1
|
Ceddia M, Romasco T, De Bortoli N, Mello BF, Piattelli A, Mijiritsky E, Di Pietro N, Trentadue B. Biomechanical Finite Element Analysis of Two Types of Short-Angled Implants Across Various Bone Classifications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5680. [PMID: 39685119 DOI: 10.3390/ma17235680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
The aim of this finite element analysis (FEA) was to investigate the distribution of von Mises stress within dental implant components, as well as trabecular and cortical bone. The study considered various bone qualities that influence cortical thickness in contact with the implant, specifically examining cortical thicknesses of 0.5, 1.5, and 3 mm, corresponding to Bergkvist's classifications IV, III, and II, respectively. A simplified 3D model of the bone was developed for the analysis. Two short implants were inserted into the model: one with a 30° inclined abutment (IA) and another positioned at a 30° angle featuring a straight abutment (II). A vertical force (120 N) was applied to the upper surface of the abutments. FEA software was employed to assess the stresses on the peri-implant tissues and the implants. The findings indicated that a reduction in cortical bone thickness results in an increase in stress within the cortical bone. For IA, the stresses recorded 32.56, 56.12, and 96.14 MPa for cortical thicknesses of 3, 1.5, and 0.5 mm, respectively. Conversely, II exhibited increased stresses across all bone qualities (52.32, 76.15, and 126.32 MPa for the same cortical thicknesses). It is advisable to avoid II in cases of poor bone quality and thin cortical due to the heightened risk of overload-induced bone resorption; however, it may be preferable to use IA in scenarios involving good bone quality and thicker cortical.
Collapse
Affiliation(s)
- Mario Ceddia
- Department of Mechanics, Mathematics and Management, Politecnico di Bari University, 70125 Bari, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Nilton De Bortoli
- Department of Oral Implantology, Associação Paulista dos Cirurgiões Dentistas-APCD, São Bernardo do Campo 02011-000, Brazil
| | - Bruno Freitas Mello
- Department of Periodontics and Implant Dentistry, University of Vale do Itajaí, Itajaí 88302-901, Brazil
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Eitan Mijiritsky
- Department of Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, School of Medicine, Tel-Aviv University, Tel Aviv 64239, Israel
- Goldschleger School of Dental Medicine, Faculty of Medicine, Tel-Aviv University, Tel Aviv 39040, Israel
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Bartolomeo Trentadue
- Department of Mechanics, Mathematics and Management, Politecnico di Bari University, 70125 Bari, Italy
| |
Collapse
|
2
|
Acar G, Özer T. Impact of bone levels on stress distribution around all-on-four concept: A 3-D finite element analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101905. [PMID: 38702013 DOI: 10.1016/j.jormas.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
This study aimed to investigate the impact of implant placement levels within the bone on stress distribution in the context of the All-on-Four concept. In this Finite Element Analysis(FEA), two 4.1 mm x 10 mm implants were axially placed in the anterior region of the jawbone, while two 4.1 mm x 14 mm implants were tilted at 30 ° in the posterior region following the all-on-four concept. In the EC scenario, all implants were inserted at the equicrestal level. In other scenarios, implants were positioned at 1 mm and 2 mm subcrestal levels (SC1, SC2). In all groups, the prosthesis was designed to replicate a group-function occlusion. A total load of 450 N was applied to the prosthesis. Upon deeper implant placement below the crest level, a trend of decreasing Von Mises stresses was observed in both implants and implant fragments. The highest Pmax value in the bone was recorded in SC-2, characterized by the absence of cortical bone support, with values of 3.16 N/mm2 in the anterior region and 1.55 N/mm2 in the posterior region. Conversely, the lowest Pmax values were noted in SC-1 for the anterior implant (2.67 N/mm2) and the EC for the posterior implant (0.87 N/mm2). Implant placements devoid of cortical bone support result in stress transmission from the implant and its components to the peri-implant bone. Optimal stress minimization is achieved by placing anterior axial angle implants deeper than the crest level while retaining cortical bone support and positioning posterior tilted implants at the crest level.
