1
|
Ricciardi M, Pironti C, Comite V, Bergomi A, Fermo P, Bontempo L, Camin F, Proto A, Motta O. A multi-analytical approach for the identification of pollutant sources on black crust samples: Stable isotope ratio of carbon, sulphur, and oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175557. [PMID: 39153633 DOI: 10.1016/j.scitotenv.2024.175557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
This study is focused on the identification of pollutant sources on black crust (BC) samples from the Monumental Cemetery of Milan (Italy), through a multi-analytical approach based on the determination of stable isotope ratios of carbon, sulphur, and oxygen. Six black crust samples, mainly developed on marble sculptures over a time span of 100-150 years, were analysed. For the first time, δ13C was measured for BC samples: δ13C values of the pulverized samples (from -1.2 to +1.3 ‰) are very close to the values obtained from the carbonate matrix, whereas after the removal of the matrix through acidification, δ13C values of BC samples from Milan range from -27.2 to -22.1 ‰, with no significant variation between samples with different ratios of organic carbon to elemental carbon. In sum, the δ13C values obtained for all BC samples fall within the range of anthropogenic emissions such as vehicle traffic, coal combustion and industrial emissions. δ34S and δ18O values of sulphate from BC samples range from -6.3 to +7.0 ‰ and from +7.6 to +10.5 ‰, respectively. Coupling the analysis of the oxygen isotope ratio with that of sulphur enables a more precise identification of the origin of sulphates: the observed isotopic composition falls in the range typical for anthropogenic emission of sulphur dioxide. Overall, in this study, C, S and O isotopes were combined for the first time to assess pollutant sources on black crust samples: this multi-stable isotope approach allowed to show that the BC formation on monuments from the Monumental Cemetery of Milan mostly results from anthropogenic emissions from fossil fuels combustion by road vehicles and factories, as well as domestic heating.
Collapse
Affiliation(s)
- Maria Ricciardi
- Dipartimento di Chimica e Biologia, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy.
| | - Concetta Pironti
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy; Dipartimento di Scienze Chimiche, University of Naples Federico II, Via Cinthia, 21, Naples 80126, Italy
| | - Valeria Comite
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Andrea Bergomi
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Paola Fermo
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Luana Bontempo
- Fondazione Edmund Mach, Research and Innovation Center, Food Quality and Nutrition Department, 38010 San Michele all'Adige, TN, Italy
| | - Federica Camin
- Fondazione Edmund Mach, Research and Innovation Center, Food Quality and Nutrition Department, 38010 San Michele all'Adige, TN, Italy; Centre Agriculture Food Environment C3A, University of Trento, 38010 San Michele all'Adige, TN, Italy
| | - Antonio Proto
- Dipartimento di Chimica e Biologia, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Oriana Motta
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy; Dipartimento di Medicina, Chirurgia e Odontoiatria, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy
| |
Collapse
|
2
|
Skiba A, Styszko K, Tobler A, Casotto R, Gorczyca Z, Furman P, Samek L, Wideł D, Zimnoch M, Kasper-Giebl A, Slowik JG, Daellenbach KR, Prevot ASH, Różański K. Source attribution of carbonaceous fraction of particulate matter in the urban atmosphere based on chemical and carbon isotope composition. Sci Rep 2024; 14:7234. [PMID: 38538757 PMCID: PMC11366020 DOI: 10.1038/s41598-024-57829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/21/2024] [Indexed: 09/02/2024] Open
Abstract
Air quality is of large concern in the city of Krakow, southern Poland. A comprehensive study was launched by us in which two PM fractions (PM1 and PM10) were sampled during 1-year campaign, lasting from April 21, 2018 to March 19, 2019. A suite of modern analytical methods was used to characterize the chemical composition of the collected samples. The contents of 14 sugars, sugar alcohols and anhydrosugars, 16 polycyclic aromatic hydrocarbons, selected metals and non-metals and ions were analyzed, in addition to organic and elemental carbon content. The carbon isotope composition in both analysed PM fractions, combined with an isotope-mass balance method, allowed to distinguish three main components of carbonaceous emissions in the city: (1) emissions related to combustion of hard coal, (2) emissions related to road transport, and (3) biogenic emissions. The heating season emissions from coal combustion had the biggest contribution to the reservoir of carbonaceous aerosols in the PM10 fraction (44%) and, together with the biogenic emission, they were the biggest contributors to the PM1 fraction (41% and 44%, respectively). In the non-heating season, the dominant source of carbon in PM10 and PM1 fraction were the biogenic emissions (48 and 54%, respectively).
