1
|
Flütsch S, Horrer D, Santelia D. Starch biosynthesis in guard cells has features of both autotrophic and heterotrophic tissues. PLANT PHYSIOLOGY 2022; 189:541-556. [PMID: 35238373 PMCID: PMC9157084 DOI: 10.1093/plphys/kiac087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
The pathway of starch synthesis in guard cells (GCs), despite the crucial role starch plays in stomatal movements, is not well understood. Here, we characterized starch dynamics in GCs of Arabidopsis (Arabidopsis thaliana) mutants lacking enzymes of the phosphoglucose isomerase-phosphoglucose mutase-ADP-glucose pyrophosphorylase starch synthesis pathway in leaf mesophyll chloroplasts or sugar transporters at the plastid membrane, such as glucose-6-phosphate/phosphate translocators, which are active in heterotrophic tissues. We demonstrate that GCs have metabolic features of both photoautotrophic and heterotrophic cells. GCs make starch using different carbon precursors depending on the time of day, which can originate both from GC photosynthesis and/or sugars imported from the leaf mesophyll. Furthermore, we unravel the major enzymes involved in GC starch synthesis and demonstrate that they act in a temporal manner according to the fluctuations of stomatal aperture, which is unique for GCs. Our work substantially enhances our knowledge on GC starch metabolism and uncovers targets for manipulating GC starch dynamics to improve stomatal behavior, directly affecting plant productivity.
Collapse
Affiliation(s)
- Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
2
|
Song K, Lee DW, Kim J, Kim J, Guim H, Kim K, Jeon JS, Choi G. EARLY STARVATION 1 Is a Functionally Conserved Protein Promoting Gravitropic Responses in Plants by Forming Starch Granules. FRONTIERS IN PLANT SCIENCE 2021; 12:628948. [PMID: 34367195 PMCID: PMC8343138 DOI: 10.3389/fpls.2021.628948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/29/2021] [Indexed: 05/29/2023]
Abstract
Starch granules in the endodermis of plant hypocotyls act as statoliths that promote hypocotyl negative gravitropism-the directional growth of hypocotyls against gravity-in the dark. To identify the molecular components that regulate hypocotyl negative gravitropism, we performed a mutagenesis screen and isolated reduced gravitropic 1 (rgv1) mutants that lack starch granules in their hypocotyl endodermis and show reduced hypocotyl negative gravitropism in the dark. Using whole genome sequencing, we identified three different rgv1 mutants that are allelic to the previously reported early starvation 1 mutant, which is rapidly depleted of starch just before the dawn. ESV1 orthologs are present in starch-producing green organisms, suggesting ESV1 is a functionally conserved protein necessary for the formation of starch granules. Consistent with this, we found that liverwort and rice ESV1 can complement the Arabidopsis ESV1 mutant phenotype for both starch granules and hypocotyl negative gravitropism. To further investigate the function of ESV1 in other plants, we isolated rice ESV1 mutants and found that they show reduced levels of starch in their leaves and loosely packed starch granules in their grains. Both Arabidopsis and rice ESV1 mutants also lack starch granules in root columella and show reduced root gravitropism. Together, these results indicate ESV1 is a functionally conserved protein that promotes gravitropic responses in plants via its role in starch granule formation.
Collapse
Affiliation(s)
- Kijong Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dae-Woo Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si, South Korea
| | - Jeongheon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jaewook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hwanuk Guim
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, South Korea
| | - Keunhwa Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si, South Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
3
|
Solis-Badillo E, Agama-Acevedo E, Tiessen A, Lopez Valenzuela JA, Bello-Perez LA. ADP-Glucose Pyrophosphorylase Is Located in the Plastid and Cytosol in the Pulp of Tropical Banana Fruit (Musa acuminata). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:76-82. [PMID: 31848854 DOI: 10.1007/s11130-019-00788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch synthesis in seeds, tubers and fruits. UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of sucrose metabolism in the cytosol while alkaline phosphatase (ALP) is a marker enzyme of the amyloplast that keeps the production of ADPG by removing PPi. Unripe banana accumulates starch in the pulp during development, while ripe fruits are characterized by the accumulation of soluble sugars. The aim of the study was to compare starch granule structure, carbohydrate levels, subcellular location and activities of three enzymes: AGPase, UGPase and ALP. Protein extracts from the cytosolic and amyloplastidial fractions were obtained from the pulp of banana fruit at three developmental stages (11, 16 and 21 weeks after flowering) and analyzed by electrophoresis and immunodetection. Protein profiles were similar during ripening, showing a main electrophoretic band at 50-55 kDa. Higher protein content was found in the cytosolic than in the amyloplastidial fraction. Starch granules and ALP activity were enriched in the amyloplast, whereas AGPase showed a subcellular distribution similar to UGPase. Immunoblot analysis also confirmed the presence of AGPase in both cytosol and amyloplast. AGPase activity was higher in the cytosol than in the amyloplast. Both AGPase activity and western blot band intensity were highest at 16 weeks. UGPase activity was highest at 21 weeks. We conclude that cytosolic production of ADP-glucose is not an exclusive feature of cereal endosperms due to plant breeding, but it also occurs in fruits of non-domesticated plants such as tropical banana (Musa acuminata). This work increases our understanding about pyrophosphorylase activities in the pulp of banana fruit.
