in the absence of bromocriptine and displayed an IC(50) value lower than that of bromocriptine or ergovaline, suggesting that inhibition was not through D2R-mediated events. These novel mechanistic findings imply that cattle consuming endophyte-infected tall fescue have reduced ENT1 activity and, thus, impaired nucleoside metabolism.
Collapse
Affiliation(s)
- Edwena D Miles
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | | | | | | | | |
Collapse
|
30
|
Saravanan K, Barlow HC, Barton M, Calvert AH, Golding BT, Newell DR, Northen JS, Curtin NJ, Thomas HD, Griffin RJ. Nucleoside Transport Inhibitors: Structure−Activity Relationships for Pyrimido[5,4-d]pyrimidine Derivatives That Potentiate Pemetrexed Cytotoxicity in the Presence of α1-Acid Glycoprotein. J Med Chem 2011; 54:1847-59. [DOI: 10.1021/jm101493z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kappusamy Saravanan
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Hannah C. Barlow
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Marion Barton
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - A. Hilary Calvert
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Bernard T. Golding
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - David R. Newell
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Julian S. Northen
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola J. Curtin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Huw D. Thomas
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Roger J. Griffin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
31
|
Bildstein L, Dubernet C, Marsaud V, Chacun H, Nicolas V, Gueutin C, Sarasin A, Bénech H, Lepêtre-Mouelhi S, Desmaële D, Couvreur P. Transmembrane diffusion of gemcitabine by a nanoparticulate squalenoyl prodrug: an original drug delivery pathway. J Control Release 2010. [PMID: 20691740 DOI: 10.1039/c0sm00342e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
We have designed an amphiphilic prodrug of gemcitabine (dFdC) by its covalent coupling to a derivative of squalene, a natural lipid. The resulting bioconjugate self-assembled spontaneously in water as nanoparticles that displayed a promising in vivo anticancer activity. The aim of the present study was to provide further insight into the in vitro subcellular localization and on the metabolization pathway of the prodrug. Cells treated with radiolabelled squalenoyl gemcitabine (SQdFdC) were studied by differential detergent permeation, and microautography coupled to fluorescent immunolabeling and confocal microscopy. This revealed that the bioconjugate accumulated within cellular membranes, especially in those of the endoplasmic reticulum. Radio-chromatography analysis proved that SQdFdC delivered dFdC directly in the cell cytoplasm. Mass spectrometry studies confirmed that gemcitabine was then either converted into its biologically active triphosphate metabolite or exported from the cells through membrane transporters. To our knowledge, this is the first description of such an intracellular drug delivery pathway. In vitro cytotoxicity assays revealed that SQdFdC was more active than dFdC on a transporter-deficient human resistant leukemia model, which was explained by the subcellular distribution of the drugs and their metabolites. The squalenoylation drug delivery strategy might, therefore, dramatically improve the efficacy of gemcitabine on transporter-deficient resistant cancer in the clinical context.
Collapse
Affiliation(s)
- L Bildstein
- Univ Paris-Sud, UMR CNRS 8612, IFR 141-ITFM, Faculté de Pharmacie, Châtenay-Malabry, F-92296, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kudo T, Kiba T, Sakakibara H. Metabolism and long-distance translocation of cytokinins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:53-60. [PMID: 20074140 DOI: 10.1111/j.1744-7909.2010.00898.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During plant development, distantly-located organs must communicate in order to adapt morphological and physiological features in response to environmental inputs. Among the recognized signaling molecules, a class of phytohormones known as the cytokinins functions as both local and long-distance regulatory signals for the coordination of plant development. This cytokinin-dependent communication system consists of orchestrated regulation of the metabolism, translocation, and signal transduction of this phytohormone class. Here, to gain insight into this elaborate signaling system, we summarize current models of biosynthesis, trans-membrane transport, and long-distance translocation of cytokinins in higher plants.
