1
|
Tecku PKM, Zhao Z, Wang K, Ji X, Chen D, Shen Q, Yu Y, Cui S, Wang J, Chen Z, Xue J, Tang G. Transcriptomic and Proteomic Analyses of the Liver and Ileum Identify Key Genes and Pathways Associated with Low and High Groups of Social Genetic Effect of Residual Feed Intake. Animals (Basel) 2025; 15:1345. [PMID: 40362160 DOI: 10.3390/ani15091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Social genetic effects (SGEs) refer to how the genotypes of other individuals impact an individual's phenotype within a population. These effects significantly influence the feeding behavior and production performance in pigs, though their mechanisms are not well understood. This study examined two pig groups with extreme SGE values for residual feed intake (RFI), analyzing their feeding behavior and the molecular mechanisms involved using transcriptomics and proteomics analysis of liver and ileum tissues. Pigs with higher SGE values exhibited distinct feeding patterns, spending more time at the feeder but making fewer visits. They consumed less overall feed but had a higher intake per visit. Differentially expressed genes and proteins were identified in the liver and ileum and were associated with processes such as mitochondrial functions, oxidative phosphorylation, and cholesterol metabolism. Integrated analysis supported these findings. Combined transcriptome and proteome analysis identified potential key genes that were associated with processes including mitochondrial processes, oxidative phosphorylation, fat digestion and absorption, and cholesterol metabolism. The results showed that pigs with differing SGE values display different feeding behaviors and utilize distinct molecular pathways affecting RFI. These findings offer valuable insights into how SGEs influence feed efficiency and shed light on the fundamental mechanisms underlying it.
Collapse
Affiliation(s)
- Patrick Kofi Makafui Tecku
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenjian Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Digital Intelligent Breeding Technology Innovation for Swine and Poultry, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd., Chengdu 610023, China
| | - Xiang Ji
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Yu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengdi Cui
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Junge Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyang Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia Xue
- Chengdu Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Guoqing Tang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Omori NE, Malys MK, Woo G, Mansor L. Exogenous ketone bodies and the ketogenic diet as a treatment option for neurodevelopmental disorders. Front Nutr 2024; 11:1485280. [PMID: 39749357 PMCID: PMC11693454 DOI: 10.3389/fnut.2024.1485280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Background Despite being the most prevalent neurodevelopmental disorders, there are comparatively few treatment options available to patients presenting with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The ketogenic diet has historically shown therapeutic utility in treating refractory epilepsy, an adjacent neuropsychiatric condition, in children, adolescents and adults. The following review explores preclinical and clinical literature focusing on the therapeutic potential of the ketogenic diet and exogenous ketone body supplementation in treating common neurodevelopmental disorders. Method A narrative review of extant literature was conducted across the domains of perinatal nutrition, ASD, and ADHD. Preclinical and clinical studies focusing on the effect of either the ketogenic diet or exogenous ketone supplementation as a treatment option were included for review. Results 14 preclinical and 10 clinical studies were included for discussion. Data supporting the use of a ketogenic intervention for neurodevelopmental disorders is mixed. High heterogeneity in study design was noted for preclinical models, ketogenic intervention, and outcomes measured. Conclusion Studies evaluating ketogenic interventions for neurodevelopmental disorders remain in their infancy in terms of both the depth and scope of available literature. The safety and tolerability of ketogenic diets and supplements means there would be value in exploring their effectiveness further in clinical studies.
Collapse
Affiliation(s)
- Naomi Elyse Omori
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| | - Mantas Kazimieras Malys
- Department of Psychological Medicine, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Geoffrey Woo
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| | - Latt Mansor
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| |
Collapse
|
3
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Giunti S, Blanco MG, De Rosa MJ, Rayes D. The ketone body β-hydroxybutyrate ameliorates neurodevelopmental deficits in the GABAergic system of daf-18/PTEN Caenorhabditis elegans mutants. eLife 2024; 13:RP94520. [PMID: 39422188 PMCID: PMC11488850 DOI: 10.7554/elife.94520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
A finely tuned balance between excitation and inhibition (E/I) is essential for proper brain function. Disruptions in the GABAergic system, which alter this equilibrium, are a common feature in various types of neurological disorders, including autism spectrum disorders (ASDs). Mutations in Phosphatase and Tensin Homolog (PTEN), the main negative regulator of the phosphatidylinositol 3-phosphate kinase/Akt pathway, are strongly associated with ASD. However, it is unclear whether PTEN deficiencies can differentially affect inhibitory and excitatory signaling. Using the Caenorhabditis elegans neuromuscular system, where both excitatory (cholinergic) and inhibitory (GABAergic) inputs regulate muscle activity, we found that daf-18/PTEN mutations impact GABAergic (but not cholinergic) neurodevelopment and function. This selective impact results in a deficiency in inhibitory signaling. The defects observed in the GABAergic system in daf-18/PTEN mutants are due to reduced activity of DAF-16/FOXO during development. Ketogenic diets (KGDs) have proven effective for disorders associated with E/I imbalances. However, the mechanisms underlying their action remain largely elusive. We found that a diet enriched with the ketone body β-hydroxybutyrate during early development induces DAF-16/FOXO activity, therefore improving GABAergic neurodevelopment and function in daf-18/PTEN mutants. Our study provides valuable insights into the link between PTEN mutations and neurodevelopmental defects and delves into the mechanisms underlying the potential therapeutic effects of KGDs.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| |
Collapse
|
5
|
Tzianabos C, Chouinard G, Martinez L. Alterations to the copulatory sequence in young adult male Sprague-Dawley rats administered a ketogenic diet. Physiol Behav 2024; 285:114650. [PMID: 39074675 DOI: 10.1016/j.physbeh.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Ketogenic diets (KDs) have shown therapeutic potential for a range of neuropsychiatric disorders; however, there is insufficient data regarding the behavioral impacts of KDs in healthy populations. Here, we examined the impact of a KD on sexual behavior in young adult male Sprague-Dawley rats maintained on either a KD or standard chow diet (SD). We found that KD males exhibited higher mount rates, higher intromission rates (third and fourth tests only), and lower ejaculation likelihood (second test only) compared to SD males. Consequently, it may be that experience-dependent changes in the processing of sexual stimuli are not occurring as efficiently in KD males, thereby yielding the observed copulatory sequence alterations.
Collapse
Affiliation(s)
- Christina Tzianabos
- Neuroscience Program, Trinity College, 300 Summit Street, 217 Life Sciences Center, Hartford, CT 06106, United States
| | - Grace Chouinard
- Neuroscience Program, Trinity College, 300 Summit Street, 217 Life Sciences Center, Hartford, CT 06106, United States
| | - Luis Martinez
- Neuroscience Program, Trinity College, 300 Summit Street, 217 Life Sciences Center, Hartford, CT 06106, United States.
| |
Collapse
|
6
|
Simeone T, Simeone K. The Unconventional Effects of the Ketogenic Diet (KD) in Preclinical Epilepsy. Epilepsy Curr 2024; 24:117-122. [PMID: 39280056 PMCID: PMC11394414 DOI: 10.1177/15357597231216916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
The integration of metabolic therapeutics in the available clinical armory is becoming more commonplace in health care as our understanding about the dependence of disease on metabolism continues to deepen and evolve. In the epilepsy field, we often think about the ketogenic diet (KD, high fat: carbohydrate ratio) in terms of its anti-seizure efficacy. The aim of this article is to review what we've learned from preclinical studies about the KD's more unconventional effects, including its neuroprotective effects, anti-epileptogenic and disease-modifying effects, and how the KD influences comorbidities associated with epilepsy. As time moves us into the future and metabolic therapies become more common place, the effects of the KD considered unconventional herein, may end up being referred to as traditional.
Collapse
Affiliation(s)
- Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Kristina Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
7
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Qiao YN, Li L, Hu SH, Yang YX, Ma ZZ, Huang L, An YP, Yuan YY, Lin Y, Xu W, Li Y, Lin PC, Cao J, Zhao JY, Zhao SM. Ketogenic diet-produced β-hydroxybutyric acid accumulates brain GABA and increases GABA/glutamate ratio to inhibit epilepsy. Cell Discov 2024; 10:17. [PMID: 38346975 PMCID: PMC10861483 DOI: 10.1038/s41421-023-00636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024] Open
Abstract
Ketogenic diet (KD) alleviates refractory epilepsy and reduces seizures in children. However, the metabolic/cell biologic mechanisms by which the KD exerts its antiepileptic efficacy remain elusive. Herein, we report that KD-produced β-hydroxybutyric acid (BHB) augments brain gamma-aminobutyric acid (GABA) and the GABA/glutamate ratio to inhibit epilepsy. The KD ameliorated pentetrazol-induced epilepsy in mice. Mechanistically, KD-produced BHB, but not other ketone bodies, inhibited HDAC1/HDAC2, increased H3K27 acetylation, and transcriptionally upregulated SIRT4 and glutamate decarboxylase 1 (GAD1). BHB-induced SIRT4 de-carbamylated and inactivated glutamate dehydrogenase to preserve glutamate for GABA synthesis, and GAD1 upregulation increased mouse brain GABA/glutamate ratio to inhibit neuron excitation. BHB administration in mice inhibited epilepsy induced by pentetrazol. BHB-mediated relief of epilepsy required high GABA level and GABA/glutamate ratio. These results identified BHB as the major antiepileptic metabolite of the KD and suggested that BHB may serve as an alternative and less toxic antiepileptic agent than KD.