Collapse
Affiliation(s)
| | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, Mexico
- Laboratorio Nacional PlanTECC, Irapuato, Mexico
| | | | | |
Collapse
|
4
|
Tappiban P, Smith DR, Triwitayakorn K, Bao J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Arriola MB, Velmurugan N, Zhang Y, Plunkett MH, Hondzo H, Barney BM. Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:566-586. [PMID: 29178410 DOI: 10.1111/tpj.13789] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 - which does not release significant quantities of sugars to the extracellular space - was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 - which was originally isolated from an endosymbiotic association with the ciliate Paramecium bursaria. Both strains were subjected to three sequencing approaches to assemble their genomes and annotate their genes. This analysis was further complemented with transcriptional studies during maltose release by M. conductrix SAG 241.80 versus conditions where sugar release is minimal. The annotation revealed that both strains contain homologs for the key components of a putative pathway leading to cytosolic maltose accumulation, while transcriptional studies found few changes in mRNA levels for the genes associated with these established intracellular sugar pathways. A further analysis of potential sugar transporters found multiple homologs for SWEETs and tonoplast sugar transporters. The analysis of transcriptional differences revealed a lesser and more measured global response for M. conductrix SAG 241.80 versus C. sorokiniana UTEX 1602 during conditions resulting in sugar release, providing a catalog of genes that might play a role in extracellular sugar transport.
Collapse
Affiliation(s)
- Matthew B Arriola
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Natarajan Velmurugan
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mary H Plunkett
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Hanna Hondzo
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brett M Barney
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
6
|
Li Y, Yang H, Chang D, Lin S, Feng Y, Li J, Shi H. Biochemical, Physiological and Transcriptomic Comparison between Burley and Flue-Cured Tobacco Seedlings in Relation to Carbohydrates and Nitrate Content. Molecules 2017; 22:E2126. [PMID: 29207483 PMCID: PMC6149767 DOI: 10.3390/molecules22122126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 02/02/2023] Open
Abstract
Burley tobacco is a genotype of chloroplast-deficient mutant with accumulates high levels of tobacco-specific nitrosamines (TSNAs) which would induce malignant tumors in animals. Nitrate is a principle precursor of tobacco-specific nitrosamines. Nitrate content in burley tobacco was significantly higher than that in flue-cured tobacco. The present study investigated differences between the two tobacco types to explore the mechanisms of nitrate accumulation in burley tobacco. transcripts (3079) related to the nitrogen and carbon metabolism were observed. Expression of genes involved in carbon fixation, glucose and starch biosynthesis, nitrate translocation and assimilation were significantly low in burley tobacco than flue-cured tobacco. Being relative to flue-cured tobacco, burley tobacco was significantly lower at total nitrogen and carbohydrate content, nitrate reductase and glutamine synthetase activities, chlorophyll content and photosynthetic rate (Pn), but higher nitrate content. Burley tobacco required six-fold more nitrogen fertilizers than flue-cured tobacco, but both tobaccos had a similar leaf biomass. Reduced chlorophyll content and photosynthetic rate (Pn) might result in low carbohydrate formation, and low capacity of nitrogen assimilation and translocation might lead to nitrate accumulation in burley tobacco.
Collapse
Affiliation(s)
- Yafei Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Huijuan Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Dong Chang
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Shuzhen Lin
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yuqing Feng
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jingjing Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hongzhi Shi
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Tang XJ, Peng C, Zhang J, Cai Y, You XM, Kong F, Yan HG, Wang GX, Wang L, Jin J, Chen WW, Chen XG, Ma J, Wang P, Jiang L, Zhang WW, Wan JM. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:70-83. [PMID: 27297991 DOI: 10.1016/j.plantsci.2016.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 05/26/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) controls a rate-limiting step in the starch biosynthetic pathway in higher plants. Here we isolated a shrunken rice mutant w24. Map-based cloning identified OsAGPL2, a large subunit of the cytosolic AGPase in rice endosperm, as the gene responsible for the w24 mutation. In addition to severe inhibition of starch synthesis and significant accumulation of sugar, the w24 endosperm showed obvious defects in compound granule formation and storage protein synthesis. The defect in OsAGPL2 enhanced the expression levels of the AGPase family. Meanwhile, the elevated activities of starch phosphorylase 1 and sucrose synthase in the w24 endosperm might possibly partly account for the residual starch content in the mutant seeds. Moreover, the expression of OsAGPL2 and its counterpart, OsAGPS2b, was highly coordinated in rice endosperm. Yeast two-hybrid and BiFC assays verified direct interactions between OsAGPL2 and OsAGPS2b as well as OsAGPL1 and OsAGPS1, supporting the model for spatiotemporal complex formation of AGPase isoforms in rice endosperm. Besides, our data provided no evidence for the self-binding of OsAGPS2b, implying that OsAGPS2b might not interact to form higher molecular mass aggregates in the absence of OsAGPL2. Therefore, the molecular mechanism of rice AGPase assembly might differ from that of Arabidopsis.