Collapse
Affiliation(s)
- Gülin Acar
- Hacettepe University Faculty of Dentistry, Oral and Maxillofacial Surgery Department, Ankara, Turkey.
| | - Taha Özer
- Hacettepe University Faculty of Dentistry, Oral and Maxillofacial Surgery Department, Ankara, Turkey
| |
Collapse
|
3
|
Lebea L, Desai D, Ngwangwa H, Nemavhola F. Evaluation of 3D Printing Orientation on Volume Parameters and Mechanical Properties of As-Build TI64ELI. METALS 2024; 14:447. [DOI: 10.3390/met14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The discovery of the utility of various titanium alloys as implant biomaterials has resulted in these materials becoming far more popular than other metals in the medical world. However, the production of these materials using additive manufacturing has its own challenges some of those being the surface finish that can be used as an implantology material. As such, the purpose of this study is to evaluate the influence of 3D-printed Ti64ELI on the as-built samples printed at 60°, 90°, and 180° orientations. Such studies are very limited, specifically in the development of the laser shock peening surface modification of dental implants. The study showed that each mechanical test that was performed contributes differently to the printing orientation, e.g., some tests yielded better properties when 180° printing orientation was used, and others had poorer properties when a 180° printing orientation was used. It was observed that 60° testing yielded a micro-hardness value of 349.6, and this value was increased by 0.37% when 90° orientation was measured. The lowest HV value was observed under a 180° orientation with 342.2 HV. The core material volume (Vmc) was 0.05266 mm3/mm2 at a 60° orientation, which increased by 11.48% for the 90° orientation. Furthermore, it was observed that the surface roughness (Sa) at 60° orientation was 43.68 μm. This was further increased by 6% when using the 90° orientation.
Collapse
Affiliation(s)
- Lebogang Lebea
- Department of Mechanical and Mechatronic Engineering, Central University of Technology, Free State, Bloemfontein 9300, South Africa
- Department of Mechanical and Mechatronic Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
- Department of Mechanical Engineering, University of South Africa, Florida Campus, Roodepoort 1709, South Africa
| | - Dawood Desai
- Department of Mechanical and Mechatronic Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
| | - Harry Ngwangwa
- Department of Mechanical Engineering, University of South Africa, Florida Campus, Roodepoort 1709, South Africa
| | - Fulufhelo Nemavhola
- Department of Mechanical Engineering, Faculty of Engineering, and the Built Environment, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
4
|
Comuzzi L, Ceddia M, Di Pietro N, Inchingolo F, Inchingolo AM, Romasco T, Tumedei M, Specchiulli A, Piattelli A, Trentadue B. Crestal and Subcrestal Placement of Morse Cone Implant-Abutment Connection Implants: An In Vitro Finite Element Analysis (FEA) Study. Biomedicines 2023; 11:3077. [PMID: 38002077 PMCID: PMC10669349 DOI: 10.3390/biomedicines11113077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The issue of dental implant placement relative to the alveolar crest, whether in supracrestal, equicrestal, or subcrestal positions, remains highly controversial, leading to conflicting data in various studies. Three-dimensional (3D) Finite Element Analysis (FEA) can offer insights into the biomechanical aspects of dental implants and the surrounding bone. A 3D model of the jaw was generated using computed tomography (CT) scans, considering a cortical thickness of 1.5 mm. Subsequently, Morse cone implant-abutment connection implants were virtually positioned at the model's center, at equicrestal (0 mm) and subcrestal levels (-1 mm and -2 mm). The findings indicated the highest stress within the cortical bone around the equicrestally placed implant, the lowest stress in the -2 mm subcrestally placed implant, and intermediate stresses in the -1 mm subcrestally placed implant. In terms of clinical relevance, this study suggested that subcrestal placement of a Morse cone implant-abutment connection (ranging between -1 and -2 mm) could be recommended to reduce peri-implant bone resorption and achieve longer-term implant success.
Collapse
Affiliation(s)
- Luca Comuzzi
- Independent Researcher, San Vendemiano-Conegliano, 31020 Treviso, Italy;
| | - Mario Ceddia
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (M.C.); (B.T.)
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (A.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (F.I.); (A.M.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (F.I.); (A.M.I.)
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (A.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Margherita Tumedei
- Department of Medical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
| | - Alessandro Specchiulli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (A.S.)
