1
|
Campodónico PR, Alarcón-Espósito J, Alcázar JJ, Olivares B, Suárez-Rozas C. Analysis of the Behavior of Deep Eutectic Solvents upon Addition of Water: Its Effects over a Catalytic Reaction. Molecules 2024; 29:3296. [PMID: 39064875 PMCID: PMC11279026 DOI: 10.3390/molecules29143296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This study presents the potential role of deep eutectic solvents (DESs) in a lipase-catalyzed hydrolysis reaction as a co-solvent in an aqueous solution given by a phosphate buffer. Ammonium salts, such as choline chloride, were paired with hydrogen bond donors, such as urea, 1,2,3-propanetriol, and 1,2 propanediol. The hydrolysis of p-nitrophenyl laureate was carried out with the lipase Candida antarctica Lipase B (CALB) as a reaction model to evaluate the solvent effect and tested in different DES/buffer phosphate mixtures at different % w/w. The results showed that two mixtures of different DES at 25 % w/w were the most promising solvents, as this percentage enhanced the activities of CALB, as evidenced by its higher catalytic efficiency (kcatKM). The solvent analysis shows that the enzymatic reaction requires a reaction media rich in water molecules to enable hydrogen-bond formation from the reaction media toward the enzymatic reaction, suggesting a better interaction between the substrate and the enzyme-active site. This interaction could be attributed to high degrees of freedom influencing the enzyme conformation given by the reaction media, suggesting that CALB acquires a more restrictive structure in the presence of DES or the stabilized network given by the hydrogen bond from water molecules in the mixture improves the enzymatic activity, conferring conformational stability by solvent effects. This study offers a promising approach for applications and further perspectives on genuinely green industrial solvents.
Collapse
Affiliation(s)
- Paola R. Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 10021, Chile; (J.J.A.); (B.O.); (C.S.-R.)
| | - Jazmín Alarcón-Espósito
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jackson J. Alcázar
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 10021, Chile; (J.J.A.); (B.O.); (C.S.-R.)
| | - Belén Olivares
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 10021, Chile; (J.J.A.); (B.O.); (C.S.-R.)
| | - Cristian Suárez-Rozas
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 10021, Chile; (J.J.A.); (B.O.); (C.S.-R.)
| |
Collapse
|
2
|
Guajardo N, Schrebler RA. Upstream and Downstream Bioprocessing in Enzyme Technology. Pharmaceutics 2023; 16:38. [PMID: 38258049 PMCID: PMC10818583 DOI: 10.3390/pharmaceutics16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024] Open
Abstract
The development of biotransformation must integrate upstream and downstream processes. Upstream bioprocessing will influence downstream bioprocessing. It is essential to consider this because downstream processes can constitute the highest cost in bioprocessing. This review comprehensively overviews the most critical aspects of upstream and downstream bioprocessing in enzymatic biocatalysis. The main upstream processes discussed are enzyme production, enzyme immobilization methodologies, solvent selection, and statistical optimization methodologies. The main downstream processes reviewed in this work are biocatalyst recovery and product separation and purification. The correct selection and combination of upstream and downstream methodologies will allow the development of a sustainable and highly productive system.