Collapse
Affiliation(s)
- Xiao-Jie Tang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Cheng Peng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Jie Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Xiao-Man You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Hai-Gang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Guo-Xiang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Liang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Jie Jin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Wei-Wei Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Xin-Gang Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Wen-Wei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China.
| | - Jian-Min Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|
8
|
Bahaji A, Baroja-Fernández E, Sánchez-López ÁM, Muñoz FJ, Li J, Almagro G, Montero M, Pujol P, Galarza R, Kaneko K, Oikawa K, Wada K, Mitsui T, Pozueta-Romero J. HPLC-MS/MS analyses show that the near-Starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s) alternative to the pPGI-pPGM-AGP pathway. PLoS One 2014; 9:e104997. [PMID: 25133777 PMCID: PMC4136846 DOI: 10.1371/journal.pone.0104997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a) involves plastidic phosphoglucomutase (pPGM), ADPglucose (ADPG) pyrophosphorylase (AGP) and starch synthase (SS), and (b) is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI). This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT) and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a) there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b) pPGM and AGP are not major determinants of intracellular ADPG content, and (c) the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Pablo Pujol
- Servicio de Apoyo a la Investigación, Universidad Pública de Navarra, Campus de Arrosadia, Iruña, Nafarroa, Spain
| | - Regina Galarza
- Servicio de Apoyo a la Investigación, Universidad Pública de Navarra, Campus de Arrosadia, Iruña, Nafarroa, Spain
| | - Kentaro Kaneko
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Kazusato Oikawa
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Kaede Wada
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| |
Collapse
|
9
|
Nebauer SG, Renau-Morata B, Lluch Y, Baroja-Fernández E, Pozueta-Romero J, Molina RV. Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:105-113. [PMID: 24747724 DOI: 10.1016/j.plaphy.2014.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
The fruit is the main sink organ in Citrus and captures almost all available photoassimilates during its development. Consequently, carbohydrate partitioning and starch content depend on the crop load of Citrus trees. Nevertheless, little is known about the mechanisms controlling the starch metabolism at the tree level in relation to presence of fruit. The aim of this study was to find the relation between the seasonal variation of expression and activity of the genes involved in carbon metabolism and the partition and allocation of carbohydrates in 'Salustiana' sweet orange trees with different crop loads. Metabolisable carbohydrates, and the expression and activity of the enzymes involved in sucrose and starch metabolism, including sucrose transport, were determined during the year in the roots and leaves of 40-year-old trees bearing heavy crop loads ('on' trees) and trees with almost no fruits ('off' trees). Fruit altered photoassimilate partitioning in trees. Sucrose content tended to be constant in roots and leaves, and surplus fixed carbon is channeled to starch production. Differences between 'on' and 'off' trees in starch content can be explained by differences in ADP-glucose pyrophosphorylase (AGPP) expression/activity and α-amylase activity which varies depending on crop load. The observed relation of AGPP and UGPP (UDP-glucose pyrophosphorylase) is noteworthy and indicates a direct link between sucrose and starch synthesis. Furthermore, different roles for sucrose transporter SUT1 and SUT2 have been proposed. Variation in soluble sugars content cannot explain the differences in gene expression between the 'on' and 'off' trees. A still unknown signal from fruit should be responsible for this control.
Collapse
Affiliation(s)
- Sergio G Nebauer
- Departamento de Producción Vegetal, Universitat Politécnica de València, Edificio 3K-2 planta, Camino de vera s.n., 46022 Valencia, Spain.
| | - Begoña Renau-Morata
- Departamento de Producción Vegetal, Universitat Politécnica de València, Edificio 3K-2 planta, Camino de vera s.n., 46022 Valencia, Spain
| | - Yolanda Lluch
- Departamento de Producción Vegetal, Universitat Politécnica de València, Edificio 3K-2 planta, Camino de vera s.n., 46022 Valencia, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Universidad Pública/CSIC/Gobierno de Navarra, C. Mutilva Baja s.n., 31192 Mutilva Baja, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Universidad Pública/CSIC/Gobierno de Navarra, C. Mutilva Baja s.n., 31192 Mutilva Baja, Spain
| | - Rosa-Victoria Molina
- Departamento de Producción Vegetal, Universitat Politécnica de València, Edificio 3K-2 planta, Camino de vera s.n., 46022 Valencia, Spain
| |
Collapse
|
10
|
Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita TW, Hwang SK, Satoh H. The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. PLANT & CELL PHYSIOLOGY 2014; 55:1169-83. [PMID: 24747952 DOI: 10.1093/pcp/pcu057] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although an alternative pathway has been suggested, the prevailing view is that starch synthesis in cereal endosperm is controlled by the activity of the cytosolic isoform of ADPglucose pyrophosphorylase (AGPase). In rice, the cytosolic AGPase isoform is encoded by the OsAGPS2b and OsAGPL2 genes, which code for the small (S2b) and large (L2) subunits of the heterotetrameric enzyme, respectively. In this study, we isolated several allelic missense and nonsense OsAGPL2 mutants by N-methyl-N-nitrosourea (MNU) treatment of fertilized egg cells and by TILLING (Targeting Induced Local Lesions in Genomes). Interestingly, seeds from three of the missense mutants (two containing T139I and A171V) were severely shriveled and had seed weight and starch content comparable with the shriveled seeds from OsAGPL2 null mutants. Results from kinetic analysis of the purified recombinant enzymes revealed that the catalytic and allosteric regulatory properties of these mutant enzymes were significantly impaired. The missense heterotetramer enzymes and the S2b homotetramer had lower specific (catalytic) activities and affinities for the activator 3-phosphoglycerate (3-PGA). The missense heterotetramer enzymes showed more sensitivity to inhibition by the inhibitor inorganic phosphate (Pi) than the wild-type AGPase, while the S2b homotetramer was profoundly tolerant to Pi inhibition. Thus, our results provide definitive evidence that starch biosynthesis during rice endosperm development is controlled predominantly by the catalytic activity of the cytoplasmic AGPase and its allosteric regulation by the effectors. Moreover, our results show that the L2 subunit is essential for both catalysis and allosteric regulatory properties of the heterotetramer enzyme.