Collapse
Affiliation(s)
- Alicja Skiba
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Katarzyna Styszko
- AGH University of Krakow, Faculty of Energy and Fuels, Krakow, Poland.
| | - Anna Tobler
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Datalystica Ltd, Park innovAARE, 5234, Villigen, Switzerland
| | - Roberto Casotto
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Zbigniew Gorczyca
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Przemysław Furman
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Lucyna Samek
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Dariusz Wideł
- Jan Kochanowski University, Institute of Chemistry, Uniwersytecka 7 Street, 25-406, Kielce, Poland
| | - Mirosław Zimnoch
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Anne Kasper-Giebl
- Institute for Chemical Technologies and Analytics, TU-Wien, 1060, Vienna, Austria
| | - Jay G Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Andre S H Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Kazimierz Różański
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland
| |
Collapse
|
3
|
Skiba A, Styszko K, Furman P, Szramowiat-Sala K, Samek L, Gorczyca Z, Wideł D, Kasper-Giebl A, Różański K. Source apportionment of suspended particulate matter (PM 1, PM 2.5 and PM 10) collected in road and tram tunnels in Krakow, Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14690-14703. [PMID: 38280167 DOI: 10.1007/s11356-024-32000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Here, we present the results of a comprehensive study of air quality in two tunnels located in the city of Krakow, southern Poland. The study comprised three PM fractions of suspended particulate matter (PM1, PM2.5 and PM10) sampled during campaigns lasting from March 14 to April 24, 2016 and from June 28 to July 18, 2016, in the road tunnel and the tram tunnel, respectively. The collected samples had undergone comprehensive chemical, elemental and carbon isotope analyses. The results of these analyses gave the basis for better characterization of urban transport as a source of air pollution in the city. The concentrations of particulate matter varied, depending on the analysed PM fraction and the place of sampling. For the tram tunnel, the average concentrations were 53.2 µg·m-3 (PM1), 73.8 µg·m-3 (PM2.5), 96.5 µg·m-3 (PM10), to be compared with 44.2 µg·m-3, 137.7 µg·m-3, 221.5 µg·m-3, respectively, recorded in the road tunnel. The isotope-mass balance calculations carried out separately for the road and tram tunnel and for each PM fraction, revealed that 60 to 79% of carbon present in the samples collected in the road tunnel was associated with road transport, to be compared with 15-33% obtained in the tram tunnel. The second in importance were biogenic emissions (17-21% and 41-49% in the road and tram tunnel, respectively. Sixteen different polycyclic aromatic hydrocarbons (PAHs) have been identified in the analysed samples. As expected, much higher concentrations of PAHs were detected in the road tunnel when compared to the tram tunnel. Based on the analysed PAHs concentrations, health risk assessment was determined using 3 different types of indicators: carcinogenic equivalent (CEQ), mutagenic equivalent (MEQ) and toxic equivalent (TEQ).
Collapse
Affiliation(s)
- Alicja Skiba
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Katarzyna Styszko
- Faculty of Energy and Fuels, AGH University of Krakow, Krakow, Poland.
