1
|
Maslanka R, Bednarska S, Zadrag-Tecza R. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells. Arch Biochem Biophys 2024; 756:110021. [PMID: 38697344 DOI: 10.1016/j.abb.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.
Collapse
Affiliation(s)
- Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
2
|
Bulbul SN, Mamur S, Yuzbasioglu D, Unal F. Safety assessment of high fructose corn syrup and fructose used as sweeteners in foods. Toxicol Mech Methods 2024; 34:584-595. [PMID: 38347751 DOI: 10.1080/15376516.2024.2318570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
High Fructose Corn Syrup (HFCS) and Fructose (FR) are widely used sweeteners in many foods and beverages. This study aimed at investigating the cytotoxic effects of HFCS (5%-30%) and FR (62.5-2000 μg/mL) using MTT assay in Human Hepatocellular Carcinoma (HepG2) cells, and genotoxic effects of using Chromosome Aberrations (CAs), Sister Chromatid Exchanges (SCEs), Micronuclei (MN) and comet assays in human lymphocytes. HFCS significantly reduced the cell viability in HepG2 cells at between 7.5% and 30% for 24 and 48 h. 30% HFCS caused a very significant toxic effect. FR had a cytotoxic effect in HepG2 cells at all treatments. However, as fructose concentration decreased, the cell viability decreased. HFCS (10%-20%) and FR (250-2000 μg/mL) decreased the mitotic index at higher concentrations. IC50 value was found to be a 15% for 48 h. IC50 value of FR was detected as 62.5 μg/mL for 24 h and 48 h. HFCS significantly increased CAs frequency at 15% and 20%. FR significantly increased the frequency of CAs at 250, 1000, and 2000 μg/mL for 48 h. Both sweeteners increased the frequency of SCEs at all concentrations. HFCS (15% and 20%) and FR (250, 1000, and 2000 μg/mL) induced MN frequency at higher concentrations. HFCS caused DNA damage in comet assay at 10% -30%. FR increased tail intensity and moment at 125-2000 μg/mL and tail length at 62.5, 250 and 500 μg/mL. Therefore, HFCS and FR are clearly seen to be cytotoxic and genotoxic, especially at higher concentrations.
Collapse
Affiliation(s)
- Sabire Nur Bulbul
- Department of Biology, Science Faculty, Gazi University, Ankara, Turkey
| | - Sevcan Mamur
- Department of Environmental Sciences, Graduate School of Natural and Applied Sciences, Gazi University, Ankara, Turkey
| | - Deniz Yuzbasioglu
- Department of Biology, Science Faculty, Gazi University, Ankara, Turkey
| | - Fatma Unal
- Department of Biology, Science Faculty, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Morton KS, Hartman JH, Heffernan N, Ryde IT, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA-induced dopaminergic neurodegeneration. BMC Biol 2023; 21:252. [PMID: 37950228 PMCID: PMC10636816 DOI: 10.1186/s12915-023-01733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
Affiliation(s)
| | - Jessica H Hartman
- Nicholas School of Environment, Duke University, Durham, USA
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | | | - Ian T Ryde
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Lingfeng Meng
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Joel N Meyer
- Nicholas School of Environment, Duke University, Durham, USA.
| |
Collapse
|
4
|
Morton KS, Hartman JS, Heffernan N, Ryde I, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA induced dopaminergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542737. [PMID: 37398434 PMCID: PMC10312447 DOI: 10.1101/2023.05.29.542737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed western diets, have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson s Disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high sugar diets and dopaminergic neurodegeneration. RESULTS Non-developmental high glucose and fructose diets led to increased lipid content and shorter lifespan and decreased reproduction. However, in contrast to previous reports, we found that non-developmental chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function, and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting alterations to dopamine transmission that could result in decreased 6-OHDA uptake. CONCLUSION Our work uncovers a neuroprotective role for high sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
|
5
|
Johnson RJ, Tolan DR, Bredesen D, Nagel M, Sánchez-Lozada LG, Fini M, Burtis S, Lanaspa MA, Perlmutter D. Could Alzheimer's disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr 2023; 117:455-466. [PMID: 36774227 PMCID: PMC10196606 DOI: 10.1016/j.ajcnut.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
An important aspect of survival is to assure enough food, water, and oxygen. Here, we describe a recently discovered response that favors survival in times of scarcity, and it is initiated by either ingestion or production of fructose. Unlike glucose, which is a source for immediate energy needs, fructose metabolism results in an orchestrated response to encourage food and water intake, reduce resting metabolism, stimulate fat and glycogen accumulation, and induce insulin resistance as a means to reduce metabolism and preserve glucose supply for the brain. How this survival mechanism affects brain metabolism, which in a resting human amounts to 20% of the overall energy demand, is only beginning to be understood. Here, we review and extend a previous hypothesis that this survival mechanism has a major role in the development of Alzheimer's disease and may account for many of the early features, including cerebral glucose hypometabolism, mitochondrial dysfunction, and neuroinflammation. We propose that the pathway can be engaged in multiple ways, including diets high in sugar, high glycemic carbohydrates, and salt. In summary, we propose that Alzheimer's disease may be the consequence of a maladaptation to an evolutionary-based survival pathway and what had served to enhance survival acutely becomes injurious when engaged for extensive periods. Although more studies are needed on the role of fructose metabolism and its metabolite, uric acid, in Alzheimer's disease, we suggest that both dietary and pharmacologic trials to reduce fructose exposure or block fructose metabolism should be performed to determine whether there is potential benefit in the prevention, management, or treatment of this disease.