Collapse
Affiliation(s)
- Aytug Tuncel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USAThese authors contributed equally to this work
| | - Joe Kawaguchi
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 JapanThese authors contributed equally to this work
| | - Yasuharu Ihara
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | | | - Aiko Nishi
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | | | - Satoru Kuhara
- Department of Genetic Resources Technology, Kyushu University, Fukuoka, 812-8581 Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Department of Plant Genome Research, Kisarazu, Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, 010-0195 Japan
| | - Bilal Cakir
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Ai Nagamine
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USAFaculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Hikaru Satoh
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| |
Collapse
|
11
|
Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, Pozueta-Romero J. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv 2013; 32:87-106. [PMID: 23827783 DOI: 10.1016/j.biotechadv.2013.06.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Structurally composed of the glucose homopolymers amylose and amylopectin, starch is the main storage carbohydrate in vascular plants, and is synthesized in the plastids of both photosynthetic and non-photosynthetic cells. Its abundance as a naturally occurring organic compound is surpassed only by cellulose, and represents both a cornerstone for human and animal nutrition and a feedstock for many non-food industrial applications including production of adhesives, biodegradable materials, and first-generation bioethanol. This review provides an update on the different proposed pathways of starch biosynthesis occurring in both autotrophic and heterotrophic organs, and provides emerging information about the networks regulating them and their interactions with the environment. Special emphasis is given to recent findings showing that volatile compounds emitted by microorganisms promote both growth and the accumulation of exceptionally high levels of starch in mono- and dicotyledonous plants. We also review how plant biotechnologists have attempted to use basic knowledge on starch metabolism for the rational design of genetic engineering traits aimed at increasing starch in annual crop species. Finally we present some potential biotechnological strategies for enhancing starch content.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Miroslav Ovecka
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacky University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ed Etxeberria
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain.
| |
Collapse
|
12
|
Li J, Baroja-Fernández E, Bahaji A, Muñoz FJ, Ovecka M, Montero M, Sesma MT, Alonso-Casajús N, Almagro G, Sánchez-López AM, Hidalgo M, Zamarbide M, Pozueta-Romero J. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. PLANT & CELL PHYSIOLOGY 2013; 54:282-94. [PMID: 23292602 DOI: 10.1093/pcp/pcs180] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sucrose synthase (SuSy) is a highly regulated cytosolic enzyme that catalyzes the conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate glucose and fructose. In cereal endosperms, it is widely assumed that the stepwise reactions of SuSy, UDPglucose pyrophosphorylase and ADPglucose (ADPG) pyrophosphorylase (AGP) take place in the cytosol to convert sucrose into ADPG necessary for starch biosynthesis, although it has also been suggested that SuSy may participate in the direct conversion of sucrose into ADPG. In this study, the levels of the major primary carbon metabolites, and the activities of starch metabolism-related enzymes were assessed in endosperms of transgenic maize plants ectopically expressing StSUS4, which encodes a potato SuSy isoform. A total of 29 fertile lines transformed with StSUS4 were obtained, five of them containing a single copy of the transgene that was still functional after five generations. The number of seeds per ear of the five transgenic lines containing a single StSUS4 copy was comparable with that of wild-type (WT) control seeds. However, transgenic seeds accumulated 10-15% more starch at the mature stage, and contained a higher amylose/amylopectin balance than WT seeds. Endosperms of developing StSUS4-expressing seeds exhibited a significant increase in SuSy activity, and in starch and ADPG contents when compared with WT endosperms. No significant changes could be detected in the transgenic seeds in the content of soluble sugars, and in activities of starch metabolism-related enzymes when compared with WT seeds. A suggested metabolic model is presented wherein both AGP and SuSy are involved in the production of ADPG linked to starch biosynthesis in maize endosperm cells.