Collapse
Affiliation(s)
- Toru Kudo
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045, Japan
| | | | | |
Collapse
|
33
|
Arendt CS, Ullman B. Role of transmembrane domain 4 in ligand permeation by Crithidia fasciculata equilibrative nucleoside transporter 2 (CfNT2). J Biol Chem 2009; 285:6024-35. [PMID: 20037157 DOI: 10.1074/jbc.m109.074351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Equilibrative nucleoside transporters play essential roles in nutrient uptake, cardiovascular and renal function, and purine analog drug chemotherapies. Limited structural information is available for this family of transporters; however, residues in transmembrane domains 1, 2, 4, and 5 appear to be important for ligand and inhibitor binding. In order to identify regions of the transporter that are important for ligand specificity, a genetic selection for mutants of the inosine-guanosine-specific Crithidia fasciculata nucleoside transporter 2 (CfNT2) that had gained the ability to transport adenosine was carried out in the yeast Saccharomyces cerevisiae. Nearly all positive clones from the genetic selection carried mutations at lysine 155 in transmembrane domain 4, highlighting lysine 155 as a pivotal residue governing the ligand specificity of CfNT2. Mutation of lysine 155 to asparagine conferred affinity for adenosine on the mutant transporter at the expense of inosine and guanosine affinity due to weakened contacts to the purine ring of the ligand. Following systematic cysteine-scanning mutagenesis, thiol-specific modification of several positions within transmembrane domain 4 was found to interfere with inosine transport capability, indicating that this helix lines the water-filled ligand translocation channel. Additionally, the pattern of modification of transmembrane domain 4 suggested that it may deviate from helicity in the vicinity of residue 155. Position 155 was also protected from modification in the presence of ligand, suggesting that lysine 155 is in or near the ligand binding site. Transmembrane domain 4 and particularly lysine 155 appear to play key roles in ligand discrimination and translocation by CfNT2.
Collapse
Affiliation(s)
- Cassandra S Arendt
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon 97123, USA.
| | | |
Collapse
|
34
|
Rose JB, Naydenova Z, Bang A, Eguchi M, Sweeney G, Choi DS, Hammond JR, Coe IR. Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection. Am J Physiol Heart Circ Physiol 2009; 298:H771-7. [PMID: 20035027 DOI: 10.1152/ajpheart.00711.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To better understand the role of equilibrative nucleoside transporters (ENT) in purine nucleoside-dependent physiology of the cardiovascular system, we investigated whether the ENT1-null mouse heart was cardioprotected in response to ischemia (coronary occlusion for 30 min followed by reperfusion for 2 h). We observed that ENT1-null mouse hearts showed significantly less myocardial infarction compared with wild-type littermates. We confirmed that isolated wild-type adult mouse cardiomyocytes express predominantly ENT1, which is primarily responsible for purine nucleoside uptake in these cells. However, ENT1-null cardiomyocytes exhibit severely impaired nucleoside transport and lack ENT1 transcript and protein expression. Adenosine receptor expression profiles and expression levels of ENT2, ENT3, and ENT4 were similar in cardiomyocytes isolated from ENT1-null adult mice compared with cardiomyocytes isolated from wild-type littermates. Moreover, small interfering RNA knockdown of ENT1 in the cardiomyocyte cell line, HL-1, mimics findings in ENT1-null cardiomyocytes. Taken together, our data demonstrate that ENT1 plays an essential role in cardioprotection, most likely due to its effects in modulating purine nucleoside-dependent signaling and that the ENT1-null mouse is a powerful model system for the study of the role of ENTs in the physiology of the cardiomyocyte.
Collapse
|
35
|
Disrupted plasma membrane localization and loss of function reveal regions of human equilibrative nucleoside transporter 1 involved in structural integrity and activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2326-34. [PMID: 19699178 DOI: 10.1016/j.bbamem.2009.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/16/2009] [Accepted: 08/12/2009] [Indexed: 01/08/2023]
Abstract
Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.