Collapse
Affiliation(s)
- Ya-Nan Qiao
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan-Xin Yang
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Zhen-Zhen Ma
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lin Huang
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan-Peng An
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yi-Yuan Yuan
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan Lin
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Wei Xu
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yao Li
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, Qinghai, China
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Min Zhao
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China.
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, Qinghai, China.
| |
Collapse
|
9
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
10
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
12
|
Alam S, Westmark CJ, McCullagh EA. Diet in treatment of autism spectrum disorders. Front Neurosci 2023; 16:1031016. [PMID: 37492195 PMCID: PMC10364988 DOI: 10.3389/fnins.2022.1031016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 07/27/2023] Open
Abstract
Altering the diet to treat disease dates to c. 400 BC when starvation was used to reduce seizures in persons with epilepsy. The current diversity of symptomology and mechanisms underlying autism spectrum disorders (ASDs) and a corresponding lack of disorder-specific effective treatments prompts an evaluation of diet as a therapeutic approach to improve symptoms of ASDs. In this review article, we summarize the main findings of nutritional studies in ASDs, with an emphasis on the most common monogenic cause of autism, Fragile X Syndrome (FXS), and the most studied dietary intervention, the ketogenic diet as well as other dietary interventions. We also discuss the gut microbiota in relation to pre- and probiotic therapies and provide insight into future directions that could aid in understanding the mechanism(s) underlying dietary efficacy.
Collapse
Affiliation(s)
- Sabiha Alam
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| | - Elizabeth A. McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
13
|
Hameed RA, Ahmed EK, Mahmoud AA, Atef AA. G protein-coupled estrogen receptor (GPER) selective agonist G1 attenuates the neurobehavioral, molecular and biochemical alterations induced in a valproic acid rat model of autism. Life Sci 2023:121860. [PMID: 37331505 DOI: 10.1016/j.lfs.2023.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
AIMS Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with a rising prevalence in boys rather than girls. G protein-coupled estrogen receptor (GPER) activation by its agonist G1 showed a neuroprotective effect, similar to estradiol. The present study aimed to examine the potential of the selective GPER agonist G1 therapy on the behavioral, histopathological, biochemical, and molecular alterations induced in a valproic acid (VPA)-rat model of autism. MAIN METHODS VPA (500 mg/kg) was intraperitoneally administered to female Wistar rats (on gestational day 12.5) to induce the VPA-rat model of autism. The male offspring were intraperitoneally administered with G1 (10 and 20 μg/kg) for 21 days. After the treatment process, rats performed behavioral assessments. Then, sera and hippocampi were collected for biochemical and histopathological examinations and gene expression analysis. KEY FINDINGS GPER agonist G1 attenuated behavioral deficits, including hyperactivity, declined spatial memory and social preferences, anxiety, and repetitive behavior in VPA rats. G1 improved neurotransmission and reduced oxidative stress and histological alteration in the hippocampus. G1 reduced serum free T levels and interleukin-1β and up-regulated GPER, RORα, and aromatase gene expression levels in the hippocampus. SIGNIFICANCE The present study suggests that activation of GPER by its selective agonist G1 altered the derangements induced in a VPA-rat model of autism. G1 normalized free T levels via up-regulation of hippocampal RORα and aromatase gene expression. G1 provoked estradiol neuroprotective functions via up-regulation of hippocampal GPER expression. The G1 treatment and GPER activation provide a promising therapeutic approach to counteract the autistic-like symptoms.
Collapse
Affiliation(s)
- Rehab Abdel Hameed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Asmaa A Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Azza A Atef
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Inge Schytz Andersen-Civil A, Anjan Sawale R, Claude Vanwalleghem G. Zebrafish (Danio rerio) as a translational model for neuro-immune interactions in the enteric nervous system in autism spectrum disorders. Brain Behav Immun 2023:S0889-1591(23)00142-3. [PMID: 37301234 DOI: 10.1016/j.bbi.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorders (ASD) affect about 1% of the population and are strongly associated with gastrointestinal diseases creating shortcomings in quality of life. Multiple factors contribute to the development of ASD and although neurodevelopmental deficits are central, the pathogenesis of the condition is complex and the high prevalence of intestinal disorders is poorly understood. In agreement with the prominent research establishing clear bidirectional interactions between the gut and the brain, several studies have made it evident that such a relation also exists in ASD. Thus, dysregulation of the gut microbiota and gut barrier integrity may play an important role in ASD. However, only limited research has investigated how the enteric nervous system (ENS) and intestinal mucosal immune factors may impact on the development of ASD-related intestinal disorders. This review focuses on the mechanistic studies that elucidate the regulation and interactions between enteric immune cells, residing gut microbiota and the ENS in models of ASD. Especially the multifaceted properties and applicability of zebrafish (Danio rerio) for the study of ASD pathogenesis are assessed in comparison to studies conducted in rodent models and humans. Advances in molecular techniques and in vivo imaging, combined with genetic manipulation and generation of germ-free animals in a controlled environment, appear to make zebrafish an underestimated model of choice for the study of ASD. Finally, we establish the research gaps that remain to be explored to further our understanding of the complexity of ASD pathogenesis and associated mechanisms that may lead to intestinal disorders.
Collapse
Affiliation(s)
- Audrey Inge Schytz Andersen-Civil
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
| | - Rajlakshmi Anjan Sawale
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Gilles Claude Vanwalleghem
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Barzegari A, Mahdirejei HA, Hanani M, Esmaeili MH, Salari AA. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines. Physiol Behav 2023; 269:114264. [PMID: 37295664 DOI: 10.1016/j.physbeh.2023.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) treatment during pregnancy is a risk factor for developing autism spectrum disorder, cognitive deficits, and stress-related disorders in children. No effective therapeutic strategies are currently approved to treat or manage core symptoms of autism. Active lifestyles and physical activity are closely associated with health and quality of life during childhood and adulthood. This study aimed to evaluate whether swimming exercise during adolescence can prevent the development of cognitive dysfunction and stress-related disorders in prenatally VPA-exposed mice offspring. Pregnant mice received VPA, afterwards, offspring were subjected to swimming exercise. We assessed neurobehavioral performances and inflammatory cytokines (interleukin-(IL)6, tumor-necrosis-factor-(TNF)α, interferon-(IFN)γ, and IL-17A) in the hippocampus and prefrontal cortex of offspring. Prenatal VPA treatment increased anxiety-and anhedonia-like behavior and decreased social behavior in male and female offspring. Prenatal VPA exposure also increased behavioral despair and reduced working and recognition memory in male offspring. Although prenatal VPA increased hippocampal IL-6 and IFN-γ, and prefrontal IFN-γ and IL-17 in males, it only increased hippocampal TNF-α and IFN-γ in female offspring. Adolescent exercise made VPA-treated male and female offspring resistant to anxiety-and anhedonia-like behavior in adulthood, whereas it only made VPA-exposed male offspring resistant to behavioral despair, social and cognitive deficits in adulthood. Exercise reduced hippocampal IL-6, TNF-α, IFN-γ, and IL-17, and prefrontal IFN-γ and IL-17 in VPA-treated male offspring, whereas it reduced hippocampal TNF-α and IFN-γ in VPA-treated female offspring. This study suggests that adolescent exercise may prevents the development of stress-related symptoms, cognitive deficits, and neuroinflammation in prenatally VPA-exposed offspring mice.
