1
|
Pruchnik B, Kwoka K, Gacka E, Badura D, Kunicki P, Sierakowski A, Janus P, Piasecki T, Gotszalk T. New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1273-1282. [PMID: 39469041 PMCID: PMC11514439 DOI: 10.3762/bjnano.15.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
Focused electron beam-induced deposition (FEBID) is a novel technique for the development of multimaterial nanostructures. More importantly, it is applicable to the fabrication of free-standing nanostructures. Experimenting at the nanoscale requires instruments with sufficient resolution and sensitivity to measure various properties of nanostructures. Such measurements (regardless of the nature of the quantities being measured) are particularly problematic in the case of free-standing nanostructures, whose properties must be separated from the measurement system to avoid possible interference. In this paper, we propose novel devices, namely operational micro-electromechanical system (opMEMS) bridges. These are 3D substrates with nanometer-scale actuation capability and equipped with electrical contacts characterised by leakage resistances above 100 GΩ, which provide a platform for comprehensive measurements of properties (i.e., resistance) of free-standing FEBID structures. We also present a use case scenario in which an opMEMS bridge is used to measure the resistance of a free-standing FEBID nanostructure.
Collapse
Affiliation(s)
- Bartosz Pruchnik
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Krzysztof Kwoka
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Ewelina Gacka
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Dominik Badura
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Piotr Kunicki
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Andrzej Sierakowski
- Institute of Microelectronics and Photonics, Łukasiewicz Research Network, Lotników 32/46, 02-668, Warsaw, Poland
| | - Paweł Janus
- Institute of Microelectronics and Photonics, Łukasiewicz Research Network, Lotników 32/46, 02-668, Warsaw, Poland
| | - Tomasz Piasecki
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| | - Teodor Gotszalk
- Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-370, Wrocław, Poland
| |
Collapse
|
2
|
Goldaeva KV, Pleshakova TO, Ivanov YD. Nanowire-based biosensors for solving biomedical problems. BIOMEDITSINSKAIA KHIMIIA 2024; 70:304-314. [PMID: 39324195 DOI: 10.18097/pbmc20247005304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The review considers modern achievements and prospects of using nanowire biosensors, principles of their operation, methods of fabrication, and the influence of the Debye effect, which plays a key role in improving the biosensor characteristics. Special attention is paid to the practical application of such biosensors for the detection of a variety of biomolecules, demonstrating their capabilities and potential in the detection of a wide range of biomarkers of various diseases. Nanowire biosensors also show excellent results in such areas as early disease diagnostics, patient health monitoring, and personalized medicine due to their high sensitivity and specificity. Taking into consideration their high efficiency and diverse applications, nanowire-based biosensors demonstrate significant promise for commercialization and widespread application in medicine and related fields, making them an important area for future research and development.
Collapse
Affiliation(s)
- K V Goldaeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - Yu D Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
4
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
5
|
Afnan Uda MN, Yousif Dafhalla AK, S Dhahi T, Adam T, Gopinath SCB, Ambek AB, Aiman Uda MN, Mohammed M, Parmin NA, Ibrahim NH, Hashim U. Conductometric immunosensor for specific Escherichia coli O157:H7 detection on chemically funcationalizaed interdigitated aptasensor. Heliyon 2024; 10:e26988. [PMID: 38463770 PMCID: PMC10920380 DOI: 10.1016/j.heliyon.2024.e26988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Escherichia coli O157:H7 is a strain of Escherichia coli known for causing foodborne illness through the consumption of contaminated or raw food. To detect this pathogen, a conductometric immunosensor was developed using a conductometric sensing approach. The sensor was constructed on an interdigitated electrode and modified with a monoclonal anti-Escherichia coli O157:H7 aptamer. A total of 200 electrode pairs were fabricated and modified to bind to the target molecule replica. The binding replica, acting as the bio-recognizer, was linked to the electrode surface using 3-Aminopropyl triethoxysilane. The sensor exhibited excellent performance, detecting Escherichia coli O157:H7 in a short time frame and demonstrating a wide detection range of 1 fM to 1 nM. Concentrations of Escherichia coli O157:H7 were detected within this range, with a minimum detection limit of 1 fM. This innovative sensor offers simplicity, speed, high sensitivity, selectivity, and the potential for rapid sample processing. The potential of this proposed biosensor is particularly beneficial in applications such as drug screening, environmental monitoring, and disease diagnosis, where real-time information on biomolecular interactions is crucial for timely decision-making and where cross-reactivity or interference may compromise the accuracy of the analysis.
Collapse
Affiliation(s)
| | - Alaa Kamal Yousif Dafhalla
- Department of Computer Engineering, College of Computer Science and Engineering, University of Ha'il, Saudi Arabia
| | - Thikra S Dhahi
- Electronics Technical Department, Southern Technical University, Basrah, Iraq
| | - Tijjani Adam
- Faculty of Electronics Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Subash Chandra Bose Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Asral Bahari Ambek
- Faculty of Electronics Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Muhammad Nur Aiman Uda
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, 02100, Malaysia
| | - Mohammed Mohammed
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Nor Azizah Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Nur Hulwani Ibrahim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| |
Collapse
|
6
|
Armani Khatibi E, Farshbaf Moghimi N, Rahimpour E. COVID-19: An overview on possible transmission ways, sampling matrices and diagnosis. BIOIMPACTS : BI 2024; 14:29968. [PMID: 39493896 PMCID: PMC11530968 DOI: 10.34172/bi.2024.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
COVID-19 is an RNA virus belonging to the SARS family of viruses and includes a wide range of symptoms along with effects on other body organs in addition to the respiratory system. The high speed of transmission, severe complications, and high death rate caused scientists to focus on this disease. Today, many different investigation types are performed on COVID-19 from various points of view in the literature. This review summarizes most of them to provide a useful guideline for researchers in this field. After a general introduction, this review is divided into three parts. In the first one, various transmission ways COVID-19 are classified and explained in detail. The second part reviews the used biological samples for the detection of virus and the final section describes the various methods reported for the diagnosis of COVID-19 in various biological matrices.