| | - Przemysław Furman
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | | | - Lucyna Samek
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zbigniew Gorczyca
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Dariusz Wideł
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7 Street, 25-406, Kielce, Poland
| | - Anne Kasper-Giebl
- Institute of Chemical Technologies and Analytics, TU-Wien, 1060, Vienna, Austria
| | - Kazimierz Różański
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| |
Collapse
|
4
|
Bikkina P, Bikkina S, Kawamura K, Sarma VVSS, Deshmukh DK. Unraveling the sources of atmospheric organic aerosols over the Arabian Sea: Insights from the stable carbon and nitrogen isotopic composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154260. [PMID: 35248629 DOI: 10.1016/j.scitotenv.2022.154260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The isotopic composition of stable carbon (δ13C) and nitrogen (δ15N) in marine aerosols influenced by the continental outflows are useful proxies for understanding the aging and secondary formation processes. Every winter, the haze pollutants transported from South Asia significantly affect the chemical composition of marine atmospheric boundary layer of the Arabian Sea. Here, we assessed the δ13C of total carbon (TC) and δ15N of total nitrogen (TN) in marine aerosols collected over the Arabian Sea during a winter cruise (6-24 December 2018). TC (2.1-13.4 μg m-3) is strongly correlated with TN (0.9-5.0 μg m-3), likely because of their common source-emissions, biomass burning and fossil-fuel combustion in the Indo-Gangetic Plain and South Asia (corroborated by backward-air mass trajectories and satellite fire counts). Besides, the linear relationship between the mass ratios of water-soluble organic carbon (WSOC) to TC (0.04-0.65) and δ13CTC (-25.1‰ to -22.9‰) underscores the importance of aging process. This means oxidation of organic aerosols during transport not only influences the WSOC levels but also affects their δ13CTC. Likewise, the prevalent inverse linear relationship between the equivalent mass ratio of (NH4+/non-sea-salt- or nss-SO42-) and δ15NTN (+15.3‰ to +25.1‰) emphasizes the overall significance of neutralization reactions between major acidic ([nss-SO42-] ≫ [NO3-]) and alkaline species (NH4+) in aerosols. Higher δ15NTN values in winter than the spring inter-monsoon clearly emphasizes the significance of the anthropogenic combustion sources (i.e., biomass burning) in the South Asian outflow. A comparison of δ13CTC and δ15NTN with the source emissions revealed that crop-residue burning emissions followed by the coal fired power plants mostly dictate the atmospheric abundance of organic aerosols in the wider South Asian outflow.
Collapse
Affiliation(s)
- Poonam Bikkina
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India.
| | - Srinivas Bikkina
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Chubu Institute of Advanced Sciences, Chubu University, Kasugai-shi, Aichi 4878501, Japan
| | - Kimitaka Kawamura
- Chubu Institute of Advanced Sciences, Chubu University, Kasugai-shi, Aichi 4878501, Japan
| | - V V S S Sarma
- CSIR-National Institute of Oceanography, Regional Cente Waltair, Visakhapatnam 530017, India
| | - Dhananjay K Deshmukh
- Chubu Institute of Advanced Sciences, Chubu University, Kasugai-shi, Aichi 4878501, Japan
| |
Collapse
|
5
|
Vincenti B, Paris E, Carnevale M, Palma A, Guerriero E, Borello D, Paolini V, Gallucci F. Saccharides as Particulate Matter Tracers of Biomass Burning: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4387. [PMID: 35410070 PMCID: PMC8998709 DOI: 10.3390/ijerph19074387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
The adverse effects of atmospheric particulate matter (PM) on health and ecosystems, as well as on meteorology and climate change, are well known to the scientific community. It is therefore undeniable that a good understanding of the sources of PM is crucial for effective control of emissions and to protect public health. One of the major contributions to atmospheric PM is biomass burning, a practice used both in agriculture and home heating, which can be traced and identified by analyzing sugars emitted from the combustion of cellulose and hemicellulose that make up biomass. In this review comparing almost 200 selected articles, we highlight the most recent studies that broaden such category of tracers, covering research publications on residential wood combustions, open-fire or combustion chamber burnings and ambient PM in different regions of Asia, America and Europe. The purpose of the present work is to collect data in the literature that indicate a direct correspondence between biomass burning and saccharides emitted into the atmosphere with regard to distinguishing common sugars attributed to biomass burning from those that have co-causes of issue. In this paper, we provide a list of 24 compounds, including those most commonly recognized as biomass burning tracers (i.e., levoglucosan, mannosan and galactosan), from which it emerges that monosaccharide anhydrides, sugar alcohols and primary sugars have been widely reported as organic tracers for biomass combustion, although it has also been shown that emissions of these compounds depend not only on combustion characteristics and equipment but also on fuel type, combustion quality and weather conditions. Although it appears that it is currently not possible to define a single compound as a universal indicator of biomass combustion, this review provides a valuable tool for the collection of information in the literature and identifies analytes that can lead to the determination of patterns for the distribution between PM generated by biomass combustion.