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Bartolomeo Trentadue
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (M.C.); (B.T.)
| |
Collapse
|
5
|
Tardelli JDC, de Barros Ciribelli Alves BM, da Costa Valente ML, dos Reis AC. Influence of the modulus of elasticity of dental implants on the distribution of stresses in the alveolar bone by the finite element method: a systematic review. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2023. [DOI: 10.1016/j.ajoms.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
6
|
De Stefano M, Lanza A, Faia E, Ruggiero A. A distinct ultrashort dental implant design for the reduction of the bone stress/strain field: a comparative numerical investigation. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Ellendula Y, Chandra Sekar A, Nalla S, Basany RB, Sailasri K, Thandu A. Biomechanical Evaluation of Stress Distribution in Equicrestal and Sub-crestally Placed, Platform-Switched Morse Taper Dental Implants in D3 Bone: Finite Element Analysis. Cureus 2022; 14:e24591. [PMID: 35664406 PMCID: PMC9148546 DOI: 10.7759/cureus.24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
Aim The aim of the study was to assess the effect of implant placement depth on stress distribution in bone around a platform-switched and Morse taper dental implants placed at the equi-crestal and 1 mm and 2 mm sub-crestal levels in a D3 bone using the 3D finite element analysis. Methodology A mechanical model of a partially edentulous maxilla was generated from a computerized tomography (CT) scan of an edentulous patient, as it can give exact bony contours of cortical bone. Also, from accurate geometric measurements obtained from the manufacturer, 3D models of Morse taper and platform-switched implants were manually drawn. The implant and bone models were then superimposed to simulate implant insertion in bone. Three implant positioning levels such as the equi-crestal, 1 mm sub-crestal, and 2 mm sub-crestal models were created, and meshing was done to create the number of elements for distribution of applying loads. The elastic properties of cortical bone and implant, such as Young's modulus and Poisson's ratio (µ), were determined. A load (axial and oblique) of 200N that simulated masticatory force was applied. Results On comparing stresses within the bone around the equi-crestal and 1 mm and 2 mm sub-crestal implants, it was observed that the maximum stresses were seen within cortical bone around the equi-crestally placed implant (21.694), the least in the 2 mm sub-crestally placed implant (18.85), and intermediate stresses were seen within the 1 mm sub-crestally placed implant (18.876). Conclusion Sub-crestal (1-2mm) placement of a Morse taper and a platform-switched implant is recommended for long-term success, as maximum von Mises stresses were found within cortical bone around the equi-crestal implant followed by the 1 mm sub-crestal implant and then the 2 mm sub-crestal implant.
Collapse
Affiliation(s)
- Yashaswini Ellendula
- Department of Prosthodontics and Crown & Bridge, SVS Institute of Dental Sciences, Mahabubnagar, IND
| | - Anam Chandra Sekar
- Department of Prosthodontics and Crown & Bridge, SVS Institute of Dental Sciences, Mahabubnagar, IND
| | - Sandeep Nalla
- Department of Prosthodontics and Crown & Bridge, SVS Institute Of Dental Sciences, Mahabubnagar, IND
| | - Ram B Basany
- Department of Prosthodontics and Crown & Bridge, SVS Institute of Dental Sciences, Mahabubnagar, IND
| | - Kunchala Sailasri
- Department of Prosthodontics and Crown & Bridge, SVS Institute of Dental Sciences, Mahabubnagar, IND
| | - Ashwini Thandu
- Department of Prosthodontics and Crown & Bridge, SVS Institute Of Dental Sciences, Mahabubnagar, IND
| |
Collapse
|
8
|
Ausiello P, Tribst JPM, Ventre M, Salvati E, di Lauro AE, Martorelli M, Lanzotti A, Watts DC. The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: A 3D finite element analysis. Dent Mater 2021; 37:1688-1697. [PMID: 34497022 DOI: 10.1016/j.dental.2021.