Collapse
|
36
|
Appleford PJ, Griffiths M, Yao SYM, Ng AML, Chomey EG, Isaac RE, Coates D, Hope IA, Cass CE, Young JD, Baldwin SA. Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeENT2) required for development ofCaenorhabditis elegans. Mol Membr Biol 2009; 21:247-59. [PMID: 15371014 DOI: 10.1080/09687680410001712550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The genome of Caenorhabditis elegans encodes multiple homologues of the two major families of mammalian equilibrative and concentrative nucleoside transporters. As part of a programme aimed at understanding the biological rationale underlying the multiplicity of eukaryote nucleoside transporters, we have now demonstrated that the nematode genes ZK809.4 (ent-1) and K09A9.3 (ent-2) encode equilibrative transporters, which we designate CeENT1 and CeENT2 respectively. These transporters resemble their human counterparts hENT1 and hENT2 in exhibiting similar broad permeant specificities for nucleosides, while differing in their permeant selectivities for nucleobases. They are insensitive to the classic inhibitors of mammalian nucleoside transport, nitrobenzylthioinosine, dilazep and draflazine, but are inhibited by the vasoactive drug dipyridamole. Use of green fluorescent protein reporter constructs indicated that the transporters are present in a limited number of locations in the adult, including intestine and pharynx. Their potential roles in these tissues were explored by using RNA interference to disrupt gene expression. Although disruption of ent-1 or ent-2 expression alone had no effect, simultaneous disruption of both genes yielded pronounced developmental defects involving the intestine and vulva.
Collapse
Affiliation(s)
- Peter J Appleford
- School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Govindarajan R, Leung GPH, Zhou M, Tse CM, Wang J, Unadkat JD. Facilitated mitochondrial import of antiviral and anticancer nucleoside drugs by human equilibrative nucleoside transporter-3. Am J Physiol Gastrointest Liver Physiol 2009; 296:G910-22. [PMID: 19164483 PMCID: PMC2670673 DOI: 10.1152/ajpgi.90672.2008] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human equilibrative nucleoside transporter-3 (hENT3) was recently reported as a pH-dependent, intracellular (lysosomal) transporter capable of transporting anti-human immunodeficiency virus (HIV) dideoxynucleosides (ddNs). Because most anti-HIV ddNs (e.g., zidovudine, AZT) exhibit clinical mitochondrial toxicity, we investigated whether hENT3 facilitates transport of anti-HIV ddNs into the mitochondria. Cellular fractionation and immunofluorescence microscopy studies in several human cell lines identified a substantial presence of hENT3 in the mitochondria, with additional presence at the cell surface of two placental cell lines (JAR, JEG3). Mitochondrial or cell surface hENT3 expression was confirmed in human hepatocytes and placental tissues, respectively. Unlike endogenous hENT3, yellow fluorescent protein (YFP)-tagged hENT3 was partially directed to the lysosomes. Xenopus oocytes expressing NH2-terminal-deleted hENT3 (expressed at the cell surface) showed pH-dependent interaction with several classes of nucleosides (anti-HIV ddNs, gemcitabine, fialuridine, ribavirin) that produce mitochondrial toxicity. Transport studies in hENT3 gene-silenced JAR cells showed significant reduction in mitochondrial transport of nucleosides and nucleoside drugs. Our data suggest that cellular localization of hENT3 is cell type dependent and the native transporter is substantially expressed in mitochondria and/or cell surface. hENT3-mediated mitochondrial transport may play an important role in mediating clinically observed mitochondrial toxicity of nucleoside drugs. In addition, our finding that hENT3 is a mitochondrial transporter is consistent with the recent finding that mutations in the hENT3 gene cause an autosomal recessive disorder in humans called the H syndrome.