Collapse
Affiliation(s)
- Jun Li
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloako etorbidea zenbaki gabe, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
14
|
García-Gómez C, Parages ML, Jiménez C, Palma A, Mata MT, Segovia M. Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5259-74. [PMID: 22859678 PMCID: PMC3430997 DOI: 10.1093/jxb/ers185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ultraviolet radiation (UVR) induces damage in a variety of organisms, and cells may adapt by developing repair or tolerance mechanisms to counteract such damage; otherwise, the cellular fate is cell death. Here, the effect of UVR-induced cell damage and the associated signalling and repair mechanisms by which cells are able to survive was studied in Dunaliella tertiolecta. UVR did not cause cell death, as shown by the absence of SYTOX Green-positive labelling cells. Ultrastructure analysis by transmission electron microscopy demonstrated that the cells were alive but were subjected to morphological changes such as starch accumulation, chromatin disaggregation, and chloroplast degradation. This behaviour paralleled a decrease in F(v)/F(m) and the formation of cyclobutane-pyrimidine dimers, showing a 10-fold increase at the end of the time course. There was a high accumulation of the repressor of transcriptional gene silencing (ROS1), as well as the cell proliferation nuclear antigen (PCNA) in UVR-treated cells, revealing activation of DNA repair mechanisms. The degree of phosphorylation of c-Jun N-terminal kinase (JNK) and p38-like mitogen-activated protein kinases was higher in UVR-exposed cells; however, the opposite occurred with the phosphorylated extracellular signal-regulated kinase (ERK). This confirmed that both JNK and p38 need to be phosphorylated to trigger the stress response, as well as the fact that cell division is arrested when an ERK is dephosphorylated. In parallel, both DEVDase and WEHDase caspase-like enzymatic activities were active even though the cells were not dead, suggesting that these proteases must be considered within a wider frame of stress proteins, rather than specifically being involved in cell death in these organisms.
Collapse
Affiliation(s)
| | | | | | | | | | - María Segovia
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
15
|
Bahaji A, Li J, Ovecka M, Ezquer I, Muñoz FJ, Baroja-Fernández E, Romero JM, Almagro G, Montero M, Hidalgo M, Sesma MT, Pozueta-Romero J. Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-glucose content: further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis. PLANT & CELL PHYSIOLOGY 2011; 52:1162-76. [PMID: 21624897 DOI: 10.1093/pcp/pcr067] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is widely considered that ADP-glucose pyrophosphorylase (AGP) is the sole source of ADP-glucose linked to bacterial glycogen and plant starch biosynthesis. Genetic evidence that bacterial glycogen biosynthesis occurs solely by the AGP pathway has been obtained with glgC⁻ AGP mutants. However, recent studies have shown that (i) these mutants can accumulate high levels of ADP-glucose and glycogen, and (ii) there are sources other than GlgC, of ADP-glucose linked to glycogen biosynthesis. In Arabidopsis, evidence showing that starch biosynthesis occurs solely by the AGP pathway has been obtained with the starchless adg1-1 and aps1 AGP mutants. However, mounting evidence has been compiled previewing the occurrence of more than one important ADP-glucose source in plants. In attempting to solve this 20-year-old controversy, in this work we carried out a judicious characterization of both adg1-1 and aps1. Both mutants accumulated wild-type (WT) ADP-glucose and approximately 2% of WT starch, as further confirmed by confocal fluorescence microscopic observation of iodine-stained leaves and of leaves expressing granule-bound starch synthase fused with GFP. Introduction of the sex1 mutation affecting starch breakdown into adg1-1 and aps1 increased the starch content to 8-10% of the WT starch. Furthermore, aps1 leaves exposed to microbial volatiles for 10 h accumulated approximately 60% of the WT starch. aps1 plants expressing the bacterial ADP-glucose hydrolase EcASPP in the plastid accumulated normal ADP-glucose and reduced starch when compared with aps1 plants, whereas aps1 plants expressing EcASPP in the cytosol showed reduced ADP-glucose and starch. Moreover, aps1 plants expressing bacterial AGP in the plastid accumulated WT starch and ADP-glucose. The overall data show that (i) there occur important source(s), other than AGP, of ADP-glucose linked to starch biosynthesis, and (ii) AGP is a major determinant of starch accumulation but not of intracellular ADP-glucose content in Arabidopsis.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloako Etorbidea Zenbaki Gabe, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lipavská H, Masková P, Vojvodová P. Regulatory dephosphorylation of CDK at G₂/M in plants: yeast mitotic phosphatase cdc25 induces cytokinin-like effects in transgenic tobacco morphogenesis. ANNALS OF BOTANY 2011; 107:1071-86. [PMID: 21339187 PMCID: PMC3091802 DOI: 10.1093/aob/mcr016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/02/2010] [Accepted: 12/03/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND During the last three decades, the cell cycle and its control by cyclin-dependent kinases (CDKs) have been extensively studied in eukaryotes. This endeavour has produced an overall picture that basic mechanisms seem to be largely conserved among all eukaryotes. The intricate regulation of CDK activities includes, among others, CDK activation by CDC25 phosphatase at G₂/M. In plants, however, studies of this regulation have lagged behind as a plant Cdc25 homologue or other unrelated phosphatase active at G₂/M have not yet been identified. SCOPE Failure to identify a plant mitotic CDK activatory phosphatase led to characterization of the effects of alien cdc25 gene expression in plants. Tobacco, expressing the Schizosaccharomyces pombe mitotic activator gene, Spcdc25, exhibited morphological, developmental and biochemical changes when compared with wild type (WT) and, importantly, increased CDK dephosphorylation at G₂/M. Besides changes in leaf shape, internode length and root development, in day-neutral tobacco there was dramatically earlier onset of flowering with a disturbed acropetal floral capacity gradient typical of WT. In vitro, de novo organ formation revealed substantially earlier and more abundant formation of shoot primordia on Spcdc25 tobacco stem segments grown on shoot-inducing media when compared with WT. Moreover, in contrast to WT, stem segments from transgenic plants formed shoots even without application of exogenous growth regulator. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size due to a shortening of the G₂ phase together with high activity of cyclin-dependent kinase, NtCDKB1, in early S-phase, S/G₂ and early M-phase. Spcdc25-expressing tobacco ('Samsun') cell suspension cultures showed a clustered, more circular, cell phenotype compared with chains of elongated WT cells, and increased content of starch and soluble sugars. Taken together, Spcdc25 expression had cytokinin-like effects on the characteristics studied, although determination of endogenous cytokinin levels revealed a dramatic decrease in Spcdc25 transgenics. CONCLUSIONS The data gained using the plants expressing yeast mitotic activator, Spcdc25, clearly argue for the existence and importance of activatory dephosphorylation at G₂/M transition and its interaction with cytokinin signalling in plants. The observed cytokinin-like effects of Spcdc25 expression are consistent with the concept of interaction between cell cycle regulators and phytohormones during plant development. The G₂/M control of the plant cell cycle, however, remains an elusive issue as doubts persist about the mode of activatory dephosphorylation, which in other eukaryotes is provided by Cdc25 phosphatase serving as a final all-or-nothing mitosis regulator.