Collapse
Affiliation(s)
- Beatrice Vincenti
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| | - Enrico Paris
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| | - Monica Carnevale
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| | - Adriano Palma
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| | - Ettore Guerriero
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29,300, 00015 Monterotondo, Italy; (E.G.); (V.P.)
| | - Domenico Borello
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | - Valerio Paolini
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29,300, 00015 Monterotondo, Italy; (E.G.); (V.P.)
| | - Francesco Gallucci
- Council for Agricultural Research and Economics (CREA), Center of Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy; (B.V.); (E.P.); (M.C.); (F.G.)
| |
Collapse
|
6
|
Yao P, Huang RJ, Ni H, Kairys N, Yang L, Meijer HAJ, Dusek U. 13C signatures of aerosol organic and elemental carbon from major combustion sources in China compared to worldwide estimates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151284. [PMID: 34740647 DOI: 10.1016/j.scitotenv.2021.151284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Carbon isotope signatures are used to gain insight into sources and atmospheric processing of carbonaceous aerosols. Since elemental carbon (EC) is chemically stable, it is possible to apportion the main sources of EC (C3/C4 plant burning, coal combustion, and traffic emissions) using a dual 14C-13C isotope approach. The dual-isotope source apportionment crucially relies on accurate knowledge of 13C source signatures, which are seldom measured for EC. In this work, we present 13C signatures of organic carbon (OC) and EC for relevant sources in China. EC was isolated for 13C analysis based on the OC/EC split point of a thermal-optical method (EUSAAR_2 protocol). A series of sensitivity studies were conducted to investigate the EC separation and the relationship of the thermal-optical method to other EC isolation methods. Our results show that, first, the 13C signatures of raw materials and EC related to traffic emissions can be separated into three groups according to geographical location. Second, the 13C signature of OC emitted by the flaming combustion of C4 plants is strongly depleted in 13C compared to the source materials, and therefore EC is a better tracer for this source than total carbon (TC). A comprehensive literature review of 13C source signatures (of raw materials, of TC, and of EC isolated using a variety of thermal methods) was conducted. Accordingly, we recommend composite 13C source signatures of EC with uncertainties and detailed application conditions. Using these source signatures of EC in an example dual-isotope source apportionment study shows an improvement in precision. In addition, 13C signatures of OC were measured at three different desorption temperatures roughly corresponding to semi-volatile, low-volatile, and non-volatile OC fractions. Each source category shows a characteristic trend of 13C signatures with desorption temperature, which is likely related to different OC formation processes during combustion.
Collapse
Affiliation(s)
- Peng Yao
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Haiyan Ni
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands
| | - Norbertas Kairys
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands
| | - Lu Yang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Harro A J Meijer
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands
| | - Ulrike Dusek
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands.