Collapse
Affiliation(s)
- Rajgopal Govindarajan
- Department of Pharmaceutics, University of Washington, Seattle, Washington; and Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George P. H. Leung
- Department of Pharmaceutics, University of Washington, Seattle, Washington; and Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mingyan Zhou
- Department of Pharmaceutics, University of Washington, Seattle, Washington; and Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung-Ming Tse
- Department of Pharmaceutics, University of Washington, Seattle, Washington; and Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington; and Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington; and Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Fähling M. Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiol (Oxf) 2009; 195:205-30. [PMID: 18764866 DOI: 10.1111/j.1748-1716.2008.01894.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxia is a consequence of inadequate oxygen availability. At the cellular level, lowered oxygen concentration activates signal cascades including numerous receptors, ion channels, second messengers, as well as several protein kinases and phosphatases. This, in turn, activates trans-factors like transcription factors, RNA-binding proteins and miRNAs, mediating an alteration in gene expression control. Each cell type has its unique constellation of oxygen sensors, couplers and effectors that determine the activation and predominance of several independent hypoxia-sensitive pathways. Hence, altered gene expression patterns in hypoxia result from a complex regulatory network with multiple divergences and convergences. Although hundreds of genes are activated by transcriptional control in hypoxia, metabolic rate depression, as a consequence of reduced ATP level, causes inhibition of mRNA translation. In a multi-phase response to hypoxia, global protein synthesis is suppressed, mainly by phosphorylation of eIF2-alpha by PERK and inhibition of mTOR, causing suppression of 5'-cap-dependent mRNA translation. Growing evidence suggests that mRNAs undergo sorting at stress granules, which determines the fate of mRNA as to whether being translated, stored, or degraded. Data indicate that translation is suppressed only at 'free' polysomes, but is active at subsets of membrane-bound ribosomes. The recruitment of specific mRNAs into subcellular compartments seems to be crucial for local mRNA translation in prolonged hypoxia. Furthermore, ribosomes themselves may play a significant role in targeting mRNAs for translation. This review summarizes the multiple facets of the cellular adaptation to hypoxia observed in mammals.
Collapse
Affiliation(s)
- M Fähling
- Institut für Vegetative Physiologie, Charité, Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Abstract
The pathophysiological processes underlying respiratory diseases like asthma are complex, resulting in an overwhelming choice of potential targets for the novel treatment of this disease. Despite this complexity, asthmatic subjects are uniquely sensitive to a range of substances like adenosine, thought to act indirectly to evoke changes in respiratory mechanics and in the underlying pathology, and thereby to offer novel insights into the pathophysiology of this disease. Adenosine is of particular interest because this substance is produced endogenously by many cells during hypoxia, stress, allergic stimulation, and exercise. Extracellular adenosine can be measured in significant concentrations within the airways; can be shown to activate adenosine receptor (AR) subtypes on lung resident cells and migrating inflammatory cells, thereby altering their function, and could therefore play a significant role in this disease. Many preclinical in vitro and in vivo studies have documented the roles of the various AR subtypes in regulating cell function and how they might have a beneficial impact in disease models. Agonists and antagonists of some of these receptor subtypes have been developed and have progressed to clinical studies in order to evaluate their potential as novel antiasthma drugs. In this chapter, we will highlight the roles of adenosine and AR subtypes in many of the characteristic features of asthma: airway obstruction, inflammation, bronchial hyperresponsiveness and remodeling. We will also discuss the merit of targeting each receptor subtype in the development of novel antiasthma drugs.
Collapse
|
40
|
Young JD, Yao SYM, Sun L, Cass CE, Baldwin SA. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 2008; 38:995-1021. [PMID: 18668437 DOI: 10.1080/00498250801927427] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.