Collapse
Affiliation(s)
- Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Masoumeh Hanani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Mentzelou M, Dakanalis A, Vasios GK, Gialeli M, Papadopoulou SK, Giaginis C. The Relationship of Ketogenic Diet with Neurodegenerative and Psychiatric Diseases: A Scoping Review from Basic Research to Clinical Practice. Nutrients 2023; 15:2270. [PMID: 37242153 PMCID: PMC10220548 DOI: 10.3390/nu15102270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The ketogenic diet (KD) has become widespread for the therapy of epileptic pathology in childhood and adulthood. In the last few decades, the current re-emergence of its popularity has focused on the treatment of obesity and diabetes mellitus. KD also exerts anti-inflammatory and neuroprotective properties, which could be utilized for the therapy of neurodegenerative and psychiatric disorders. PURPOSE This is a thorough, scoping review that aims to summarize and scrutinize the currently available basic research performed in in vitro and in vivo settings, as well as the clinical evidence of the potential beneficial effects of KD against neurodegenerative and psychiatric diseases. This review was conducted to systematically map the research performed in this area as well as identify gaps in knowledge. METHODS We thoroughly explored the most accurate scientific web databases, e.g., PubMed, Scopus, Web of Science, and Google Scholar, to obtain the most recent in vitro and in vivo data from animal studies as well as clinical human surveys from the last twenty years, applying effective and characteristic keywords. RESULTS Basic research has revealed multiple molecular mechanisms through which KD can exert neuroprotective effects, such as neuroinflammation inhibition, decreased reactive oxygen species (ROS) production, decreased amyloid plaque deposition and microglial activation, protection in dopaminergic neurons, tau hyper-phosphorylation suppression, stimulating mitochondrial biogenesis, enhancing gut microbial diversity, restoration of histone acetylation, and neuron repair promotion. On the other hand, clinical evidence remains scarce. Most existing clinical studies are modest, frequently uncontrolled, and merely assess the short-term impacts of KD. Moreover, several clinical studies had large dropout rates and a considerable lack of compliance assessment, as well as an increased level of heterogeneity in the study design and methodology. CONCLUSIONS KD can exert substantial neuroprotective effects via multiple molecular mechanisms in various neurodegenerative and psychiatric pathological states. Large, long-term, randomized, double-blind, controlled clinical trials with a prospective design are strongly recommended to delineate whether KD may attenuate or even treat neurodegenerative and psychiatric disease development, progression, and symptomatology.
Collapse
Affiliation(s)
- Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece; (M.M.); (G.K.V.); (M.G.)
| | - Antonios Dakanalis
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Georgios K. Vasios
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece; (M.M.); (G.K.V.); (M.G.)
| | - Maria Gialeli
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece; (M.M.); (G.K.V.); (M.G.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece; (M.M.); (G.K.V.); (M.G.)
| |
Collapse
|
17
|
Béland-Millar A, Kirby A, Truong Y, Ouellette J, Yandiev S, Bouyakdan K, Pileggi C, Naz S, Yin M, Carrier M, Kotchetkov P, St-Pierre MK, Tremblay MÈ, Courchet J, Harper ME, Alquier T, Messier C, Shuhendler AJ, Lacoste B. 16p11.2 haploinsufficiency reduces mitochondrial biogenesis in brain endothelial cells and alters brain metabolism in adult mice. Cell Rep 2023; 42:112485. [PMID: 37149866 DOI: 10.1016/j.celrep.2023.112485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/20/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Neurovascular abnormalities in mouse models of 16p11.2 deletion autism syndrome are reminiscent of alterations reported in murine models of glucose transporter deficiency, including reduced brain angiogenesis and behavioral alterations. Yet, whether cerebrovascular alterations in 16p11.2df/+ mice affect brain metabolism is unknown. Here, we report that anesthetized 16p11.2df/+ mice display elevated brain glucose uptake, a phenomenon recapitulated in mice with endothelial-specific 16p11.2 haplodeficiency. Awake 16p11.2df/+ mice display attenuated relative fluctuations of extracellular brain glucose following systemic glucose administration. Targeted metabolomics on cerebral cortex extracts reveals enhanced metabolic responses to systemic glucose in 16p11.2df/+ mice that also display reduced mitochondria number in brain endothelial cells. This is not associated with changes in mitochondria fusion or fission proteins, but 16p11.2df/+ brain endothelial cells lack the splice variant NT-PGC-1α, suggesting defective mitochondrial biogenesis. We propose that altered brain metabolism in 16p11.2df/+ mice is compensatory to endothelial dysfunction, shedding light on previously unknown adaptative responses.
Collapse
Affiliation(s)
- Alexandria Béland-Millar
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Alexia Kirby
- Faculty of Science, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Yen Truong
- Faculty of Science, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Julie Ouellette
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sozerko Yandiev
- University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine Université de Montréal, Montreal, QC, Canada
| | - Chantal Pileggi
- Faculty of Medicine, Department of Biochemistry Microbiology and Immunology, Ottawa, ON, Canada
| | - Shama Naz
- University of Ottawa Metabolomics Core Facility, Faculty of Medicine, Ottawa, ON, Canada
| | - Melissa Yin
- FUJIFILM VisualSonics, Inc, Toronto, ON, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Julien Courchet
- University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Mary-Ellen Harper
- Faculty of Medicine, Department of Biochemistry Microbiology and Immunology, Ottawa, ON, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine Université de Montréal, Montreal, QC, Canada
| | - Claude Messier
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Adam J Shuhendler
- Faculty of Science, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Viana CE, Bortolotto VC, Araujo SM, Dahleh MMM, Machado FR, de Souza Pereira A, Moreira de Oliveira BP, Leimann FV, Gonçalves OH, Prigol M, Guerra GP. Lutein-loaded nanoparticles reverse oxidative stress, apoptosis, and autism spectrum disorder-like behaviors induced by prenatal valproic acid exposure in female rats. Neurotoxicology 2023; 94:223-234. [PMID: 36528186 DOI: 10.1016/j.neuro.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and repetitive behaviors. In this study, we assessed the effect of lutein-loaded nanoparticles on ASD-like behaviors induced by prenatal valproic acid (VPA) exposure in female offspring rats and the possible involvement of oxidative stress and apoptosis. Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg), on the gestational day 12.5. The VPA-exposed female offspring rats were divided into two subgroups and received either lutein-loaded nanoparticles (5 mg/kg) or saline by oral gavage, for 14 days. The animals were submitted to the three-chamber test and open field to evaluate ASD-like behaviors. The hippocampus was removed for the determination of oxidative stress indicators (ROS; TBARS; SOD and Nrf2) and apoptosis biomarkers (Hsp-70; p38-MAPK; Bax and Bcl-2). The exposure to lutein-loaded nanoparticles reversed sociability deficit, social memory deficit, and anxiety-like and repetitive behaviors induced by VPA, and restored the oxidative stress indicators and apoptosis biomarkers in the hippocampus. This neurochemical effect must be associated with the reversal of ASD-like behaviors. These results provide evidence that lutein-loaded nanoparticles are an alternative treatment for VPA-induced behavioral damage in female rats and suggest the involvement of oxidative stress.
Collapse
Affiliation(s)
- Cristini Escobar Viana
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Franciéle Romero Machado
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Adson de Souza Pereira
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Byanca Pereira Moreira de Oliveira
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná, Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná, Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Odinei Hess Gonçalves
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná, Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
19
|
Boktor JC, Adame MD, Rose DR, Schumann CM, Murray KD, Bauman MD, Careaga M, Mazmanian SK, Ashwood P, Needham BD. Global metabolic profiles in a non-human primate model of maternal immune activation: implications for neurodevelopmental disorders. Mol Psychiatry 2022; 27:4959-4973. [PMID: 36028571 PMCID: PMC9772216 DOI: 10.1038/s41380-022-01752-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023]
Abstract
Epidemiological evidence implicates severe maternal infections as risk factors for neurodevelopmental disorders, such as ASD and schizophrenia. Accordingly, animal models mimicking infection during pregnancy, including the maternal immune activation (MIA) model, result in offspring with neurobiological, behavioral, and metabolic phenotypes relevant to human neurodevelopmental disorders. Most of these studies have been performed in rodents. We sought to better understand the molecular signatures characterizing the MIA model in an organism more closely related to humans, rhesus monkeys (Macaca mulatta), by evaluating changes in global metabolic profiles in MIA-exposed offspring. Herein, we present the global metabolome in six peripheral tissues (plasma, cerebrospinal fluid, three regions of intestinal mucosa scrapings, and feces) from 13 MIA and 10 control offspring that were confirmed to display atypical neurodevelopment, elevated immune profiles, and neuropathology. Differences in lipid, amino acid, and nucleotide metabolism discriminated these MIA and control samples, with correlations of specific metabolites to behavior scores as well as to cytokine levels in plasma, intestinal, and brain tissues. We also observed modest changes in fecal and intestinal microbial profiles, and identify differential metabolomic profiles within males and females. These findings support a connection between maternal immune activation and the metabolism, microbiota, and behavioral traits of offspring, and may further the translational applications of the MIA model and the advancement of biomarkers for neurodevelopmental disorders such as ASD or schizophrenia.
Collapse
Affiliation(s)
- Joseph C Boktor
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark D Adame
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Destanie R Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Cynthia M Schumann
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Karl D Murray
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sarkis K Mazmanian
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA.