Collapse
Affiliation(s)
- Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, Prague 2, Czech Republic.
| | | | | |
Collapse
|
17
|
Cevallos-Cevallos JM, García-Torres R, Etxeberria E, Reyes-De-Corcuera JI. GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus Huanglongbing and zinc deficiency in leaves of 'Valencia' sweet orange from commercial groves. PHYTOCHEMICAL ANALYSIS : PCA 2011; 22:236-46. [PMID: 21046688 DOI: 10.1002/pca.1271] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/15/2010] [Accepted: 06/20/2010] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Citrus Huanglongbing (HLB) is considered the most destructive citrus disease worldwide. Symptoms-based detection of HLB is difficult due to similarities with zinc deficiency. OBJECTIVE To find metabolic differences between leaves from HLB-infected, zinc-deficient, and healthy 'Valencia' orange trees by using GC-MS based metabolomics. METHODOLOGY Analysis based on GC-MS methods for untargeted metabolite analysis of citrus leaves was developed and optimized. Sample extracts from healthy, zinc deficient, or HLB-infected sweet orange leaves were submitted to headspace solid phase micro-extraction (SPME) and derivatization treatments prior to GC-MS analysis. RESULTS Principal components analysis achieved correct classification of all the derivatized liquid extracts. Analysis of variance revealed 6 possible biomarkers for HLB, of which 5 were identified as proline, β-elemene, (-)trans- caryophyllene, and α-humulene. Significant (P < 0.05) differences in oxo-butanedioic acid, arabitol, and neo-inositol were exclusively detected in samples from plants with zinc deficiency. Levels of isocaryophyllen, α-selinene, β-selinene, and fructose were significantly (P < 0.05) different in healthy leaves only. CONCLUSION Results suggest the potential of using identified HLB biomarkers for rapid differentiation of HLB from zinc deficiency.
Collapse
|
18
|
Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment. PLANT PHYSIOLOGY 2011; 155:1566-77. [PMID: 21378102 PMCID: PMC3091114 DOI: 10.1104/pp.110.170399] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/26/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Peter Geigenberger
- Ludwig-Maximilians-Universität München, Department of Biology I, 82152 Martinsried, Germany.
| |
Collapse
|
19
|
Bar-Peled M, O'Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:127-55. [PMID: 21370975 DOI: 10.1146/annurev-arplant-042110-103918] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the universal sugar donors for the formation of polysaccharides, glycoproteins, proteoglycans, glycolipids, and glycosylated secondary metabolites. At least 100 genes encode proteins involved in the formation of nucleotide sugars. These nucleotide sugars are formed using the carbohydrate derived from photosynthesis, the sugar generated by hydrolyzing translocated sucrose, the sugars released from storage carbohydrates, the salvage of sugars from glycoproteins and glycolipids, the recycling of sugars released during primary and secondary cell wall restructuring, and the sugar generated during plant-microbe interactions. Here we emphasize the importance of the salvage of sugars released from glycans for the formation of nucleotide sugars. We also outline how recent studies combining biochemical, genetic, molecular and cellular approaches have led to an increased appreciation of the role nucleotide sugars in all aspects of plant growth and development. Nevertheless, our understanding of these pathways at the single cell level is far from complete.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
20
|
Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J. A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid metabolism, as well as actin cytoskeleton and endocytosis. PLANT SIGNALING & BEHAVIOR 2010; 5:1638-1641. [PMID: 21150257 PMCID: PMC3115121 DOI: 10.4161/psb.5.12.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 05/29/2023]
Abstract
We have recently found that microbial species ranging from Gram-negative and Gram-positive bacteria to different fungi emit volatiles that strongly promote starch accumulation in leaves of both mono- and di-cotyledonous plants. Transcriptome and enzyme activity analyses of potato leaves exposed to volatiles emitted by Alternaria alternata revealed that starch over-accumulation was accompanied by enhanced 3-phosphoglycerate to Pi ratio, and changes in functions involved in both central carbohydrate and amino acid metabolism. Exposure to microbial volatiles also promoted changes in the expression of genes that code for enzymes involved in endocytic uptake and traffic of solutes. With the overall data we propose a metabolic model wherein important determinants of accumulation of exceptionally high levels of starch include (a) upregulation of ADPglucose-producing SuSy, starch synthase III and IV, proteins involved in the endocytic uptake and traffic of sucrose, (b) down-regulation of acid invertase, starch breakdown enzymes and proteins involved in internal amino acid provision, and (c) 3-phosphoglycerate-mediated allosteric activation of ADPglucose pyrophosphorylase.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Miroslav Ovecka