Collapse
Affiliation(s)
- J D Young
- Membrane Protein Research Group, Department of Physiology and Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
41
|
Squalenoyl nanomedicine of gemcitabine is more potent after oral administration in leukemia-bearing rats: study of mechanisms. Anticancer Drugs 2008; 19:999-1006. [DOI: 10.1097/cad.0b013e3283126585] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Chacko AM, Qu W, Kung HF. Synthesis and in vitro evaluation of 5-[(18)f]fluoroalkyl pyrimidine nucleosides for molecular imaging of herpes simplex virus type 1 thymidine kinase reporter gene expression. J Med Chem 2008; 51:5690-701. [PMID: 18800764 DOI: 10.1021/jm800501d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two novel series of 5-fluoroalkyl-2'-deoxyuridines (FPrDU, FBuDU, FPeDU) and 2'-fluoro-2'-deoxy-5-fluoroalkylarabinouridines (FFPrAU, FFBuAU, FFPeAU) that have three, four, or five methylene units (propyl, butyl, or pentyl) at C-5 were prepared and tested as reporter probes for imaging herpes simplex virus type 1 thymidine kinase (HSV1- tk) gene expression. The Negishi coupling methodology was employed in efficiently synthesizing the radiolabeling precursors. All six 5-[(18)F]fluoroalkyl pyrimidines were readily prepared from 3-N-benzoyl-3',5'-di-O-benzoyl-protected 5-O-mesylate precursors in 17-35% radiochemical yield (decay-corrected). In vitro studies highlighted that all six [(18)F]-labeled nucleosides selectively accumulated in cells expressing the HSV1-TK protein and there was negligible uptake in control cells. [(18)F]FPrDU, [(18)F]FBuDU, [(18)F]FPeDU, and [(18)F]FFBuAU had the best uptake profiles. Despite their selective accumulation in HSV1- tk-expressing cells, all 5-fluoroalkyl pyrimidine nucleosides had low-to-negligible cytotoxic activity (CC50 > 1000-1209 microM). Ultimately, the results demonstrated that 5-[(18)F]fluoropropyl, [(18)F]fluorobutyl, and [(18)F]fluoropentyl pyrimidine nucleosides have the potential to be in vivo HSV1-TK PET reporter probes over a dynamic range of reporter gene expression levels.
Collapse
Affiliation(s)
- Ann-Marie Chacko
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
43
|
Molho-Pessach V, Lerer I, Abeliovich D, Agha Z, Abu Libdeh A, Broshtilova V, Elpeleg O, Zlotogorski A. The H syndrome is caused by mutations in the nucleoside transporter hENT3. Am J Hum Genet 2008; 83:529-34. [PMID: 18940313 DOI: 10.1016/j.ajhg.2008.09.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 12/13/2022] Open
Abstract
The H syndrome is a recently reported autosomal-recessive disorder characterized by cutaneous hyperpigmentation, hypertrichosis, hepatosplenomegaly, heart anomalies, hearing loss, hypogonadism, short stature, hallux valgus, and fixed flexion contractures of the toe joints and the proximal interphalangeal joints. Homozygosity mapping in five consanguineous families resulted in the identification of mutations in the SLC29A3 gene, which encodes the equilibrative nucleoside transporter hENT3. Three mutations were found in 11 families of Arab and Bulgarian origin. The finding of several different mutations in a small geographic region implies that the H syndrome might be rather common. The identification of mutations in the SLC29A3 gene in patients with a mild clinical phenotype suggests that this is a largely underdiagnosed condition and strongly suggests that even oligosymptomatic individuals might have the disorder.
Collapse
|
44
|
Mutation of Trp29 of human equilibrative nucleoside transporter 1 alters affinity for coronary vasodilator drugs and nucleoside selectivity. Biochem J 2008; 414:291-300. [PMID: 18462193 DOI: 10.1042/bj20080074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
hENT1 (human equilibrative nucleoside transporter 1) is inhibited by nanomolar concentrations of various structurally distinct coronary vasodilator drugs, including dipyridamole, dilazep, draflazine, soluflazine and NBMPR (nitrobenzylmercaptopurine ribonucleoside). When a library of randomly mutated hENT1 cDNAs was screened using a yeast-based functional complementation assay for resistance to dilazep, a clone containing the W29G mutation was identified. Multiple sequence alignments revealed that this residue was highly conserved. Mutations at Trp29 were generated and tested for adenosine transport activity and inhibitor sensitivity. Trp29 mutations significantly reduced the apparent V(max) and/or increased the apparent K(m) values for adenosine transport. Trp29 mutations increased the IC50 values for hENT1 inhibition by dipyridamole, dilazep, NBMPR, soluflazine and draflazine. NBMPR and soluflazine displayed remarkably similar trends, with large aromatic substitutions at residue 29 resulting in the lowest IC50 values, suggesting that both drugs could interact via ring-stacking interactions with Trp29. The W29T mutant displayed a selective loss of pyrimidine nucleoside transport activity, which contrasts with the previously identified L442I mutant that displayed a selective loss of purine nucleoside transport. W29T, L442I and the double mutant W29T/L442I were characterized kinetically for nucleoside transport activity. A helical wheel projection of TM (transmembrane segment) 1 suggests that Trp29 is positioned close to Met33, implicated previously in nucleoside and inhibitor recognition, and that both residues line the permeant translocation pathway. The data also suggest that Trp29 forms part of, or lies close to, the binding sites for dipyridamole, dilazep, NBMPR, soluflazine and draflazine.