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the influence of three different dental implant neck geometries, under a combined compressive/shear load using finite element analysis (FEA). The implant neck was positioned in D2 quality bone at the crestal level or 2 mm below. METHODS One dental implant (4.2 × 9 mm) was digitized by reverse engineering techniques using micro CT and imported into Computer Aided Design (CAD) software. Non-uniform rational B-spline surfaces were reconstructed, generating a 3D volumetric model similar to the digitized implant. Three different models were generated with different implant neck configurations, namely 0°, 10° and 20°. D2 quality bone, composed of cortical and trabecular structure, was modeled using data from CT scans. The implants were included in the bone model using a Boolean operation. Two different fixture insertion depths were simulated for each implant: 2 mm below the crestal bone and exactly at the level of the crestal bone. The obtained models were imported to FEA software in STEP format. Von Mises equivalent strains were analyzed for the peri-implant D2 bone type, considering the magnitude and volume of the affected surrounding cortical and trabecular bone. The highest strain values in both cortical and trabecular tissue at the peri-implant bone interface were extracted and compared. RESULTS All implant models were able to distribute the load at the bone-implant contact (BIC) with a similar strain pattern between the models. At the cervical region, however, differences were observed: the models with 10° and 20° implant neck configurations (Model B and C), showed a lower strain magnitude when compared to the straight neck (Model A). These values were significantly lower when the implants were situated at crestal bone levels. In the apical area, no differences in strain values were observed. SIGNIFICANCE The implant neck configuration influenced the strain distribution and magnitude in the cortical bone and cancellous bone tissues. To reduce the strain values and improve the load dissipation in the bone tissue, implants with 10° and 20 neck configuration should be preferred instead of straight implant platforms.
Collapse
Affiliation(s)
- Pietro Ausiello
- School of Dentistry, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy.
| | | | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy; Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Enrico Salvati
- Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, Via delle Scienze 206, Udine, Italy
| | - Alessandro E di Lauro
- School of Dentistry, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Massimo Martorelli
- Fraunhofer JL IDEAS, Department of Industrial Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Antonio Lanzotti
- Fraunhofer JL IDEAS, Department of Industrial Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, UK
| |
Collapse
|
9
|
Souza JCM, Pinho SS, Braz MP, Silva FS, Henriques B. Carbon fiber-reinforced PEEK in implant dentistry: A scoping review on the finite element method. Comput Methods Biomech Biomed Engin 2021; 24:1355-1367. [PMID: 33616450 DOI: 10.1080/10255842.2021.1888939] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Objective: The aim of the present study was to perform an integrative systematic review on the stress distribution assessed by finite element analysis on dental implants or abutments composed of carbon fiber-reinforced PEEK composites.Method: An electronic search was performed on PUBMED and ScienceDirect using a combination of the following search terms: PEEK, Polyetheretherketone, FEA, FEM, Finite element, Stress, Dental implant and Dental abutment.Results: The findings reported mechanical properties and the stress distribution through implant and abutment composed of PEEK and its fiber-reinforced composites. Unfilled PEEK revealed low values of elastic modulus and strength that negatively affected the stress distribution through the abutment and implant towards to the bone tisues. The incorporation of 30% carbon fibers increased the elastic modulus and strength of the PEEK-matrix composites although some studies reported no statistic differences in stress magnitude when compared to unfilled PEEK. However, an increase in short carbon fibers up to 60% revealed an enhancement on the stress distribution through abutment and implants towards to the bone tissues. PEEK veneering onto titanium core structures can also be a strategy to control the stress distribution at the implant-to-bone interface.Conclusions: The stiffness and strength of PEEK-matrix composites can be increased by the improvement of the carbon fibers' network. Thus, the content, shape, dimensions, and chemical composition of fibers are key factors to improve the stress distribution through abutment and implants composed of PEEK-matrix composites.