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Brittany D Needham
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
20
|
Epigenetics of Autism Spectrum Disorder: Histone Deacetylases. Biol Psychiatry 2022; 91:922-933. [PMID: 35120709 DOI: 10.1016/j.biopsych.2021.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023]
Abstract
The etiology of autism spectrum disorder (ASD) remains unknown, but gene-environment interactions, mediated through epigenetic mechanisms, are thought to be a key contributing factor. Prenatal environmental factors have been shown to be associated with both increased risk of ASD and altered histone deacetylases (HDACs) or acetylation levels. The relationship between epigenetic changes and gene expression in ASD suggests that alterations in histone acetylation, which lead to changes in gene transcription, may play a key role in ASD. Alterations in the acetylome have been demonstrated for several genes in ASD, including genes involved in synaptic function, neuronal excitability, and immune responses, which are mechanisms previously implicated in ASD. We review preclinical and clinical studies that investigated HDACs and autism-associated behaviors and discuss risk genes for ASD that code for proteins associated with HDACs. HDACs are also implicated in neurodevelopmental disorders with a known genetic etiology, such as 15q11-q13 duplication and Phelan-McDermid syndrome, which share clinical features and diagnostic comorbidities (e.g., epilepsy, anxiety, and intellectual disability) with ASD. Furthermore, we highlight factors that affect the behavioral phenotype of acetylome changes, including sensitive developmental periods and brain region specificity in the context of epigenetic programming.
Collapse
|
21
|
Lu C, Rong J, Fu C, Wang W, Xu J, Ju XD. Overall Rebalancing of Gut Microbiota Is Key to Autism Intervention. Front Psychol 2022; 13:862719. [PMID: 35712154 PMCID: PMC9196865 DOI: 10.3389/fpsyg.2022.862719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with unclear etiology, and due to the lack of effective treatment, ASD patients bring enormous economic and psychological burden to families and society. In recent years, many studies have found that children with ASD are associated with gastrointestinal diseases, and the composition of intestinal microbiota (GM) is different from that of typical developing children. Thus, many researchers believe that the gut-brain axis may play an important role in the occurrence and development of ASD. Indeed, some clinical trials and animal studies have reported changes in neurological function, behavior, and comorbid symptoms of autistic children after rebalancing the composition of the GM through the use of antibiotics, prebiotics, and probiotics or microbiota transfer therapy (MMT). In view of the emergence of new therapies based on the modulation of GM, characterizing the individual gut bacterial profile evaluating the effectiveness of intervention therapies could help provide a better quality of life for subjects with ASD. This article reviews current studies on interventions to rebalance the GM in children with ASD. The results showed that Lactobacillus plantarum may be an effective strain for the probiotic treatment of ASD. However, the greater effectiveness of MMT treatment suggests that it may be more important to pay attention to the overall balance of the patient's GM. Based on these findings, a more thorough assessment of the GM is expected to contribute to personalized microbial intervention, which can be used as a supplementary treatment for ASD.
Collapse
Affiliation(s)
- Chang Lu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Jiaqi Rong
- School of Psychology, Northeast Normal University, Changchun, China
| | - Changxing Fu
- School of Psychology, Northeast Normal University, Changchun, China
| | - Wenshi Wang
- School of Psychology, Northeast Normal University, Changchun, China
| | - Jing Xu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xing-Da Ju
- School of Psychology, Northeast Normal University, Changchun, China
| |
Collapse
|
22
|
Armstrong JL, Saraf TS, Bhatavdekar O, Canal CE. Spontaneous seizures in adult Fmr1 knockout mice: FVB.129P2-Pde6b+ Tyr Fmr1/J. Epilepsy Res 2022; 182:106891. [PMID: 35290907 PMCID: PMC9050957 DOI: 10.1016/j.eplepsyres.2022.106891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/26/2023]
Abstract
The prevalence of seizures in individuals with fragile X syndrome (FXS) is ~25%; however, there are no reports of spontaneous seizures in the Fmr1 knockout mouse model of FXS. Herein, we report that 48% of adult (median age P96), Fmr1 knockout mice from our colony were found expired in their home cages. We observed and recorded adult Fmr1 knockout mice having spontaneous convulsions in their home cages. In addition, we captured by electroencephalography an adult Fmr1 knockout mouse having a spontaneous seizure-during preictal, ictal, and postictal phases-which confirmed the presence of a generalized seizure. We did not observe this phenotype in control conspecifics or in juvenile (age <P35) Fmr1 knockout mice. We hypothesized that chronic, random, noise perturbations during development caused the phenotype. We recorded decibels (dB) in our vivarium. The average was 61 dB, but operating the automatic door to the vivarium caused spikes to 95 dB. We modified the door to eliminate noise spikes, which reduced unexpected deaths to 33% in Fmr1 knockout mice raised from birth in this environment (P = 0.07). As the modifications did not eliminate unexpected deaths, we further hypothesized that building vibrations may also be a contributing factor. After installing anti-vibration pads underneath housing carts, unexpected deaths of Fmr1 knockout mice born and raised in this environment decreased to 29% (P < 0.01 compared to the original environment). We also observed significant sex effects, for example, after interventions to reduce sound and vibration, significantly fewer male, but not female, Fmr1 knockout mice died unexpectedly (P < 0.001). The spontaneous seizure phenotype in our Fmr1 knockout mice could serve as a model of seizures observed in individuals with FXS, potentially offering a new translationally-valid phenotype for FXS research. Finally, these observations, although anomalous, serve as a reminder to consider gene-environment interactions when interpreting data derived from Fmr1 knockout mice.
Collapse
Affiliation(s)
- Jessica L Armstrong
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Tanishka S Saraf
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Omkar Bhatavdekar
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, 3400 North Charles Street, Croft Hall B27, Baltimore, MD 21218, USA
| | - Clinton E Canal
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA.
| |
Collapse
|
23
|
Lin J, Zhang K, Cao X, Zhao Y, Ullah Khan N, Liu X, Tang X, Chen M, Zhang H, Shen L. iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem Neurosci 2022; 13:648-663. [PMID: 35138800 DOI: 10.1021/acschemneuro.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social and communication difficulties. Valproic acid (VPA) injection during pregnancy elicits autism-like behavior in the offspring, making it a classic animal model of ASD. However, the mechanisms involved have not yet been determined. In this study, we used iTRAQ (isobaric tags for relative and absolute quantification) proteomics analysis of the cerebral cortex of a VPA rat model (VPA group) and controls (CON group). The results showed that 79 differentially expressed proteins (DEPs) were identified between the VPA group and the CON group. Based on bioinformatics analysis, the DEPs were mainly enriched at synapses, especially glutamatergic synapses and GABAergic synapses. Some DEPs were involved in energy metabolism, thyroid hormone synthesis pathway, and Na+-K+-ATPase. Cytoskeleton and endoplasmic reticulum (ER) stress-related proteins were also involved. Some DEPs matched either the ASD gene database or previous reports on cerebral cortical transcriptome studies in VPA rat models. Dysregulation of these DEPs in the cerebral cortex of VPA rats may be responsible for autism-like behavior in rats. We also found that some DEPs were associated with neuropsychiatric disorders, implying that these diseases share common signaling pathways and mechanisms. Moreover, increased expression of DEPs was associated with energy metabolism in the cerebral cortex of VPA rats, implying that ASD may be a distinct type of mitochondrial dysfunction that requires further investigation.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen 518071, P. R. China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, Georgia 30322, United States
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen 518071, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
24
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
25
|
Benefits of a ketogenic diet on repetitive motor behavior in mice. Behav Brain Res 2022; 422:113748. [PMID: 35038463 DOI: 10.1016/j.bbr.2022.113748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
Repetitive motor behaviors are repetitive and invariant movements with no apparent function, and are common in several neurological and neurodevelopmental disorders, including autism spectrum disorders (ASD). However, the neuropathology associated with the expression of these abnormal stereotypic movements is not well understood, and effective treatments are lacking. The ketogenic diet (KD) has been used for almost a century to treat intractable epilepsy and, more recently, disorders associated with inflexibility of behavioral routines. Here, we show a novel application for KD to reduce an abnormal repetitive circling behavior in a rodent model. We then explore potential mediation through the striatum, as dysregulation of cortico-basal ganglia circuitry has previously been implicated in repetitive motor behavior. In Experiments 1 and 2, adult FVB mice were assessed for levels of repetitive circling across a 3-week baseline period. Mice were then switched to KD and repetitive circling was assessed for an additional 3 weeks. In Experiment 1, time on KD was associated with reduced repetitive behavior. In Experiment 2, we replicated these benefits of KD and assessed dendritic spine density in the striatum as one potential mechanism for reducing repetitive behavior, which yielded no differences. In Experiment 3, adult female circling mice were given a single administration of a dopamine D2 receptor antagonist (L-741,646) that was associated with reduced repetitive behavior over time. Future research will explore the relationship between KD and dopamine within basal ganglia nuclei that may be influencing the benefits of KD on repetitive behavior.