Collapse
Affiliation(s)
- Richard J Johnson
- Department of Medicine, Rocky Mountain VA Medical Center, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Dean R Tolan
- Biology Department, Boston University, Boston, MA, USA
| | - Dale Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maria Nagel
- Department of Neurology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Mehdi Fini
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
6
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Lodha D, Subramaniam JR. High Fructose Negatively Impacts Proliferation of NSC-34 Motor Neuron Cell Line. J Neurosci Rural Pract 2022; 13:114-118. [PMID: 35110930 PMCID: PMC8803527 DOI: 10.1055/s-0041-1742120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Abstract
Objectives The main aim of this study is to identify the deleterious effects of indiscriminately consumed high fructose on motor neurons that are critically affected in many neurological conditions causing movement disorders including paralysis.
Materials and Methods Neuroblastoma x mouse spinal cord motor neuron cell line (NSC-34) motor neuron cell lines were treated with high fructose and oxygen supplementation (18.8%) and assayed for cell proliferation/death, reactive oxygen species (ROS) generation, and oxidative stress response induction
Statistical Analysis Mean and standard deviation, significance with and without high fructose (F)-5%, were estimated by t-tests using GraphPad Prism ver. 8.2.1
Results F-5% along with O2 (18.8%) annihilates the cells (∼85%) by day10 and inhibits cell division as observed by the presence of multinucleated cells. Unexpectedly, 1 to 2% of cells that survived, differentiated and displayed progressive neurite extension. Though not healthy, they were viable up to 80 days. F-5% increased ROS levels (∼34%) not accompanied by concomitant enhanced expression of oxidative stress response regulator, the transcription factor, nrf-2, or downstream effector, sod-1.
Conclusion High fructose is extremely harmful to NSC-34 motor neuron cell line.
Collapse
Affiliation(s)
- Divya Lodha
- Center for Preclinical and Translational Medical Research (CPTMR), Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jamuna R. Subramaniam
- Center for Preclinical and Translational Medical Research (CPTMR), Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Franco-Juárez B, Gómez-Manzo S, Hernández-Ochoa B, Cárdenas-Rodríguez N, Arreguin-Espinosa R, Pérez de la Cruz V, Ortega-Cuellar D. Effects of High Dietary Carbohydrate and Lipid Intake on the Lifespan of C. elegans. Cells 2021; 10:cells10092359. [PMID: 34572007 PMCID: PMC8465757 DOI: 10.3390/cells10092359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Health and lifespan are influenced by dietary nutrients, whose balance is dependent on the supply or demand of each organism. Many studies have shown that an increased carbohydrate–lipid intake plays a critical role in metabolic dysregulation, which impacts longevity. Caenorhabditis elegans has been successfully used as an in vivo model to study the effects of several factors, such as genetic, environmental, diet, and lifestyle factors, on the molecular mechanisms that have been linked to healthspan, lifespan, and the aging process. There is evidence showing the causative effects of high glucose on lifespan in different diabetic models; however, the precise biological mechanisms affected by dietary nutrients, specifically carbohydrates and lipids, as well as their links with lifespan and longevity, remain unknown. Here, we provide an overview of the deleterious effects caused by high-carbohydrate and high-lipid diets, as well as the molecular signals that affect the lifespan of C. elegans; thus, understanding the detailed molecular mechanisms of high-glucose- and lipid-induced changes in whole organisms would allow the targeting of key regulatory factors to ameliorate metabolic disorders and age-related diseases.
Collapse
Affiliation(s)
- Berenice Franco-Juárez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Ciudad de México 04510, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico
- Correspondence: ; Tel.: +52-55-1084-0900
| |
Collapse
|
9
|
Ke W, Reed JN, Yang C, Higgason N, Rayyan L, Wählby C, Carpenter AE, Civelek M, O’Rourke EJ. Genes in human obesity loci are causal obesity genes in C. elegans. PLoS Genet 2021; 17:e1009736. [PMID: 34492009 PMCID: PMC8462697 DOI: 10.1371/journal.pgen.1009736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality. Given the disease's heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan N. Reed
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Chenyu Yang
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Noel Higgason
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Leila Rayyan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mete Civelek
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|