Collapse
Affiliation(s)
- Júlio C M Souza
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Braga, Portugal
- Dept. of Dental Sciences, School of Dentistry, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra PRD, Portugal
| | - Sofia S Pinho
- Dept. of Dental Sciences, School of Dentistry, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra PRD, Portugal
| | - Maria Pranto Braz
- Dept. of Dental Sciences, School of Dentistry, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra PRD, Portugal
| | - Filipe S Silva
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Braga, Portugal
| | - Bruno Henriques
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Braga, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Departmenf of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis/SC, Brazil
| |
Collapse
|
10
|
Fabris D, Moura JPA, Fredel MC, Souza JCM, Silva FS, Henriques B. Biomechanical analyses of one-piece dental implants composed of titanium, zirconia, PEEK, CFR-PEEK, or GFR-PEEK: Stresses, strains, and bone remodeling prediction by the finite element method. J Biomed Mater Res B Appl Biomater 2021; 110:79-88. [PMID: 34173713 DOI: 10.1002/jbm.b.34890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/22/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
This work aimed to assess the biomechanics, using the finite element method (FEM), of traditional titanium Morse taper (MT) dental implants compared to one-piece implants composed of zirconia, polyetheretherketone (PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), or glass fiber-reinforced PEEK (GFR-PEEK). MT and one-piece dental implants were modeled within a mandibular bone section and loaded on an oblique force using FEM. A MT implant system involving a Ti6Al4V abutment and a cp-Ti grade IV implant was compared to one-piece implants composed of cp-Ti grade IV, zirconia (3Y-TZP), PEEK, CFR-PEEK, or GFR-PEEK. Stress on bone and implants was computed and analyzed while bone remodeling prediction was evaluated considering equivalent strain. In comparison to one-piece implants, the traditional MT implant revealed higher stress peak (112 MPa). The maximum stresses on the one-piece implants reached ~80 MPa, regardless their chemical composition. MT implant induced lower bone stimulus, although excessive bone strain was recorded for PEEK implants. Balanced strain levels were noticed for reinforced PEEK implants of which CFR-PEEK one-piece implants showed proper biomechanical behavior. Balanced strain levels might induce bone remodeling at the peri-implant region while maintaining low risks of mechanical failures. However, the strength of the PEEK-based composite materials is still low for long-term clinical performance.
Collapse
Affiliation(s)
- Douglas Fabris
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Florianópolis, 88040-900, Brazil
| | - José P A Moura
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Florianópolis, 88040-900, Brazil.,Center for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Braga, 4800-058, Portugal
| | - Márcio C Fredel
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Florianópolis, 88040-900, Brazil
| | - Júlio C M Souza
- Center for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Braga, 4800-058, Portugal.,School of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra PRD, 4585-116, Portugal
| | - Filipe S Silva
- Center for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Braga, 4800-058, Portugal
| | - Bruno Henriques
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Florianópolis, 88040-900, Brazil.,Center for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Braga, 4800-058, Portugal
| |
Collapse
|
11
|
Fabris D, Fredel MC, Souza JCM, Silva FS, Henriques B. Biomechanical behavior of functionally graded S53P4 bioglass-zirconia dental implants: Experimental and finite element analyses. J Mech Behav Biomed Mater 2021; 120:104565. [PMID: 34087536 DOI: 10.1016/j.jmbbm.2021.104565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this work was to evaluate the biomechanical behavior of one-piece zirconia implants with a functionally graded bioglass (BG) layer as compared to monolithic zirconia and BG-coated implants, using the finite element method (FEM). METHODS Zirconia disks were infiltrated with bioglass S53P4 and then morphologically inspected by scanning electron microscopy (SEM) followed by mechanical analyses on micro-indentation tests for further biomechanical validation using the finite element method (FEM). On modeling, zirconia dental implants anchored into mandibular bone were simulated on occlusal loading as recorded under mastication. Three types of implants were simulated: i) free of BG coating, ii) with 100 μm or 150 μm thick conventional BG coatings; and iii) with graded BG coatings involving 3 different chemical composition distributions. The stress state at both implant and bone were evaluated using the FEM. The mechanically-induced bone remodelling was analyzed through the bone strain results. RESULTS Infiltration of BG into a zirconia structure resulted in a ∼100 μm thick layer with an exponential-like gradation of chemical composition and properties. Regarding the FEM calculations, the BG coating induced up to 30% decrease on stress in the implant body when compared to the monolithic zirconia implant. The gradient of chemical composition also improved the stresses' distribution. The stresses distribution towards the BG-coatings were significantly high and could lead to failure. Stresses on the bone were recorded down to its strength threshold, with insignificant influence of the coating layer. The bone strain values on all models indicates further bone remodelling although BG-coated and BG-graded zirconia implants showed the highest strain magnitude that may enhance the mechanical stimulation for bone maintenance. SIGNIFICANCE Graded BG-zirconia dental implants showed enhanced overall biomechanical behaviour as compared to the BG-coated or monolithic zirconia dental implants. Also, such biomechanical improvements noticed for the BG-graded system should be considered in combination with the well-known osseointegration benefits of bioactive glasses.