Collapse
Affiliation(s)
- Nadia Guajardo
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | | |
Collapse
|
3
|
Bellou MG, Patila M, Fotiadou R, Spyrou K, Yan F, Rudolf P, Gournis DP, Stamatis H. Tyrosinase Magnetic Cross-Linked Enzyme Aggregates: Biocatalytic Study in Deep Eutectic Solvent Aqueous Solutions. Biomolecules 2023; 13:biom13040643. [PMID: 37189390 DOI: 10.3390/biom13040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
In the field of biocatalysis, the implementation of sustainable processes such as enzyme immobilization or employment of environmentally friendly solvents, like Deep Eutectic Solvents (DESs) are of paramount importance. In this work, tyrosinase was extracted from fresh mushrooms and used in a carrier-free immobilization towards the preparation of both non-magnetic and magnetic cross-linked enzyme aggregates (CLEAs). The prepared biocatalyst was characterized and the biocatalytic and structural traits of free tyrosinase and tyrosinase magnetic CLEAs (mCLEAs) were evaluated in numerous DES aqueous solutions. The results showed that the nature and the concentration of the DESs used as co-solvents significantly affected the catalytic activity and stability of tyrosinase, while the immobilization enhanced the activity of the enzyme in comparison with the non-immobilized enzyme up to 3.6-fold. The biocatalyst retained the 100% of its initial activity after storage at -20 °C for 1 year and the 90% of its activity after 5 repeated cycles. Tyrosinase mCLEAs were further applied in the homogeneous modification of chitosan with caffeic acid in the presence of DES. The biocatalyst demonstrated great ability in the functionalization of chitosan with caffeic acid in the presence of 10% v/v DES [Bet:Gly (1:3)], enhancing the antioxidant activity of the films.
Collapse
Affiliation(s)
- Myrto G Bellou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Renia Fotiadou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Ceramics and Composites Laboratory, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dimitrios P Gournis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Ceramics and Composites Laboratory, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Tagirova MA, Eremeev NL, Balabushevich NG, Volodkin DV, Klyachko NL. Preparation of Catalase Cross-Linked Aggregates Based on Vaterite Matrix. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822080075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Silvianti F, Maniar D, Boetje L, Woortman AJJ, van Dijken J, Loos K. Greener Synthesis Route for Furanic-Aliphatic Polyester: Enzymatic Polymerization in Ionic Liquids and Deep Eutectic Solvents. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Laura Boetje
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Albert J. J. Woortman
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Jur van Dijken
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| |
Collapse
|
6
|
Nanocellulose and natural deep eutectic solvent as potential biocatalyst system toward enzyme immobilization. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Guajardo N, Domínguez de María P, Canales R. Integrating Biocatalysis with Viscous Deep Eutectic Solvents in Lab-On-A-Chip Microreactors. CHEMSUSCHEM 2022; 15:e202102674. [PMID: 35084121 DOI: 10.1002/cssc.202102674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The combination of deep eutectic solvents (DESs, ChCl/glycerol 1 : 2) with buffer (up to 15 % v/v) leads to solvent mixtures that exert viscosities below 25 mPa s-1 at 45 °C while keeping their non-aqueous nature. This enables the setup of efficient enzymatic esterifications, which can also be applied in different continuous systems. Following those premises, the use of microreactors in biocatalytic reactions was explored using (low-viscous) DES-buffer media, showing that reactions could be performed efficiently. Under non-optimized conditions, the microreactor devices led to specific productivities considerably higher than those observed in the batch reactor (14 vs. 0.24 mgproduct min-1 mgbiocat -1 ) at the same enzyme loadings and conversion of 6 % (to assure a fair comparison). Looking beyond, the combination of several microchannels (e. g., in scale-out fashion) with DES-water media may lead to powerful, sustainable, and efficient tools for industrial synthesis.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - Pablo Domínguez de María
- Sustainable Momentum SL, Av. Ansite 3, 4-6, Las Palmas de Gran Canaria, 35011, Canary Is., Spain
| | - Roberto Canales
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Macul, Santiago, Chile
| |
Collapse
|
8
|
MOLECULAR SIMULATIONS OF DEEP EUTECTIC SOLVENTS: A PERSPECTIVE ON STRUCTURE, DYNAMICS, AND PHYSICAL PROPERTIES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2022. [DOI: 10.1002/9781119625933.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Guajardo N, Domínguez de María P. Robust and Continuous Lipase-Catalyzed Reactions in Deep Eutectic Solvents: Low Viscosity and Double CLEA-LentiKats Immobilization (CLEA-LK-Lipases). Methods Mol Biol 2022; 2487:355-360. [PMID: 35687246 DOI: 10.1007/978-1-0716-2269-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep Eutectic Solvents (DES) are used as reaction media for lipase-catalyzed esterifications in continuous devices. In particular, DES may be useful for lipophilization-like reactions involving substrates with unpaired solubilities. Aspects to be considered are the viscosity of the solvent, as well as the stability of the enzyme in the non-conventional media. The viscosity can be decreased by adding buffer as cosolvent (up to 20% v/v) and keeping the non-conventional nature. Lipases can be stabilized by following a double immobilization pattern, comprising CLEA formation and entrapment in LentiKats®. The low viscosity and high stability of the CLEA-LK-lipase enable the use of DES under flow conditions.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile.