Collapse
|
26
|
Tu T, Zhao C. Treating autism spectrum disorder by intervening with gut microbiota. J Med Microbiol 2021; 70. [PMID: 34898421 DOI: 10.1099/jmm.0.001469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders with a high prevalence in childhood. The gut microbiota can affect human cognition and moods and has a strong correlation with ASD. Microbiota transplantation, including faecal microbiota transplantation (FMT), probiotics, breastfeeding, formula feeding, gluten-free and casein-free (GFCF) diet and ketogenic diet therapy, may provide satisfying effects for ASD and its related various symptoms. For instance, FMT can improve the core symptoms of ASD and gastrointestinal symptoms. Probiotics, breastfeeding and formula feeding, and GFCF diet can improve gastrointestinal symptoms. The core symptom score still needs to be confirmed by large-scale clinical randomized controlled studies. It is recommended to use a ketogenic diet to treat patients with epilepsy in ASD. At present, the unresolved problems include which of gut the microbiota are beneficial, which of the microorganisms are harmful, how to safely and effectively implant beneficial bacteria into the human body, and how to extract and eliminate harmful microorganisms before transplantation. In future studies, large sample and randomized controlled clinical studies are needed to confirm the mechanism of intestinal microorganisms in the treatment of ASD and the method of microbial transplantation.
Collapse
Affiliation(s)
- Tingting Tu
- Department of Rehabilitation Treatment, Health Science College, Guangdong Pharmaceutical University, Guangzhou 51006, PR China
| | - Changlin Zhao
- Department of Rehabilitation Treatment, Health Science College, Guangdong Pharmaceutical University, Guangzhou 51006, PR China
| |
Collapse
|
27
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
28
|
Walsh JJ, Llorach P, Cardozo Pinto DF, Wenderski W, Christoffel DJ, Salgado JS, Heifets BD, Crabtree GR, Malenka RC. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology 2021; 46:2000-2010. [PMID: 34239048 PMCID: PMC8429585 DOI: 10.1038/s41386-021-01091-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a common set of heterogeneous neurodevelopmental disorders resulting from a variety of genetic and environmental risk factors. A core feature of ASD is impairment in prosocial interactions. Current treatment options for individuals diagnosed with ASD are limited, with no current FDA-approved medications that effectively treat its core symptoms. We recently demonstrated that enhanced serotonin (5-HT) activity in the nucleus accumbens (NAc), via optogenetic activation of 5-HTergic inputs or direct infusion of a specific 5-HT1b receptor agonist, reverses social deficits in a genetic mouse model for ASD based on 16p11.2 copy number variation. Furthermore, the recreational drug MDMA, which is currently being evaluated in clinical trials, promotes sociability in mice due to its 5-HT releasing properties in the NAc. Here, we systematically evaluated the ability of MDMA and a selective 5-HT1b receptor agonist to rescue sociability deficits in multiple different mouse models for ASD. We find that MDMA administration enhances sociability in control mice and reverses sociability deficits in all four ASD mouse models examined, whereas administration of a 5-HT1b receptor agonist selectively rescued the sociability deficits in all six mouse models for ASD. These preclinical findings suggest that pharmacological enhancement of 5-HT release or direct 5-HT1b receptor activation may be therapeutically efficacious in ameliorating some of the core sociability deficits present across etiologically distinct presentations of ASD.
Collapse
Affiliation(s)
- Jessica J Walsh
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Pierre Llorach
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel F Cardozo Pinto
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford Medical School, Stanford, CA, USA
- Department of Genetics, Stanford Medical School, Stanford, CA, USA
- Department of Developmental Biology, Stanford Medical School, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Daniel J Christoffel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Juliana S Salgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford Medical School, Stanford, CA, USA
- Department of Genetics, Stanford Medical School, Stanford, CA, USA
- Department of Developmental Biology, Stanford Medical School, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
29
|
The microbiome, guard or threat to infant health. Trends Mol Med 2021; 27:1175-1186. [PMID: 34518093 DOI: 10.1016/j.molmed.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022]
Abstract
Despite improvements in survival for very low birthweight (VLBW) premature infants, there continues to be significant morbidity for these infants at remarkable cost to the healthcare system. Concurrent development of the preterm infant intestine alongside the gut microbiome in the clinical setting rather than in the protected in utero environment where it would usually occur creates significant vulnerabilities for the infant's immature intestine and immune system, resulting in devastating illness and neurological injury. However, the microbiome also has the capacity to promote healthy development. Studies of parallel gut microbiome and preterm infant development have given key insight into the impact of the microbiome on intestinal as well as neural development and may provide potential therapeutic targets to prevent preterm infant morbidities.
Collapse
|
30
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P. Physiological mediators of prenatal environmental influences in autism spectrum disorder. Bioessays 2021; 43:e2000307. [PMID: 34260745 DOI: 10.1002/bies.202000307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
Recent research has pointed to the importance of the prenatal environment in the etiology of autism spectrum disorder (ASD) but the biological mechanisms which mitigate these environmental factors are not clear. Mitochondrial metabolism abnormalities, inflammation and oxidative stress as common physiological disturbances associated with ASD. Network analysis of the scientific literature identified several leading prenatal environmental factors associated with ASD, particularly air pollution, pesticides, the microbiome and epigenetics. These leading prenatal environmental factors were found to be most associated with inflammation, followed by oxidative stress and mitochondrial dysfunction. Other prenatal factors associated with ASD not identified by the network analysis were also found to be significantly associated with these common physiological disturbances. A better understanding of the biological mechanism which mediate the effect of prenatal environmental factors can lead to insights of how ASD develops and the development of targeted therapeutics to prevent ASD from occuring.
Collapse
Affiliation(s)
- Richard E Frye
- Section on Neurodevelopmental Disorders, Division of Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, Arizona, 85016, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, Arkansas, 72202, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| |
Collapse
|
31
|
Varesio C, Grumi S, Zanaboni MP, Mensi MM, Chiappedi M, Pasca L, Ferraris C, Tagliabue A, Borgatti R, De Giorgis V. Ketogenic Dietary Therapies in Patients with Autism Spectrum Disorder: Facts or Fads? A Scoping Review and a Proposal for a Shared Protocol. Nutrients 2021; 13:2057. [PMID: 34208488 PMCID: PMC8234312 DOI: 10.3390/nu13062057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with increasing incidence. An expanding body of literature is examining connections between ASD and dietary interventions. Existing reports suggest a beneficial effect of ketogenic dietary therapies (KDTs) in improving behavioral symptoms in ASD. In this context, the purpose of this scoping review was to identify and map available evidence in the literature about the feasibility and potential efficacy of KDTs in pediatric patients with ASD and to inform clinical practice in the field. Moreover, based on the resulting data from the literature review, we aimed to provide a shared protocol to develop a personalized KDT intervention in patients with ASD. A comprehensive and structured web-based literature search was performed using PubMed and Scopus and it yielded 203 records. Seven papers were finally selected and included in the review. Data were abstracted by independent coders. High variability was identified in study designs and dietary aspects emerged among selected studies. Results supported the effectiveness of KDTs in promoting behavioral improvements. Clinical recommendations on which patients may benefit most from KDTs implementation and difficulties in dietary adherence were discussed.
Collapse
Affiliation(s)
- Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.V.); (S.G.); (M.P.Z.); (M.M.M.); (M.C.); (L.P.); (R.B.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Serena Grumi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.V.); (S.G.); (M.P.Z.); (M.M.M.); (M.C.); (L.P.); (R.B.)
| | - Martina Paola Zanaboni
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.V.); (S.G.); (M.P.Z.); (M.M.M.); (M.C.); (L.P.); (R.B.)
| | - Martina Maria Mensi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.V.); (S.G.); (M.P.Z.); (M.M.M.); (M.C.); (L.P.); (R.B.)
| | - Matteo Chiappedi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.V.); (S.G.); (M.P.Z.); (M.M.M.); (M.C.); (L.P.); (R.B.)