Collapse
|
45
|
Robillard KR, Bone DBJ, Park JS, Hammond JR. Characterization of mENT1Delta11, a novel alternative splice variant of the mouse equilibrative nucleoside transporter 1. Mol Pharmacol 2008; 74:264-73. [PMID: 18413666 DOI: 10.1124/mol.107.041871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Mammalian cells require specific transport mechanisms for the cellular uptake and release of endogenous nucleosides such as adenosine, and nucleoside analogs used in chemotherapy. We have identified a novel splice variant of the mouse equilibrative nucleoside transporter, mENT1, that results from the exclusion of exon 11 during pre-RNA processing. This variant encodes a truncated protein (mENT1Delta11) missing the last three transmembrane domains of the full-length mENT1. The mENT1Delta11 transcript and protein were found to be differentially distributed among tissues relative to full-length mENT1. PK15-NTD (nucleoside transport deficient) cells were transfected with mENT1 or mENT1Delta11 and assessed for nucleoside transport function. No significant differences were observed between the mENT1 and mENT1Delta11 in terms of transport function or inhibitor binding affinity. PK15-mENT1Delta11 transfected cells bound the ENT1 probe [3H]nitrobenzylthioinosine (NBMPR) with high affinity and mediated the cellular accumulation of both [3H]2-chloroadenosine and [3H]uridine. The only significant differences between the mENT1 variants were that mENT1Delta11 could not be photolabeled with [3H]NBMPR and that mENT1Delta11 was insensitive to the transporter-modifying effects of N-ethylmaleimide. These data suggest that the last three transmembrane domains of mENT1 are not necessary for transport activity, but this region does contain the cysteines responsible for the sensitivity of mENT1 to sulfhydryl reagents, and the residues important for covalent modification of the protein with NBMPR. These results provide important guidelines for future mutagenesis studies aimed at elucidating the tertiary structure of the ENT1 protein and the domains involved in inhibitor binding and substrate translocation.
Collapse
Affiliation(s)
- Kevin R Robillard
- Dept. of Physiology and Pharmacology, M266 Medical Sciences Building, University of Western Ontario, London, Ontario N6A5C1, Canada
| | | | | | | |
Collapse
|
46
|
Chishu T, Sai Y, Nishimura T, Sato K, Kose N, Nakashima E. Potential of various drugs to inhibit nucleoside uptake in rat syncytiotrophoblast cell line, TR-TBT 18d-1. Placenta 2008; 29:461-7. [PMID: 18329095 DOI: 10.1016/j.placenta.2008.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/17/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
The placenta requires nucleosides as nutrients for fetal growth, so it is important to examine potential interactions between placental transports of nucleosides and drugs to ensure the safety of pharmacotherapy during pregnancy. The purposes of this study are to clarify the uptake mechanisms of nucleosides from the maternal side of the syncytiotrophoblast and to investigate the inhibitory effect of various drugs on nucleoside uptake, using the rat syncytiotrophoblast cell line TR-TBT 18d-1, which shows syncytial-like morphology and functional expression of several transporters. Initial uptake of [(3)H]uridine or [(3)H]adenosine from the apical side of TR-TBT 18d-1 was markedly reduced by an excess of the respective unlabelled compound, and was slightly reduced by replacement of Na(+) with N-methyl-d-glucamine, indicating that both uptakes were Na(+)-independent. [(3)H]Uridine and [(3)H]adenosine uptakes in the absence of Na(+) were significantly and concentration-dependently inhibited by both 0.1 microM and 100 microM nitrobenzylthioinosine, suggesting the involvement of equilibrative nucleoside transporters (ENTs, SLC29). Kinetic analysis of adenosine uptake yielded a K(m) value of approximately 17 microM. These results are consistent with the reported uptake characteristics of uridine and adenosine by ENT1 and ENT2. The uptakes were significantly reduced by high concentrations of several nucleoside drugs, including cytarabine, vidarabine, zidovudine, mizoribine, caffeine and amitriptyline, but the effects were small within the therapeutic concentration ranges. In summary, our results suggest that ENTs are involved in apical uptake of uridine and adenosine in the syncytiotrophoblast. However, therapeutic concentrations of the drugs tested in this study might have little influence on maternal-to-fetal nucleoside transfer.