| | | |
Collapse
|
10
|
Guajardo N, Ahumada K, Domínguez de María P. Immobilization of Pseudomonas stutzeri lipase through Cross-linking Aggregates (CLEA) for reactions in Deep Eutectic Solvents. J Biotechnol 2021; 337:18-23. [PMID: 34171440 DOI: 10.1016/j.jbiotec.2021.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
The use of deep eutectic solvents (DES) with buffer as cosolvent (up to 10 % v/v) leads to low-viscous media in which lipases can perform synthetic reactions, instead of hydrolysis. This paper explores the immobilization of Pseudomonas stutzeri lipase (TL) in cross-linking aggregates (CLEA) to deliver robust derivatives that are active in media like choline chloride - glycerol DES with buffer as cosolvent. While the free TL enzyme was markedly inactive in these media, TL-CLEA derivatives perform esterifications and can be reused several times. Overall, results are consistent with previous experiments reported for other lipases in these DES-water media and confirm that CLEA immobilization turns out a very useful and straightforward alternative for generating active (bio)catalysts for DES-aqueous media systems. Immobilized systems open the possibility of performing continuous processes in low-viscous DES-buffer media.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| | | | - Pablo Domínguez de María
- Sustainable Momentum, SL. Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Is, Spain
| |
Collapse
|
11
|
Vagnoni M, Samorì C, Pirini D, Vasquez De Paz MK, Gidey DG, Galletti P. Lipase catalysed oxidations in a sugar-derived natural deep eutectic solvent. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1913126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Martina Vagnoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Chiara Samorì
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Daniele Pirini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | | | | | - Paola Galletti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| |
Collapse
|
12
|
Panić M, Radović M, Maros I, Jurinjak Tušek A, Cvjetko Bubalo M, Radojčić Redovniković I. Development of environmentally friendly lipase-catalysed kinetic resolution of (R,S)-1-phenylethyl acetate using aqueous natural deep eutectic solvents. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Wang X, Zhao X, Qin X, Zhao Z, Yang B, Wang Y. Immobilized MAS1 Lipase-catalyzed Synthesis of n-3 PUFA-rich Triacylglycerols in Deep Eutectic Solvents. J Oleo Sci 2021; 70:227-236. [PMID: 33456003 DOI: 10.5650/jos.ess20200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
n-3 polyunsaturated fatty acids (PUFA)-rich triacylglycerols (TAG) with many beneficial effects are still difficult to be synthesized efficiently and rapidly by current synthetic techniques. This study reports the fatty acid specificity of immobilized MAS1 lipase and its efficient synthesis of n-3 PUFA-rich TAG by esterification of glycerol with n-3 PUFA in natural deep eutectic solvents (NADES) systems. Immobilized MAS1 lipase showed the highest preference for capric acid [C10:0, the highest specificity constant (1/α)=1] whereas it discriminated strongly against docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) due to their lowest specificity constants (1/α=0.19 and 0.2). Moreover, the highest n-3 PUFA-rich TAG content (55.8%) with similar n-3 PUFA composition to the substrate was obtained in choline chloride/glycerol (CG) system. There was a 1.38-fold increase of TAG content in CG system compared with that in the solvent-free system. Interestingly, immobilized MAS1 lipase exhibited no regiospecificity in the solvent-free and various NADES systems. Besides, the potential reaction mechanism of immobilized MAS1 lipase-catalyzed esterification of glycerol with n-3 PUFA in NADES systems was described. It was found that the use of NADES as solvents could greatly enhance TAG content, and make it easy to separate the product. These results indicated that immobilized MAS1 lipase is a promising biocatalyst for the efficient synthesis of n-3 PUFA-rich TAG by esterification of glycerol with n-3 PUFA in NADES systems.