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
- Institute of Botany; Slovak Academy of Sciences; Bratislava, Slovakia
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | | | - Maite Hidalgo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - María Teresa Sesma
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
- Iden Biotechnology S.L.; Nafarroa, Spain
| | - Ed Etxeberria
- University of Florida; IFAS; Citrus Research and Education Center; Lake Alfred, FL USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| |
Collapse
|
21
|
Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J. Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. PLANT & CELL PHYSIOLOGY 2010; 51:1674-93. [PMID: 20739303 DOI: 10.1093/pcp/pcq126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microbes emit volatile compounds that affect plant growth and development. However, little or nothing is known about how microbial emissions may affect primary carbohydrate metabolism in plants. In this work we explored the effect on leaf starch metabolism of volatiles released from different microbial species ranging from Gram-negative and Gram-positive bacteria to fungi. Surprisingly, we found that all microbial species tested (including plant pathogens and species not normally interacting with plants) emitted volatiles that strongly promoted starch accumulation in leaves of both mono- and dicotyledonous plants. Starch content in leaves of plants treated for 2 d with microbial volatiles was comparable with or even higher than that of reserve organs such as potato tubers. Transcriptome and enzyme activity analyses of potato leaves exposed to volatiles emitted by Alternaria alternata revealed that starch overaccumulation was accompanied by up-regulation of sucrose synthase, invertase inhibitors, starch synthase class III and IV, starch branching enzyme and glucose-6-phosphate transporter. This phenomenon, designated as MIVOISAP (microbial volatiles-induced starch accumulation process), was also accompanied by down-regulation of acid invertase, plastidial thioredoxins, starch breakdown enzymes, proteins involved in internal amino acid provision and less well defined mechanisms involving a bacterial- type stringent response. Treatment of potato leaves with fungal volatiles also resulted in enhanced levels of sucrose, ADPglucose, UDPglucose and 3-phosphoglycerate. MIVOISAP is independent of the presence of sucrose in the culture medium and is strongly repressed by cysteine supplementation. The discovery that microbial volatiles trigger starch accumulation enhancement in leaves constitutes an unreported mechanism for the elicidation of plant carbohydrate metabolism by microbes.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Angeles-Núñez JG, Tiessen A. Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. PLANTA 2010; 232:701-18. [PMID: 20559653 DOI: 10.1007/s00425-010-1207-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/01/2010] [Indexed: 05/20/2023]
Abstract
Two genes encoding sucrose synthase (SUS), namely SUS2 (At5g49190) and SUS3 (At4g02280), are strongly and differentially expressed in Arabidopsis seed. Detailed biochemical analysis was carried out in developing seeds 9-21 days after flowering (DAF) of wild type and two knockouts. SUS2 and SUS3 are not redundant genes since single knockouts show a phenotype in developing seeds. The mutants had 30-50% less SUS activity and therefore accumulated 40% more sucrose and 50% less fructose at 15 DAF. This did not affect the hexose-P pool, but led to 30-70% less starch in embryo and seed coat. Lipids were 55% higher in both mutants at 9-15 DAF. It seems that sucrolysis via SUS is not required for oil or protein synthesis but rather for channeling carbon toward ADP-glucose and starch in seeds. Metabolite profiling with GC-TOF revealed specific downstream changes in primary metabolism as a consequence of signaling or regulatory fine-tuning. While sucrose increased, hexoses and specific amino acids decreased reciprocally. There was a developmental shift regarding an earlier timing of dry weight accumulation, germinative maturity, oil deposition, sugar levels, transient starch buildup, and protein storage. Nevertheless, final seed size and composition were unaltered due to an earlier cessation of growth, thus giving rise to an apparent silent phenotype of mature mutant seeds. We conclude that SUS is important for metabolite homeostasis and timing of seed development, and propose that an altered sucrose/hexose ratio can modify carbon partitioning and the pattern of storage compounds in Arabidopsis.