Collapse
Affiliation(s)
- T Chishu
- Department of Pharmaceutics, Kyoritsu University of Pharmacy, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Bone DBJ, Hammond JR. Nucleoside and nucleobase transporters of primary human cardiac microvascular endothelial cells: characterization of a novel nucleobase transporter. Am J Physiol Heart Circ Physiol 2007; 293:H3325-32. [PMID: 17921321 DOI: 10.1152/ajpheart.01006.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (ENT1) at a V(max) of 3.4 +/- 1 pmol.microl(-1).s(-1), with no contribution from the nitrobenzylmercaptopurine riboside-insensitive ENT2. Inhibition of 2-chloroadenosine uptake by ENT1 blockers produced monophasic inhibition curves, which are also compatible with minimal ENT2 expression. The nucleobase [3H]hypoxanthine was accumulated within hMVECs (K(m) = 96 +/- 37 microM; V(max) = 1.6 +/- 0.3 pmol.microl(-1).s(-1)) despite the lack of a known nucleobase transport system. This novel transporter was dipyridamole-insensitive but could be inhibited by adenine (K(i) = 19 +/- 7 microM) and other purine nucleobases, including chemotherapeutic analogs. A variety of other cell types also expressed the nucleobase transporter, including the nucleoside transporter-deficient PK(15) cell line (PK15NTD). Further characterization of [3H]hypoxanthine uptake in the PK15NTD cells showed no dependence on Na(+) or H(+). PK15NTD cells expressing human ENT2 accumulated 4.5-fold more [3H]hypoxanthine in the presence of the ENT2 inhibitor dipyridamole than did PK15NTD cells or hMVECs, suggesting trapping of ENT2-permeable metabolites. Understanding the nucleoside and nucleobase transporter profiles in the vasculature will allow for further study into their roles in pathophysiological conditions such as hypoxia or ischemia.