Collapse
Affiliation(s)
- Elina Armani Khatibi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhao Z, Ma T, Deng H, Moosavi SA, Zhang H, Zhang B, Pan S. Numerical demonstration of low-reflective wire grid polarizers with a patterned Fe 2O 3 absorptive layer. APPLIED OPTICS 2022; 61:9708-9715. [PMID: 36606913 DOI: 10.1364/ao.472299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Absorptive polarizers are pivotal components for realizing a low ambient reflection in liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs). Different types of absorptive polarizers have been proposed. Nevertheless, the realization of compact and efficient absorptive polarizers remains challenging. Wire grid polarizers (WGPs) are a promising solution because of their high durability and relatively thin thickness. In this paper, two structures of absorptive-WGPs have been proposed and optimized at the target wavelength of 532 nm: one is based on a patterned F e 2 O 3/A l bi-layer on top of a S i O 2 substrate, and the second one builds on the first one by depositing a S i O 2 layer in the gaps of Al. The optimal solutions exhibit a reflectance less than 5%, a transmittance over 45%, and an extinction ratio over 40 dB. To evaluate the manufacturing feasibility, their sensitivity to the wire's dimensional parameters is investigated. Their great spectral performance and large acceptance angles demonstrate that such polarizers have the potential to significantly promote the development of current display technologies.
Collapse
|
8
|
Dhahi TS, Adam T, Gopinath SCB, Hashim U. Gold nanogap impedimetric biosensor for precise and selective Ganoderma boninense detection. 3 Biotech 2022; 12:299. [PMID: 36276457 PMCID: PMC9522946 DOI: 10.1007/s13205-022-03368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/17/2022] [Indexed: 11/01/2022] Open
Abstract
Ganoderma species are common wood-rotting fungi that cause root and stem rot in most monocots, dicots, and gymnosperms. It influences plantation crops such as oil palm and rubber in Malaysia, but the effects vary greatly within the genus. Because of the complex chemistry of Ganoderma, extracting and identifying the physiologically active chemicals is often time-consuming and necessitates extensive bioassays. This study investigated the specific identification of the most infectious Ganoderma species using a sub-20-nm gold electrode. Three electrodes were created using chemically controlled etching (2, 10, and 20 nm). An AutoCAD mask containing nanogap pad electrodes was used to create a chrome glass surface, which was then translated and built. Following the successful construction of the device, the sensor was evaluated using a combination of conventional photolithography and a size reduction technique to imprint the nanogap design onto the gold surface. Ganoderma boninense target DNA was synthesised and surface-modified to enable interaction at extremely low molecular concentrations. The proposed device has a detection limit of 0.001 mol/L, which is seven times lower than the detection limits of currently available devices. The capacitance, conductivity, and permittivity of complementary, non-complementary, single mismatched, and targeted biomolecules changed during hybridization. This sensor correctly differentiated between all samples. The sensor's performance is further validated by comparing experimental data from the sensor to theoretical data from the sensor's corresponding circuit model. The two data sets are very similar.
Collapse
Affiliation(s)
- Thikra S. Dhahi
- Electronics Technical Department, Southern Technical University, Basra, Iraq
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Tijjani Adam
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, 08100 Kedah, Malaysia
| | - U. Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| |
Collapse
|
9
|
Ponzoni A. Metal Oxide Chemiresistors: A Structural and Functional Comparison between Nanowires and Nanoparticles. SENSORS 2022; 22:s22093351. [PMID: 35591040 PMCID: PMC9099833 DOI: 10.3390/s22093351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
Metal oxide nanowires have become popular materials in gas sensing, and more generally in the field of electronic and optoelectronic devices. This is thanks to their unique structural and morphological features, namely their single-crystalline structure, their nano-sized diameter and their highly anisotropic shape, i.e., a large length-to-diameter aspect ratio. About twenty years have passed since the first publication proposing their suitability for gas sensors, and a rapidly increasing number of papers addressing the understanding and the exploitation of these materials in chemosensing have been published. Considering the remarkable progress achieved so far, the present paper aims at reviewing these results, emphasizing the comparison with state-of-the-art nanoparticle-based materials. The goal is to highlight, wherever possible, how results may be related to the particular features of one or the other morphology, what is effectively unique to nanowires and what can be obtained by both. Transduction, receptor and utility-factor functions, doping, and the addition of inorganic and organic coatings will be discussed on the basis of the structural and morphological features that have stimulated this field of research since its early stage.
Collapse
Affiliation(s)
- Andrea Ponzoni
- National Institute of Optics (INO) Unit of Brescia, National Research Council (CNR), 25123 Brescia, Italy; ; Tel.: +39-030-3711440
- National Institute of Optics (INO) Unit of Lecco, National Research Council (CNR), 23900 Lecco, Italy
| |
Collapse
|