Collapse
Affiliation(s)
- Xiumei Wang
- College of Environmental and Biological Engineering, Putian University.,Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants.,School of Bioscience and Bioengineering, South China University of Technology
| | - Xiaoxu Zhao
- College of Environmental and Biological Engineering, Putian University.,Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants
| | - Xiaoli Qin
- College of Food Science, Southwest University
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology
| | - Yonghua Wang
- Guangdong Research Center of Lipid Science and Applied Engineering Technology, School of Food Science and Engineering, South China University of Technology
| |
Collapse
|
14
|
Simulation of the Reactivation of Partially Inactivated Biocatalysts in Sequential Batch Reactors. Processes (Basel) 2020. [DOI: 10.3390/pr8111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enzymatic reactivation process enables the recovery of catalytic activity for inactive biocatalysts. However, its effect on the specific productivity of the processes has not been studied. The main objective of this work was to evaluate the specific productivity of the processes with and without reactivation using the program Spyder Python (3.7). Using fixed values for all of the parameters, the global specific productivity was 8 mM/h·gbiocat for the process without reactivation, and 4 mM/h·gbiocat for the process with reactivation. Random numbers were generated to use as different values for parameters, and the results yielded a global specific productivity of 3.79 mM/h·gbiocat for the process with reactivation and 3.68 mM/h·gbiocat for the process without reactivation. ANOVA tests showed that there were significant differences between the specific global productivities of the two processes. Reactivation has great potential for use when the biocatalyst is of high cost.
Collapse
|
15
|
Bjelić A, Hočevar B, Grilc M, Novak U, Likozar B. A review of sustainable lignocellulose biorefining applying (natural) deep eutectic solvents (DESs) for separations, catalysis and enzymatic biotransformation processes. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Conventional biorefinery processes are complex, engineered and energy-intensive, where biomass fractionation, a key functional step for the production of biomass-derived chemical substances, demands industrial organic solvents and harsh, environmentally harmful reaction conditions. There is a timely, clear and unmet economic need for a systematic, robust and affordable conversion method technology to become greener, sustainable and cost-effective. In this perspective, deep eutectic solvents (DESs) have been envisaged as the most advanced novel polar liquids that are entirely made of natural, molecular compounds that are capable of an association via hydrogen bonding interactions. DES has quickly emerged in various application functions thanks to a formulations’ simple preparation. These molecules themselves are biobased, renewable, biodegradable and eco-friendly. The present experimental review is providing the state of the art topical overview of trends regarding the employment of DESs in investigated biorefinery-related techniques. This review covers DESs for lignocellulosic component isolation, applications as (co)catalysts and their functionality range in biocatalysis. Furthermore, a special section of the DESs recyclability is included. For DESs to unlock numerous new (reactive) possibilities in future biorefineries, the critical estimation of its complexity in the reaction, separation, or fractionation medium should be addressed more in future studies.