| |
Collapse
|
7
|
Comparison of PM10 Sources at Traffic and Urban Background Sites Based on Elemental, Chemical and Isotopic Composition: Case Study from Krakow, Southern Poland. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In large urban agglomerations, car traffic is one of the main sources of particulate matter. It consists of particulate matter directly generated in the process of incomplete liquid fuel burning in vehicle engine, secondary aerosols formed from exhaust gaseous pollutants (NOx, SO2) as well as products of tires, brake pads and pavement abrasion. Krakow is one of the cities in Europe with the highest concentrations of particulate matter. The article presents the results of combined elemental, chemical and isotopic analyses of particulate matter PM10 at two contrasting urban environments during winter and summer seasons. Daily PM10 samples were collected during the summer and winter seasons of 2018/2019 at two stations belonging to the network monitoring air quality in the city. Mean PM10 concentrations at traffic-dominated stations were equal to 35 ± 7 µg/m3 and 76 ± 28 µg/m3 in summer and winter, respectively, to be compared with 25.6 ± 5.7 µg/m3 and 51 ± 25 µg/m3 in summer and winter, respectively, recorded at the urban background station. The source attribution of analyzed PM10 samples was carried out using two modeling approaches: (i) The Positive Matrix Factorization (PMF) method for elemental and chemical composition (concentrations of elements, ions, as well as organic and elemental carbon in daily PM10 samples), and (ii) Isotope Mass Balance (IMB) for 13C and 14C carbon isotope composition of carbonaceous fraction of PM10. For PMF application, five sources of particulate matter were identified for each station: fossil fuel combustion, secondary inorganic aerosols, traffic exhaust, soil, and the fifth source which included road dust, industry, construction work. The IMB method allowed the partitioning of the total carbon reservoir of PM10 into carbon originating from coal combustion, from biogenic sources (natural emissions and biomass burning) and from traffic. Both apportionment methods were applied together for the first time in the Krakow agglomeration and they gave consistent results.
Collapse
|
8
|
Application of Natural Carbon Isotopes for Emission Source Apportionment of Carbonaceous Particulate Matter in Urban Atmosphere: A Case Study from Krakow, Southern Poland. SUSTAINABILITY 2020. [DOI: 10.3390/su12145777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Successful mitigation of air pollution in large cities requires information about the structure of emission sources and their contribution to total atmospheric load. The presented research demonstrates a possibility of application of isotope tracers for the estimation of contribution of different sources to the carbonaceous fraction of PM2.5 (Particulate Matter containing fraction below 2.5 μm) collected in the urban atmosphere of Krakow, Poland during the summer and winter seasons. Isotope mass balance approach was used to perform source apportionment analysis for those two seasons. The analysis showed that the dominant source of the carbonaceous fraction of PM2.5 in Krakow is coal burning during the winter season and biogenic emissions during the summer season. Sensitivity analysis revealed that the uncertainty of the percentage contribution of different sources to the overall carbon load of the analyzed PM2.5 fraction is in order of a few percent.
Collapse
|
9
|
Viglaska-Aflalo D, Rey M, Nikitin A, Delahaye T. A global view of isotopic effects on ro-vibrational spectra of six-atomic molecules: a case study of eleven ethylene species. Phys Chem Chem Phys 2020; 22:3204-3216. [PMID: 31974534 DOI: 10.1039/c9cp06383h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present a global view of the impact of isotopic substitutions on the spectra of eleven ethylene isotopologues obtained from variational calculations using accurate ab initio potential energy and dipole moment surfaces. This may lead to some important changes in the molecular spectra due to symmetry breaking effects lowering the initial D2h symmetry of 12C2H4 ([triple bond, length as m-dash]12CH212CH2) to C2v, C2h or Cs. For the very first time, we report ab initio predictions for 12C2D4 ([triple bond, length as m-dash]12CD212CD2) and three Cs species: 12CHD13CH2, 13CHD12CH2 and 12C2HD3 ([triple bond, length as m-dash]12CD212CHD). To this end, we have considered the normal-mode approach based on our reduced Eckart-Watson Hamiltonian combined with ethylene ab initio surfaces. This work will contribute to the complete theoretical studies of the deuterated and 13C-enriched ethylene isotopologues. A total of 1252 vibrational levels are computed and all the corresponding transitions in the energy range of ≤3100 cm-1 are predicted and compared to 151 bands assigned from experimental spectra analyses.
Collapse
Affiliation(s)
- Dominika Viglaska-Aflalo
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2, France.
| | - Michaël Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2, France.
| | - Andrei Nikitin
- Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, SB RAS, 634055 Tomsk, Russia and Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
| | - Thibault Delahaye
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, 91128, France
| |
Collapse
|