Collapse
Affiliation(s)
- Derek B J Bone
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
48
|
Kim HR, Park SW, Cho HJ, Chae KA, Sung JM, Kim JS, Landowski CP, Sun D, Abd El-Aty AM, Amidon GL, Shin HC. Comparative gene expression profiles of intestinal transporters in mice, rats and humans. Pharmacol Res 2007; 56:224-36. [PMID: 17681807 DOI: 10.1016/j.phrs.2007.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 05/10/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
We have studied gene expression profiles of intestinal transporters in model animals and humans. Total RNA was isolated from duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mice, rats, and humans were about 60% of 22,690 sequences, 40% of 8739, and 47% of 12,559, respectively. A total of 86 genes involving transporters expressed in mice, 50 genes in rats, and 61 genes in humans were detected. Mice exhibited abundant mRNA expressions for peptide transporter HPT1, amino acid transporters CSNU3, CT1 and ASC1, nucleoside transporter CNT2, organic cation transporter SFXN1, organic anion transporter NBC3, glucose transporter SGLT1, and fatty acid transporters FABP1 and FABP2. Rats showed high expression profiles of peptide transporter PEPT1, amino acid transporters CSNU1 and 4F2HC, nucleoside transporter CNT2, organic cation transporter OCT5, organic anion transporter SDCT1, glucose transporter GLUT2 and GLUT5, and folate carrier FOLT. In humans, the highly expressed genes were peptide transporter HPT1, amino acid transporters LAT3, 4F2HC and PROT, nucleoside transporter CNT2, organic cation transporter OCTN2, organic anion transporters NADC1, NBC1 and SBC2, glucose transporters SGLT1 and GLUT5, multidrug resistance-associated protein RHO12, fatty acid transporters FABP1 and FABP2, and phosphate carrier PHC. Overall these data reveal diverse transcriptomic profiles for intestinal transporters among these species. Therefore, this transcriptional data may lead to more effective use of the laboratory animals as a model for oral drug development.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Visser F, Sun L, Damaraju V, Tackaberry T, Peng Y, Robins MJ, Baldwin SA, Young JD, Cass CE. Residues 334 and 338 in transmembrane segment 8 of human equilibrative nucleoside transporter 1 are important determinants of inhibitor sensitivity, protein folding, and catalytic turnover. J Biol Chem 2007; 282:14148-57. [PMID: 17379602 DOI: 10.1074/jbc.m701735200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are important for the metabolic salvage of nucleosides and the cellular uptake of antineoplastic and antiviral nucleoside analogs. Human equilibrative nucleoside transporter 1 (hENT1) is inhibited by nanomolar concentrations of structurally diverse compounds, including dipyridamole, dilazep, nitrobenzylmercaptopurine ribonucleoside (NBMPR), draflazine, and soluflazine. Random mutagenesis and screening by functional complementation for inhibitor-resistant mutants in yeast revealed mutations at Phe-334 and Asn-338. Both residues are predicted to lie in transmembrane segment 8 (TM 8), which contains residues that are highly conserved in the ENT family. F334Y displayed increased V(max) values that were attributed to increased rates of catalytic turnover, and N338Q and N338C displayed altered membrane distributions that appeared to be because of protein folding defects. Mutations of Phe-334 or Asn-338 impaired interactions with dilazep and dipyridamole, whereas mutations of Asn-338 impaired interactions with draflazine and soluflazine. A helical wheel projection of TM 8 predicted that Phe-334 and Asn-338 lie in close proximity to other highly conserved and/or hydrophilic residues, suggesting that they form part of a structurally important region that influences interactions with inhibitors, protein folding, and rates of conformational change during the transport cycle.
Collapse
Affiliation(s)
- Frank Visser
- Membrane Protein Research Group, Departments of Oncology and Physiology, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen J, Rinaldo L, Lim SJ, Young H, Messing RO, Choi DS. The type 1 equilibrative nucleoside transporter regulates anxiety-like behavior in mice. GENES BRAIN AND BEHAVIOR 2007; 6:776-83. [PMID: 17376149 PMCID: PMC2831285 DOI: 10.1111/j.1601-183x.2007.00311.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activation of adenosine receptors in the brain reduces anxiety-like behavior in animals and humans. Because nucleoside transporters regulate adenosine levels, we used mice lacking the type 1 equilibrative nucleoside transporter (ENT1) to investigate whether ENT1 contributes to anxiety-like behavior. The ENT1 null mice spent more time in the center of an open field compared with wild-type littermates. In the elevated plus maze, ENT1 null mice entered more frequently into and spent more time exploring the open arms. The ENT1 null mice also spent more time exploring the light side of a light-dark box compared with wild-type mice. Microinjection of an ENT1-specific antagonist, nitrobenzylthioinosine (nitrobenzylmercaptopurine riboside), into the amygdala of C57BL/6J mice reduced anxiety-like behavior in the open field and elevated plus maze. These findings show that amygdala ENT1 modulates anxiety-like behavior. The ENT1 may be a drug target for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- J. Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - L. Rinaldo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - S.-J. Lim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - H. Young
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - R. O. Messing
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - D.-S. Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
- Corresponding author: D.-S. Choi, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|