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.V.); (S.G.); (M.P.Z.); (M.M.M.); (M.C.); (L.P.); (R.B.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine University of Pavia, 27100 Pavia, Italy; (C.F.); (A.T.)
| | - Anna Tagliabue
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine University of Pavia, 27100 Pavia, Italy; (C.F.); (A.T.)
| | - Renato Borgatti
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.V.); (S.G.); (M.P.Z.); (M.M.M.); (M.C.); (L.P.); (R.B.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.V.); (S.G.); (M.P.Z.); (M.M.M.); (M.C.); (L.P.); (R.B.)
| |
Collapse
|
32
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P, Arora M. Mitochondria May Mediate Prenatal Environmental Influences in Autism Spectrum Disorder. J Pers Med 2021; 11:218. [PMID: 33803789 PMCID: PMC8003154 DOI: 10.3390/jpm11030218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
We propose that the mitochondrion, an essential cellular organelle, mediates the long-term prenatal environmental effects of disease in autism spectrum disorder (ASD). Many prenatal environmental factors which increase the risk of developing ASD influence mitochondria physiology, including toxicant exposures, immune activation, and nutritional factors. Unique types of mitochondrial dysfunction have been associated with ASD and recent studies have linked prenatal environmental exposures to long-term changes in mitochondrial physiology in children with ASD. A better understanding of the role of the mitochondria in the etiology of ASD can lead to targeted therapeutics and strategies to potentially prevent the development of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
| | - Raymond F. Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| |
Collapse
|
33
|
Ruelle-Le Glaunec L, Inquimbert P, Hugel S, Schlichter R, Bossu JL. [Nociception pain and autism]. Med Sci (Paris) 2021; 37:141-151. [PMID: 33591257 DOI: 10.1051/medsci/2020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Autistic subjects frequently display sensory anomalies. Those regarding nociception and its potential outcome, pain, are of crucial interest. Indeed, because of numerous comorbidities, autistic subjects are more often exposed to painful situation. Despite being often considered as less sensitive, experimental studies evaluating this point are failing to reach consensus. Using animal model can help reduce variability and bring, regarding autism, an overview of potential alterations of the nociceptive system at the cellular and molecular level.
Collapse
Affiliation(s)
- Lucien Ruelle-Le Glaunec
- CNRS, 5 rue Blaise-Pascal, 67000 Strasbourg, France - Université de Strasbourg, Institut des neurosciences cellulaires et intégratives, UPR 3212, 8 allée du Général Rouvillois, F-67000 Strasbourg, France
| | - Perrine Inquimbert
- CNRS, 5 rue Blaise-Pascal, 67000 Strasbourg, France - Université de Strasbourg, Institut des neurosciences cellulaires et intégratives, UPR 3212, 8 allée du Général Rouvillois, F-67000 Strasbourg, France
| | | | - Rémy Schlichter
- CNRS, 5 rue Blaise-Pascal, 67000 Strasbourg, France - Université de Strasbourg, Institut des neurosciences cellulaires et intégratives, UPR 3212, 8 allée du Général Rouvillois, F-67000 Strasbourg, France
| | | |
Collapse
|
34
|
Ruskin DN, Sturdevant IC, Wyss LS, Masino SA. Ketogenic diet effects on inflammatory allodynia and ongoing pain in rodents. Sci Rep 2021; 11:725. [PMID: 33436956 PMCID: PMC7804255 DOI: 10.1038/s41598-020-80727-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets are very low carbohydrate, high fat, moderate protein diets used to treat medication-resistant epilepsy. Growing evidence suggests that one of the ketogenic diet’s main mechanisms of action is reducing inflammation. Here, we examined the diet’s effects on experimental inflammatory pain in rodent models. Young adult rats and mice were placed on the ketogenic diet or maintained on control diet. After 3–4 weeks on their respective diets, complete Freund’s adjuvant (CFA) was injected in one hindpaw to induce inflammation; the contralateral paw was used as the control. Tactile sensitivity (von Frey) and indicators of spontaneous pain were quantified before and after CFA injection. Ketogenic diet treatment significantly reduced tactile allodynia in both rats and mice, though with a species-specific time course. There was a strong trend to reduced spontaneous pain in rats but not mice. These data suggest that ketogenic diets or other ketogenic treatments might be useful treatments for conditions involving inflammatory pain.
Collapse
Affiliation(s)
- David N Ruskin
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA.
| | - Isabella C Sturdevant
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| | - Livia S Wyss
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| | - Susan A Masino
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| |
Collapse
|
35
|
Li Q, Liang J, Fu N, Han Y, Qin J. A Ketogenic Diet and the Treatment of Autism Spectrum Disorder. Front Pediatr 2021; 9:650624. [PMID: 34046374 PMCID: PMC8146910 DOI: 10.3389/fped.2021.650624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by stereotyped behavior and deficits in communication and social interaction. There are no curative treatments for children with ASD. The ketogenic diet (KD) is a high-fat, appropriate-protein, and low-carbohydrate diet that mimics the fasting state of the body and is proven beneficial in drug-resistant epilepsy and some other brain diseases. An increasing number of studies demonstrated that a KD improved autistic behavior, but the underlying mechanisms are not known. We reviewed the neuroprotective role of a KD in ASD, which is likely mediated via improvements in energy metabolism, reductions in antioxidative stress levels, control of neurotransmitters, inhibition of the mammalian target of rapamycin (mTOR) signaling pathway, and modulation of the gut microbiota. A KD is likely a safe and effective treatment for ASD.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Jingjing Liang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Na Fu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
36
|
Penna E, Pizzella A, Cimmino F, Trinchese G, Cavaliere G, Catapano A, Allocca I, Chun JT, Campanozzi A, Messina G, Precenzano F, Lanzara V, Messina A, Monda V, Monda M, Perrone-Capano C, Mollica MP, Crispino M. Neurodevelopmental Disorders: Effect of High-Fat Diet on Synaptic Plasticity and Mitochondrial Functions. Brain Sci 2020; 10:brainsci10110805. [PMID: 33142719 PMCID: PMC7694125 DOI: 10.3390/brainsci10110805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) include diverse neuropathologies characterized by abnormal brain development leading to impaired cognition, communication and social skills. A common feature of NDDs is defective synaptic plasticity, but the underlying molecular mechanisms are only partially known. Several studies have indicated that people’s lifestyles such as diet pattern and physical exercise have significant influence on synaptic plasticity of the brain. Indeed, it has been reported that a high-fat diet (HFD, with 30–50% fat content), which leads to systemic low-grade inflammation, has also a detrimental effect on synaptic efficiency. Interestingly, metabolic alterations associated with obesity in pregnant woman may represent a risk factor for NDDs in the offspring. In this review, we have discussed the potential molecular mechanisms linking the HFD-induced metabolic dysfunctions to altered synaptic plasticity underlying NDDs, with a special emphasis on the roles played by synaptic protein synthesis and mitochondrial functions.
Collapse
Affiliation(s)
- Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Ivana Allocca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Angelo Campanozzi
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Valentina Lanzara
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Vincenzo Monda
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Correspondence: ; Tel.: +39-081-679990; Fax: +39-081-679233
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| |
Collapse
|
37
|
The Gut Microbiota and Oxidative Stress in Autism Spectrum Disorders (ASD). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8396708. [PMID: 33062148 PMCID: PMC7547345 DOI: 10.1155/2020/8396708] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASDs) are a kind of neurodevelopmental disorder with rapidly increasing morbidity. In recent years, many studies have proposed a possible link between ASD and multiple environmental as well as genetic risk factors; nevertheless, recent studies have still failed to identify the specific pathogenesis. An analysis of the literature showed that oxidative stress and redox imbalance caused by high levels of reactive oxygen species (ROS) are thought to be integral parts of ASD pathophysiology. On the one hand, this review aims to elucidate the communications between oxidative stress, as a risk factor, and ASD. As such, there is also evidence to suggest that early assessment and treatment of antioxidant status are likely to result in improved long-term prognosis by disturbing oxidative stress in the brain to avoid additional irreversible brain damage. Accordingly, we will also discuss the possibility of novel therapies regarding oxidative stress as a target according to recent literature. On the other hand, this review suggests a definite relationship between ASD and an unbalanced gastrointestinal tract (GIT) microbiota (i.e., GIT dysbiosis). A variety of studies have concluded that the intestinal microbiota influences many aspects of human health, including metabolism, the immune and nervous systems, and the mucosal barrier. Additionally, the oxidative stress and GIT dysfunction in autistic children have both been reported to be related to mitochondrial dysfunction. What is the connection between them? Moreover, specific changes in the GIT microbiota are clearly observed in most autistic children, and the related mechanisms and the connection among ASD, the GIT microbiota, and oxidative stress are also discussed, providing a theory and molecular strategies for clinical practice as well as further studies.