Collapse
Affiliation(s)
- Douglas Fabris
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Márcio C Fredel
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Júlio C M Souza
- Department of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal; CMEMS-UMinho, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - Filipe S Silva
- CMEMS-UMinho, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - Bruno Henriques
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, 88040-900, Florianópolis, SC, Brazil; Department of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal; School of Dentistry (DODT), Postgraduate Program in Dentistry (PPGO), Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Comparison of CAD-CAM and traditional chairside processing of 4-unit interim prostheses with and without cantilevers: Mechanics, fracture behavior, and finite element analysis. J Prosthet Dent 2021; 125:543.e1-543.e10. [PMID: 33461774 DOI: 10.1016/j.prosdent.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022]
Abstract
STATEMENT OF PROBLEM How processing by computer-aided design and computer-aided manufacturing (CAD-CAM) or traditional chairside fabrication techniques affects the presence of defects and the mechanical properties of interim dental prostheses is unclear. PURPOSE The purpose of this in vitro study was to compare the effects of CAD-CAM versus traditional chairside material processing on the fracture and biomechanical behavior of 4-unit interim prostheses with and without a cantilever. MATERIAL AND METHODS Two types of 4-unit interim prostheses were fabricated with abutments on the first premolar and first mandibular molar, one from a prefabricated CAD-CAM block and one with a traditional chairside polymer-monomer autopolymerizing acrylic resin (n=10). Both groups were assessed by compressive strength testing and additionally with or without a cantilevered second molar by using a universal testing machine with a 5-kN load cell. A finite element model (FEM) was built by scanning both prosthesis designs. Finite element analysis (FEA) replicated the experimental conditions to evaluate the stress distribution through the prostheses. RESULTS Interim fixed prostheses manufactured by CAD-CAM showed significantly higher mean fracture loading values (3126 N to 3136 N) than for conventionally made interim fixed prostheses (1287 N to 1390 N) (P=.001). The presence of a cantilever decreased the fracture loading mean values for CAD-CAM (1954 N to 2649 N), although the cantilever did not influence the traditional prostheses (1268 N to 1634 N). The highest von Mises stresses were recorded by FEA on the occlusal surface, with the cantilever design, and at the transition region (connector) between the prosthetic teeth. CONCLUSIONS Interim partial prostheses produced by CAD-CAM had a higher strength than those manufactured traditionally. The presence of a cantilever negatively affected the strength of the prostheses, although the structures manufactured by CAD-CAM still revealed high strength and homogenous stress distribution on occlusal loading.
Collapse
|
13
|
Souza JC, Correia MS, Oliveira MN, Silva FS, Henriques B, Novaes de Oliveira AP, Gomes JR. PEEK-matrix composites containing different content of natural silica fibers or particulate lithium‑zirconium silicate glass fillers: Coefficient of friction and wear volume measurements. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biotri.2020.100147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Pellicer-Chover H, Rojo-Sanchís J, Peñarrocha-Diago M, Viña-Almunia J, Peñarrocha-Oltra D, Peñarrocha-Diago M. Radiological implications of crestal and subcrestal implant placement in posterior areas. A cone-beam computed tomography study. J Clin Exp Dent 2020; 12:e870-e876. [PMID: 32994877 PMCID: PMC7511043 DOI: 10.4317/jced.56652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 12/01/2022] Open
Abstract
Background Subcrestal implant placement has been suggested as a method that could contribute to maintain the periimplant soft and hard tissues in comparison with crestal placement. The objective of this study was to investigate the relationship between implant placement at different depths in the alveolar bone and (a) the thickness of the buccal bone plate (BBP); and (b) crestal cortical bone thickness, based on the use of cone-beam computed tomography (CBCT).
Material and Methods A cross-sectional study was performed, analyzing CBCT scans from the database of the Oral Surgery Unit of the University of Valencia. Individuals with single missing teeth in posterior sectors were included. Two trained dentists used a software application to plan implant placement at four different depths from the bone crest (from 0-2 mm subcrestal). The thickness of the BBP was measured at each established depth, tracing a line from the implant platform to the outermost part of the facial alveolar bone, and the ratio between the implant platform and cortical bone thickness was calculated.