Collapse
Affiliation(s)
- Ana Bjelić
- Department of Catalysis and Chemical Reaction Engineering , National Institute of Chemistry , Hajdrihova 19 , 1001 Ljubljana , Slovenia
| | - Brigita Hočevar
- Department of Catalysis and Chemical Reaction Engineering , National Institute of Chemistry , Hajdrihova 19 , 1001 Ljubljana , Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering , National Institute of Chemistry , Hajdrihova 19 , 1001 Ljubljana , Slovenia
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering , National Institute of Chemistry , Hajdrihova 19 , 1001 Ljubljana , Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering , National Institute of Chemistry , Hajdrihova 19 , 1001 Ljubljana , Slovenia
| |
Collapse
|
16
|
Li J, Qian F, Wang P. Exploiting benign ionic liquids to effectively synthesize chiral intermediate of NK-1 receptor antagonists catalysed by Trichoderma asperellum cells. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1797696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jun Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P.R. China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, P.R. China
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Feng Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
17
|
Assessing biocatalysis using dihydrolevoglucosenone (Cyrene™) as versatile bio-based (co)solvent. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Guajardo N, Ahumada K, Domínguez de María P. Immobilized lipase-CLEA aggregates encapsulated in lentikats® as robust biocatalysts for continuous processes in deep eutectic solvents. J Biotechnol 2020; 310:97-102. [DOI: 10.1016/j.jbiotec.2020.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
|
19
|
Tan JN, Dou Y. Deep eutectic solvents for biocatalytic transformations: focused lipase-catalyzed organic reactions. Appl Microbiol Biotechnol 2020; 104:1481-1496. [PMID: 31907576 DOI: 10.1007/s00253-019-10342-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023]
Abstract
Biocatalysis is a green and sustainable technology for which the ideal solvent should be nontoxic, biocompatible, biodegradable, and sustainable, in addition to supporting high enzyme activity and stability. Deep eutectic solvents (DESs), a novel class of green solvents, have recently emerged as excellent alternatives for use in various biocatalytic reactions and, in particular, in lipase-catalyzed reactions with enzymes. This review discusses the achievements that have been made so far in the use of DESs as reaction media for lipase-catalyzed reactions. In addition, the application of DESs in esterification, transesterification, and amidation reactions with isolated or immobilized biocatalysts, toward enabling the synthesis of biodiesels, sugar esters, phenolipids, and fatty acyl ethanolamides, is summarized, while advances in lipase-catalyzed chemoenzymatic epoxidation reactions, C-C bond-forming Aldol reactions, and hydrolysis reactions in DESs are also discussed. This review also summarize some remaining questions concerning the use of DESs, including the intriguing role of water as a cosolvent in biocatalytic reactions carried out in DESs, and the relationship between the nature of the DESs and their influence on the enzyme stability and activity at the molecular level.
Collapse
Affiliation(s)
- Jia-Neng Tan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Yuqing Dou
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| |
Collapse
|
20
|
Synthesis of Ibuprofen Monoglyceride in Solventless Medium with Novozym®435: Kinetic Analysis. Catalysts 2020. [DOI: 10.3390/catal10010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study investigates the enzymatic esterification of glycerol and ibuprofen in a solventless medium catalyzed by immobilized lipase B from Candida antarctica (Novozym®435). Fixing the concentration of this enzymatic solid preparation at 30 g·L−1, and operating at a constant stirring speed of 720 rpm, the temperature was changed between 50 and 80 °C, while the initial concentration of ibuprofen was studied from 20 to 100 g·L−1. Under these conditions, the resistance of external mass transport can be neglected, as confirmed by the Mears criterion (Me < 0.15). However, the mass transfer limitation inside the pores of the support has been evidenced. The values of the effectiveness factor (η) vary between 0.08 and 0.16 for the particle size range considered according to the Weisz–Prater criteria. Preliminary runs permit us to conclude that the enzyme was deactivated at medium to high temperatures and initial concentration values of ibuprofen. Several phenomenological kinetic models were proposed and fitted to all data available, using physical and statistical criteria to select the most adequate model. The best kinetic model was a reversible sigmoidal model with pseudo-first order with respect to dissolved ibuprofen and order 2 with respect to monoester ibuprofen, assuming the total first-order one-step deactivation of the enzyme, with partial first order for ibuprofen and enzyme activity.