Collapse
|
38
|
Frye RE. Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Semin Pediatr Neurol 2020; 35:100829. [PMID: 32892956 DOI: 10.1016/j.spen.2020.100829] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several lines of evidence implicate mitochondria in the pathophysiology of autism spectrum disorder (ASD). In this review, we outline some of the evidence supporting this notion, as well as discuss novel abnormalities in mitochondrial function that appear to be related to ASD, and treatments that both target mitochondria and have evidence of usefulness in the treatment of ASD in clinical trials. A suspicion of the mitochondrion's involvement in ASD can be traced back to 1985 when lactic acidosis was noted in a subset of children with ASD. A large population-based study in 2007 confirmed this notion and found that a subset of children with ASD (∼4%) could be diagnosed with a definite mitochondrial disease. Further studies suggested that children with ASD and mitochondrial disease may have certain characteristics such as fatigability, gastrointestinal disorders, unusual types of neurodevelopmental regression, seizures/epilepsy, and motor delay. Further research examining biomarkers of mitochondrial dysfunction and electron transport chain activity suggest that abnormalities of mitochondrial function could affect a much higher number of children with ASD, perhaps up to 80%. Recent research has identified a type of dysfunction of mitochondria in which the activity of the electron transport chain is significantly increased. This novel type of mitochondrial dysfunction may be associated with environmental exposures and neurodevelopmental regression. Several treatments that target mitochondria appear to have evidence for use in children with ASD, including cofactors such as L-Carnitine and the ketogenic diet. Although the understanding of the involvement of mitochondria in ASD is evolving, the mitochondrion is clearly a novel molecular target which can be helpful in understanding the etiology of ASD and treatments that may improve function of children with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurology, Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Ketogenic diets, which have been used to treat drug-refractory paediatric epilepsy for over 100 years, are becoming increasingly popular for the treatment of other neurological conditions, including mental illnesses. We aim to explain how ketogenic diets can improve mental illness biopathology and review the recent clinical literature. RECENT FINDINGS Psychiatric conditions, such as schizophrenia, depression, bipolar disorder and binge eating disorder, are neurometabolic diseases that share several common mechanistic biopathologies. These include glucose hypometabolism, neurotransmitter imbalances, oxidative stress and inflammation. There is strong evidence that ketogenic diets can address these four fundamental diseases, and now complementary clinical evidence that ketogenic diets can improve the patients' symptoms. SUMMARY It is important that researchers and clinicians are made aware of the trajectory of the evidence for the implementation of ketogenic diets in mental illnesses, as such a metabolic intervention provides not only a novel form of symptomatic treatment, but one that may be able to directly address the underlying disease mechanisms and, in so doing, also treat burdensome comorbidities (see Video, Supplementary Digital Content 1, http://links.lww.com/COE/A16, which summarizes the contents of this review).
Collapse
Affiliation(s)
- Nicholas G Norwitz
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Shebani Sethi
- Metabolic Psychiatry Clinic, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Christopher M Palmer
- Department of Postgraduate and Continuing Education, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| |
Collapse
|
40
|
Chaliha D, Albrecht M, Vaccarezza M, Takechi R, Lam V, Al-Salami H, Mamo J. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism. Dev Neurosci 2020; 42:12-48. [DOI: 10.1159/000509109] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
|
41
|
Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109913. [PMID: 32151695 DOI: 10.1016/j.pnpbp.2020.109913] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Ketogenic diet is a low carbohydrate and high fat diet that has been used for over 100 years in the management of childhood refractory epilepsy. More recently, ketogenic diet has been investigated for a number of metabolic, neurodegenerative and neurodevelopmental disorders. In this comprehensive review, we critically examine the potential therapeutic benefits of ketogenic diet and ketogenic agents on neurodegenerative and psychiatric disorders in humans and translationally valid animal models. The preclinical literature provides strong support for the efficacy of ketogenic diet in a variety of diverse animal models of neuropsychiatric disorders. However, the evidence from clinical studies, while encouraging, particularly in Alzheimer's disease, psychotic and autism spectrum disorders, is limited to case studies and small pilot trials. Firm conclusion on the efficacy of ketogenic diet in psychiatric disorders cannot be drawn due to the lack of randomised, controlled clinical trials. The potential mechanisms of action of ketogenic therapy in these disorders with diverse pathophysiology may include energy metabolism, oxidative stress and immune/inflammatory processes. In conclusion, while ketogenic diet and ketogenic substances hold promise pre-clinically in a variety of neurodegenerative and psychiatric disorders, further studies, particularly randomised controlled clinical trials, are warranted to better understand their clinical efficacy and potential side effects.
Collapse
|
42
|
Bravo L, Llorca-Torralba M, Suárez-Pereira I, Berrocoso E. Pain in neuropsychiatry: Insights from animal models. Neurosci Biobehav Rev 2020; 115:96-115. [PMID: 32437745 DOI: 10.1016/j.neubiorev.2020.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023]
Abstract
Pain is the most common symptom reported in clinical practice, meaning that it is associated with many pathologies as either the origin or a consequence of other illnesses. Furthermore, pain is a complex emotional and sensorial experience, as the correspondence between pain and body damage varies considerably. While these issues are widely acknowledged in clinical pain research, until recently they have not been extensively considered when exploring animal models, important tools for understanding pain pathophysiology. Interestingly, chronic pain is currently considered a risk factor to suffer psychiatric disorders, mainly stress-related disorders like anxiety and depression. Conversely, pain appears to be altered in many psychiatric disorders, such as depression, anxiety and schizophrenia. Thus, pain and psychiatric disorders have been linked in epidemiological and clinical terms, although the neurobiological mechanisms involved in this pathological bidirectional relationship remain unclear. Here we review the evidence obtained from animal models about the co-morbidity of pain and psychiatric disorders, placing special emphasis on the different dimensions of pain.
Collapse
Affiliation(s)
- Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003 Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003 Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003 Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
43
|
Aberrant Mitochondrial Morphology and Function in the BTBR Mouse Model of Autism Is Improved by Two Weeks of Ketogenic Diet. Int J Mol Sci 2020; 21:ijms21093266. [PMID: 32380723 PMCID: PMC7246481 DOI: 10.3390/ijms21093266] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that exhibits a common set of behavioral and cognitive impairments. Although the etiology of ASD remains unclear, mitochondrial dysfunction has recently emerged as a possible causative factor underlying ASD. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that augments mitochondrial function, and has been shown to reduce autistic behaviors in both humans and in rodent models of ASD. The aim of the current study was to examine mitochondrial bioenergetics in the BTBR mouse model of ASD and to determine whether the KD improves mitochondrial function. We also investigated changes in mitochondrial morphology, which can directly influence mitochondrial function. We found that BTBR mice had altered mitochondrial function and exhibited smaller more fragmented mitochondria compared to C57BL/6J controls, and that supplementation with the KD improved both mitochondrial function and morphology. We also identified activating phosphorylation of two fission proteins, pDRP1S616 and pMFFS146, in BTBR mice, consistent with the increased mitochondrial fragmentation that we observed. Intriguingly, we found that the KD decreased pDRP1S616 levels in BTBR mice, likely contributing to the restoration of mitochondrial morphology. Overall, these data suggest that impaired mitochondrial bioenergetics and mitochondrial fragmentation may contribute to the etiology of ASD and that these alterations can be reversed with KD treatment.
Collapse
|
44
|
The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082647. [PMID: 32290635 PMCID: PMC7215504 DOI: 10.3390/ijerph17082647] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder characterized by the impairment of the cognitive function of a child. Studies suggested that the intestinal microbiota has a critical role in the function and regulation of the central nervous system, neuroimmune system and neuroendocrine system. Any adverse changes in the gut–brain axis may cause serious disease. Food preferences and dietary patterns are considered as key in influencing the factors of ASD development. Several recent reviews narrated the importance of dietary composition on controlling or reducing the ASD symptoms. It has been known that the consumption of probiotics confers several health benefits by positive amendment of gut microbiota. The influence of probiotic intervention in children with ASD has also been reported and it has been considered as an alternative and complementary therapeutic supplement for ASD. The present manuscript discusses the role of microbiota and diet in the development of ASD. It also summarizes the recent updates on the influence of dietary supplements and the beneficial effect of probiotics on ASD symptoms. An in-depth literature survey suggested that the maternal diet and lifestyle are greatly associated with the development of ASD and other neurodevelopmental disorders. Mounting evidences have confirmed the alteration in the gut microbial composition in children suffering from ASD. However, the unique profile of microbiome has not yet been fully characterized due to the heterogeneity of patients. The supplementation of probiotics amended the symptoms associated with ASD but the results are inconclusive. The current study recommends further detailed research considering the role of microbiome, diet and probiotics in the development and control of ASD.
Collapse
|
45
|
Abstract
While there are numerous medical comorbidities associated with ASD, gastrointestinal (GI) issues have a significant impact on quality of life for these individuals. Recent findings continue to support the relationship between the gut microbiome and both GI symptoms and behavior, but the heterogeneity within the autism spectrum requires in-depth clinical characterization of these clinical cohorts. Large, diverse, well-controlled studies in this area of research are still needed. Although there is still much to discover about the brain-gut-microbiome axis in ASD, microbially mediated therapies, specifically probiotics and fecal microbiota transplantation have shown promise in the treatment of GI symptoms in ASD, with potential benefit to the core behavioral symptoms of ASD as well. Future research and clinical trials must increasingly consider complex phenotypes in ASD in stratification of large datasets as well as in design of inclusion criteria for individual therapeutic interventions.