Results The study sample consisted of 64 patients. In the case of implants placed in a crestal position, the distance from the platform to the BBP was 1.99±1.10 mm. This distance increased significantly (p<0.001) with the planned implant placement depth, reaching an average of 2.90±1.22 mm when placement was 2 mm subcrestal. Subcrestal implant placement at this depth implied surpassing the cortical bone in 91% of the cases.
Conclusions Radiological planning of implant placement in a subcrestal position results in a greater distance from the implant platform to the BBP. In general terms, planning implant placement at a depth of 2 mm subcrestal surpassed the cortical bone in 91% of the cases. Key words:Subcrestal implant, cortical bone thickness, buccal bone plate, cone-beam computed tomography.
Collapse
Affiliation(s)
- Hilario Pellicer-Chover
- DDS, PhD. Collaborating Professor of the Master of Oral Surgery and Implant Dentistry, Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain
| | - Julio Rojo-Sanchís
- DDS, Master in Oral Surgery and Implant Dentistry, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain
| | - Miguel Peñarrocha-Diago
- MD, PhD. Chairman of Oral Surgery and Director of the Master of Oral Surgery and Implant Dentistry, Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain
| | - José Viña-Almunia
- DDS, PhD. Associate Professor Oral Surgery, Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain
| | - David Peñarrocha-Oltra
- DDS, PhD. Assistant Professor, Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain
| | - Maria Peñarrocha-Diago
- MD, PhD. Associate Professor Oral Surgery, Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain
| |
Collapse
|
15
|
Manea A, Baciut G, Baciut M, Pop D, Comsa DS, Buiga O, Trombitas V, Colosi H, Mitre I, Bordea R, Manole M, Lenghel M, Bran S, Onisor F. New Dental Implant with 3D Shock Absorbers and Tooth-Like Mobility-Prototype Development, Finite Element Analysis (FEA), and Mechanical Testing. MATERIALS 2019; 12:ma12203444. [PMID: 31640243 PMCID: PMC6829458 DOI: 10.3390/ma12203444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Background: Once inserted and osseointegrated, dental implants become ankylosed, which makes them immobile with respect to the alveolar bone. The present paper describes the development of a new and original implant design which replicates the 3D physiological mobility of natural teeth. The first phase of the test followed the resistance of the implant to mechanical stress as well as the behavior of the surrounding bone. Modifications to the design were made after the first set of results. In the second stage, mechanical tests in conjunction with finite element analysis were performed to test the improved implant design. Methods: In order to test the new concept, 6 titanium alloy (Ti6Al4V) implants were produced (milling). The implants were fitted into the dynamic testing device. The initial mobility was measured for each implant as well as their mobility after several test cycles. In the second stage, 10 implants with the modified design were produced. The testing protocol included mechanical testing and finite element analysis. Results: The initial testing protocol was applied almost entirely successfully. Premature fracturing of some implants and fitting blocks occurred and the testing protocol was readjusted. The issues in the initial test helped design the final testing protocol and the new implants with improved mechanical performance. Conclusion: The new prototype proved the efficiency of the concept. The initial tests pointed out the need for design improvement and the following tests validated the concept.
Collapse
Affiliation(s)
- Avram Manea
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Grigore Baciut
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Mihaela Baciut
- Department of Oral Rehabilitation, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Dumitru Pop
- Department of Mechanical Systems Engineering, Faculty of Machine Building, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
| | - Dan Sorin Comsa
- Department of Manufacturing Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
| | - Ovidiu Buiga
- Department of Mechanical Systems Engineering, Faculty of Machine Building, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
| | - Veronica Trombitas
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Horatiu Colosi
- Department of Medical Education, Faculty of Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Ileana Mitre
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Marius Manole
- Department of Prosthetics and Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Manuela Lenghel
- Department of Surgical specialties, Faculty of Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Simion Bran
- Department of Oral Rehabilitation, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| | - Florin Onisor
- Department of Cranio-Maxillofacial Surgery and Radiology, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu', 400012 Cluj-Napoca, Romania.
| |
Collapse
|