Collapse
|
21
|
Guisan JM, López-Gallego F, Bolivar JM, Rocha-Martín J, Fernandez-Lorente G. The Science of Enzyme Immobilization. Methods Mol Biol 2020; 2100:1-26. [PMID: 31939113 DOI: 10.1007/978-1-0716-0215-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protocols for simple immobilization of unstable enzymes are plenty, but the vast majority of them, unfortunately, have not reached their massive implementation for the preparation of improved heterogeneous biocatalyst. In this context, the science of enzyme immobilization demands new protocols capable of fabricating heterogeneous biocatalysts with better properties than the soluble enzymes. The preparation of very stable immobilized biocatalysts enables the following: (1) higher operational times of enzyme, increasing their total turnover numbers; (2) the use of enzymes under non-conventional media (temperatures, solvents, etc.) in order to increase the concentrations of substrates for intensification of processes or in order to shift reaction equilibria; (3) the design of solvent-free reaction systems; and (4) the prevention of microbial contaminations. These benefits gained with the immobilization are critical to scale up chemical processes like the synthesis of biodiesel, synthesis of food additives or soil decontamination, where the cost of the catalysts has an enormous impact on their economic feasibility. The science of enzyme immobilization requires a multidisciplinary focus that involves several areas of knowledge such as, material science, surface chemistry, protein chemistry, biophysics, molecular biology, biocatalysis, and chemical engineering. In this chapter, we will discuss the most relevant aspects to do "the science of enzyme immobilization." We will emphasize the immobilization techniques that promote multivalent attachments between the surface of the enzymes and the porous carriers. Finally, we will discuss the effect that the structural rigidification promotes at different protein regions on the functional properties of the immobilized enzymes.
Collapse
Affiliation(s)
- Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain.
| | - Fernando López-Gallego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Javier Rocha-Martín
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Department of Biotechnology and Microbiology, CSIC-UAM, Campus UAM, Madrid, Spain
| |
Collapse
|
22
|
Yu D, Yu C, Wang T, Chen J, Zhang X, Wang L, Qin L, Wu F. Study on the Deacidification of Rice Bran Oil Esterification by Magnetic Immobilized Lipase. Catal Letters 2019. [DOI: 10.1007/s10562-019-02939-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Guajardo N, Domínguez de María P. Continuous Biocatalysis in Environmentally‐Friendly Media: A Triple Synergy for Future Sustainable Processes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900773] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica Metropolitana Ignacio Valdivieso 2409 San Joaquín, Santiago Chile
| | | |
Collapse
|
24
|
Pätzold M, Siebenhaller S, Kara S, Liese A, Syldatk C, Holtmann D. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol 2019; 37:943-959. [PMID: 31000203 DOI: 10.1016/j.tibtech.2019.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
Abstract
'Ideal' solvents in biocatalysis have to fulfill a large number of requirements, such as high substrate solubility, high enzyme activity and stability, and positive effects on reaction equilibrium. In the past decades, many enzymatic synthesis routes in water-based and nonaqueous (organic solvents, ionic or supercritical fluids) reaction media have been developed. However, no solvent meets every demand for different reaction types at the same time, and there is still a need for novel solvents suited for different reaction types and applications. Deep eutectic solvents (DESs) have recently been evaluated as solvents in different biocatalytic reactions. They can improve substrate supply, conversion, and stability. The best results were obtained when the DES is formed by the substrates of an enzymatic reaction.
Collapse
Affiliation(s)
- Magdalena Pätzold
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany; Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany
| | - Sascha Siebenhaller
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences 2 - Technical Biology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Selin Kara
- Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany; Aarhus University, Department of Engineering, Biocatalysis and Bioprocessing Group, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Andreas Liese
- Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany
| | - Christoph Syldatk
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences 2 - Technical Biology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Dirk Holtmann
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany.
| |
Collapse
|