Collapse
Affiliation(s)
- Virginia Saurman
- Department of Pediatrics, Columbia University Medical Center, 620 West 168th Street, New York, NY 10032, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University Medical Center, 620 West 168th Street, New York, NY 10032, USA
| | - Ruth Ann Luna
- Department of Pathology and Immunology, Texas Children’s Microbiome Center, Baylor College of Medicine, Texas Children’s Hospital, Feigin Tower, 1102 Bates Avenue, Suite 955, Houston, TX 77030, USA
| |
Collapse
|
46
|
Hughes EM, Calcagno P, Clarke M, Sanchez C, Smith K, Kelly JP, Finn DP, Roche M. Prenatal exposure to valproic acid reduces social responses and alters mRNA levels of opioid receptor and pre-pro-peptide in discrete brain regions of adolescent and adult male rats. Brain Res 2020; 1732:146675. [PMID: 31978376 DOI: 10.1016/j.brainres.2020.146675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/21/2022]
Abstract
Altered social behaviours are a hallmark of several psychiatric and developmental disorders. Clinical and preclinical data have demonstrated that prenatal exposure to valproic acid (VPA), an anti-epileptic and mood stabiliser, is associated with impaired social responses, and thus provides a useful model for the evaluation of neurobiological mechanisms underlying altered social behaviours. The opioid system is widely recognised to regulate and modulate social behaviours, however few studies have examined if the endogenous opioid system is altered in animal models of social impairment. The present study examined social behavioural responses of adolescent and adult male rats prenatally exposed to VPA, and the expression of mRNA encoding opioid receptors and pre-pro-peptides in discrete brain regions. Adolescent and adult rats prenatally exposed to VPA spent less time engaging in social behaviours in the direct social interaction test and exhibited reduced sociability and social novelty preference in the 3-chamber sociability test, compared to saline-treated counterparts. The VPA-exposed adolescent rats exhibited significantly reduced kappa opioid receptor (oprk1) and pre-pro-dynorphin (pdyn) mRNA expression in the cerebral cortex, and reduced oprk1 and nociceptin/orphanin FQ (oprl1) mRNA expression in the hypothalamus. Adult rats prenatally exposed to VPA exhibited decreased mRNA expression of oprk1 and pdyn in hypothalamus, reduced pro-opiomelanocortin(pomc) in the striatum and an increase in delta opioid receptor (oprd1) mRNA in the amygdaloid cortex, when compared to saline-treated counterparts. Mu opioid receptor (oprm1) mRNA expression did not differ between saline and VPA-exposed rats in any region examined. The data demonstrate that impaired social behaviours in adolescent and adult rats prenatally exposed to VPA is accompanied by altered mRNA expression of opioid receptors and pre-pro-peptides in a region specific manner. In particular, both adolescent and adult VPA-exposed rats exhibit reduced oprk1-pdyn mRNA expression in several brain regions, which are associated with deficits in social behavioural responding in the model.
Collapse
Affiliation(s)
- Edel M Hughes
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Patricia Calcagno
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Morgane Clarke
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | | - John P Kelly
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
47
|
Westmark PR, Gutierrez A, Gholston AK, Wilmer TM, Westmark CJ. Preclinical testing of the ketogenic diet in fragile X mice. Neurochem Int 2020; 134:104687. [PMID: 31958482 DOI: 10.1016/j.neuint.2020.104687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The ketogenic diet is highly effective at attenuating seizures in refractory epilepsy, and accumulating evidence in the literature suggests that it may be beneficial in autism. To our knowledge, no one has studied the ketogenic diet in any fragile X syndrome (FXS) model. FXS is the leading known genetic cause of autism. Herein, we tested the effects of chronic ketogenic diet treatment on seizures, body weight, ketone and glucose levels, diurnal activity levels, learning and memory, and anxiety behaviors in Fmr1KO and littermate control mice as a function of age. The ketogenic diet selectively attenuates seizures in male but not female Fmr1KO mice and differentially affects weight gain and diurnal activity levels dependent on Fmr1 genotype, sex and age.
Collapse
Affiliation(s)
- Pamela R Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alejandra Gutierrez
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA; Molecular Environmental Toxicology Center, Summer Research Opportunities Program, University of Wisconsin, Madison, WI, USA
| | - Aaron K Gholston
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA; Molecular Environmental Toxicology Center, Summer Research Opportunities Program, University of Wisconsin, Madison, WI, USA
| | - Taralyn M Wilmer
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
48
|
Mouro FM, Miranda-Lourenço C, Sebastião AM, Diógenes MJ. From Cannabinoids and Neurosteroids to Statins and the Ketogenic Diet: New Therapeutic Avenues in Rett Syndrome? Front Neurosci 2019; 13:680. [PMID: 31333401 PMCID: PMC6614559 DOI: 10.3389/fnins.2019.00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females. Mutations in the MECP2 gene are responsible for 95% of the diagnosed RTT cases and the mechanisms through which these mutations relate with symptomatology are still elusive. Children with RTT present a period of apparent normal development followed by a rapid regression in speech and behavior and a progressive deterioration of motor abilities. Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms. However, despite being a rare disease, in the last decade research in RTT has grown exponentially. New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease. In this review, we focus our attention in some of the newest evidence on RTT clinical and preclinical research, evaluating their impact in RTT symptomatology control, and pinpointing possible directions for future research.
Collapse
Affiliation(s)
- Francisco Melo Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Wang M, Li W, Tao Y, Zhao L. Emerging trends and knowledge structure of epilepsy during pregnancy research for 2000-2018: a bibliometric analysis. PeerJ 2019; 7:e7115. [PMID: 31211023 PMCID: PMC6557303 DOI: 10.7717/peerj.7115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/10/2019] [Indexed: 01/07/2023] Open
Abstract
Background Epilepsy during pregnancy presents a unique set of challenges for pregnant women, the fetus, and the health care community. As research in this area advances rapidly, it is critical to keep up with the emerging trends and key turning points of the development of the domain knowledge. This study aimed to construct a series of science maps to quantitatively and qualitatively evaluate the intellectual landscape and research frontiers in the field of epilepsy during pregnancy research. Methods All publications were extracted from the Web of Science Core Collection database. Bibliometric analysis was used to analyze the scientific research outputs, including journals, countries/regions, institutions, authors (cited authors), intellectual base and research hotspots. Results A total of 2,225 publications related to epilepsy during pregnancy were identified as published between 2000 and 2018. The overall trend of the number of publications showed a fluctuating growth from 59 articles in 2000 to 198 in 2018. Neurology was the leading journal in the field of epilepsy and pregnancy research both in terms of impact factor score (8.055) and H-index value (77). The US retained its leading position and exerted a pivotal influence in this area. The University of Melbourne was identified as a good research institution for research collaboration. Prof. Pennell and Tomson have made great achievements in this area, and Prof. Tomson laid a foundation for the development of this domain. The keyword “neonatal seizures” ranked first in research hotspots, and the keyword “autism spectrum disorders (ASD)” ranked first in research frontiers. Conclusions Epilepsy during pregnancy is a fascinating and rapid development of subject matter. A more recent emerging trend focused on comprehensive management of pregnant and lactating women, evaluation of the safety and efficacy of newer antiepileptic drugs. The keywords “management issue,” “brain injury,” “meta-analysis,” “in utero exposure,” and “ASD” were the latest research frontiers and should be closely observed.
Collapse
Affiliation(s)
- Minglu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Weitao Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuying Tao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
50
|
Huang J, Li YQ, Wu CH, Zhang YL, Zhao ST, Chen YJ, Deng YH, Xuan A, Sun XD. The effect of ketogenic diet on behaviors and synaptic functions of naive mice. Brain Behav 2019; 9:e01246. [PMID: 30848079 PMCID: PMC6456772 DOI: 10.1002/brb3.1246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Beyond its application as an epilepsy therapy, the ketogenic diet (KD) has been considered a potential treatment for a variety of other neurological and metabolic disorders. However, whether KD promotes functional restoration by reducing the pathological processes underlying individual diseases or through some independent mechanisms is not clear. METHODS In this study, we evaluated the effect of KD on a series of behaviors and synaptic functions of young adult naive mice. Wild-type C57BL/6J mice at age of 2-3 months were fed with control diet or KD for three months. Body weight and caloric intake were monitored throughout the experiments. We assessed behavioral performance with seizure induction, motor coordination and activity, anxiety level, spatial learning and memory, sociability, and depression. Synaptic transmission and long-term potentiation were also recorded. RESULTS KD-fed mice performed equivalent to control-diet-fed mice in the behavioral tests and electrophysiological assays except exhibiting slower weight gain and increased seizure threshold. CONCLUSIONS Our results contribute to the better understanding of effects of the KD on physiological behaviors and synaptic functions.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cui-Hong Wu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun-Long Zhang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shen-Ting Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yong-Jun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Hong Deng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aiguo Xuan
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang-Dong Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|