Collapse
|
23
|
Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. PLANT & CELL PHYSIOLOGY 2009; 50:1651-62. [PMID: 19608713 DOI: 10.1093/pcp/pcp108] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sucrose synthase (SuSy) is a highly regulated cytosolic enzyme that catalyzes the conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate glucose and fructose. To determine the impact of SuSy activity in starch metabolism and yield in potato (Solanum tuberosum L.) tubers we measured sugar levels and enzyme activities in tubers of SuSy-overexpressing potato plants grown in greenhouse and open field conditions. We also transcriptionally characterized tubers of SuSy-overexpressing and -antisensed potato plants. SuSy-overexpressing tubers exhibited a substantial increase in starch, UDPglucose and ADPglucose content when compared with controls. Tuber dry weight, starch content per plant and total yield of SuSy-overexpressing tubers increased significantly over those of control plants. In contrast, activities of enzymes directly involved in starch metabolism in SuSy-overexpressing tubers were normal when compared with controls. Transcriptomic analyses using POCI arrays and the MapMan software revealed that changes in SuSy activity affect the expression of genes involved in multiple biological processes, but not that of genes directly involved in starch metabolism. These analyses also revealed a reverse correlation between the expressions of acid invertase and SuSy-encoding genes, indicating that the balance between SuSy- and acid invertase-mediated sucrolytic pathways is a major determinant of starch accumulation in potato tubers. Results presented in this work show that SuSy strongly determines the intracellular levels of UDPglucose, ADPglucose and starch, and total yield in potato tubers. We also show that enhancement of SuSy activity represents a useful strategy for increasing starch accumulation and yield in potato tubers.
Collapse
Affiliation(s)
- Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Muñoz FJ, Baroja-Fernández E, Ovecka M, Li J, Mitsui T, Sesma MT, Montero M, Bahaji A, Ezquer I, Pozueta-Romero J. Plastidial localization of a potato 'Nudix' hydrolase of ADP-glucose linked to starch biosynthesis. PLANT & CELL PHYSIOLOGY 2008; 49:1734-46. [PMID: 18801762 DOI: 10.1093/pcp/pcn145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Escherichia coli and potato (Solanum tuberosum) ADP-sugar pyrophosphatases (EcASPP and StASPP, respectively) are 'Nudix' hydrolases of the bacterial glycogen and starch precursor molecule, ADP-glucose (ADPG). We have previously shown that potato leaves expressing EcASPP either in the cytosol or in the chloroplast exhibited large reductions in the levels of starch, suggesting the occurrence of cytosolic and plastidial pools of ADPG linked to starch biosynthesis. In this work, we produced and characterized potato and Arabidopsis plants expressing EcASPP and StASPP fused with green fluorescent protein (GFP). Confocal fluorescence microscopy analyses of these plants confirmed that EcASPP-GFP has a cytosolic localization, whereas StASPP-GFP occurs in the plastid stroma. Both source leaves and potato tubers from EcASPP-GFP-expressing plants showed a large reduction of the levels of both ADPG and starch. In contrast, StASPP-GFP-expressing leaves and tubers exhibited reduced starch and normal ADPG contents when compared with control plants. With the exception of starch synthase in StASPP-GFP-expressing plants, no pleiotropic changes in maximum catalytic activities of enzymes closely linked to starch metabolism could be detected in EcASPP-GFP- and StASPP-GFP-expressing plants. The overall data (i) show that potato plants possess a plastidial ASPP that has access to ADPG linked to starch biosynthesis and (ii) are consistent with the occurrence of plastidic and cytosolic pools of ADPG linked to starch biosynthesis.
Collapse
Affiliation(s)
- Francisco José Muñoz
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloako etorbidea zenbaki gabe, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Suchomelová-Mašková P, Novák O, Lipavská H. Tobacco cells transformed with the fission yeast Spcdc25 mitotic inducer display growth and morphological characteristics as well as starch and sugar status evocable by cytokinin application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:673-684. [PMID: 18550380 DOI: 10.1016/j.plaphy.2008.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Indexed: 05/26/2023]
Abstract
In plants, the G2/M control of cell cycle remains an elusive issue as doubts persist about activatory dephosphorylation--in other eukaryotes provided by CDC25 phosphatase and serving as a final all-or-nothing mitosis regulator. We report on the effects of tobacco (Nicotiana tabacum L., cv. Samsun) transformation with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on cell characteristics. Transformed cell suspension cultures showed higher dry mass accumulation during the exponential phase and clustered more circular cell phenotypes compared to chains of elongated WT cells. Similar cell parameters, as in the transformants, can be induced in WT by cytokinins. Spcdc25 cells, after cytokinin treatment, showed giant cell clusters and growth inhibition. In addition, Spcdc25 expression led to altered carbohydrate status: increased starch and soluble sugars with higher sucrose:hexoses ratio, inducible in WT by cytokinin treatment. Taken together, the Spcdc25 transformation had a cytokinin-like effect on studied characteristics. However, endogenous cytokinin determination revealed markedly lower cytokinin levels in Spcdc25 transformants. This indicates that the cells sense Spcdc25 expression as an increased cytokinin availability, manifested by changed cell morphology, and in consequence decrease endogenous cytokinin levels. Clearly, the results on cell growth and morphology are consistent with the model of G2/M control including cytokinin-regulated activatory dephosphorylation. Nevertheless, no clear link is obvious between Spcdc25 transformation and carbohydrate status and thus the observed cytokinin-like effect on carbohydrate levels poses a problem. Hence, we propose that Spcdc25-induced higher CDK(s) activity at G2/M generates a signal-modifying carbohydrate metabolism to meet high energy and C demands of forthcoming cell division.
Collapse
Affiliation(s)
- Petra Suchomelová-Mašková
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 11, Olomouc, Czech Republic
| | - Helena Lipavská
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|