1
|
Chaudhary V, Kajla P, Kumari P, Luthra A, Ramniwas S, Rustagi S, Pandiselvam R. Biomaterials for eco-friendly packaging in dairy products: towards a cleaner, greener, and sustainable future. Crit Rev Biotechnol 2025:1-28. [PMID: 40268521 DOI: 10.1080/07388551.2025.2482951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/04/2024] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
Milk and milk products are very susceptible to spoilage and therefore, suitable innovative packaging strategies are indispensable to enhance shelf life along with maintaining quality and safety. Transformation in the utilization of packaging materials and technologies in the dairy sector is trending to match and meet the changing demands of consumers aware of this. Smart, intelligent, and active packagings are a few innovative packaging strategies that aim at protracting the shelf stability of milk and milk products while enhancing safety and sensory qualities. Other packaging innovations also include the use of different packaging systems which are not only safe, compatible with food, and stable over a wide range of storage conditions but are more eco-friendly and thus posing the least possible burden on the environment. In this review, the authors attempt to compile innovative green packaging technologies for different dairy products. The properties and applications of biomaterials used for smart, active, and intelligent packaging of milk and milk products, such as: pasteurized milk, evaporated milk, sweetened milk, condensed milk, milk powder, along with: ice cream, butter, coagulated dairy products, and heat-desiccated milk products are briefly discussed. Environmental impact, safety regulations as well as challenges in the implementation of different innovative packaging technologies in the dairy sector are also covered. The use of eco-friendly packaging innovative approaches in terms of improved biodegradability and lesser environmental hazards aims to achieve environmental sustainability goals for a clean and green future.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Parveen Kumari
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ankur Luthra
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| |
Collapse
|
2
|
Shi J, Chen L, Xie R, Zhang J, Pi S, Yang J, Zhao Y, Xiong F, Zhang Y, Xie T. Rheological and thermal property of KH570-modified nano-SiO 2 grafted xanthan gum and its application in drilling fluid system. Carbohydr Polym 2025; 351:123013. [PMID: 39778987 DOI: 10.1016/j.carbpol.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Xanthan gum (XG), recognized for its environmentally friendly properties and versatile capabilities, has been studied for drilling fluid applications. However, its limited solubility and thermal stability restricts its broader use. In this study, a modified XG derivative, XG-g-KH570 modified SiO2, was synthesized by grafting XG with KH570-modified nano-SiO2. The modified product exhibited lower molecular weights with Mn and Mw of 3.00 × 105 g/mol and 3.77 × 105 g/mol, respectively. Its pyruvate and acetyl contents decreased to 2.72 % and 1.68 %, respectively. Meanwhile, XG-g-KH570 modified SiO2 showed a higher branching degree of 45.3 % based on methylation analysis. In terms of performance, XG-g-KH570 modified SiO2 exhibited improved water solubility. XG-g-KH570 modified SiO2 demonstrated superior high-temperature and high-salinity performance, retaining high viscosity retention and viscoelasticity. Additionally, XG-g-KH570 modified SiO2 exhibited a markedly reduced fluid loss of only 3.4 mL at 150 °C, compatible with conventional desulphonated drilling fluids. Furthermore, its high-temperature thickening and fluid loss control mechanisms was found to be associated with an enhanced cross-linked network structure based on the zeta potential and particle size distribution under high-temperature and salinity conditions. These results represent a promising advancement in the field of biomolecular drilling fluid additives, providing an efficient and eco-friendly solution for the oil and gas industry.
Collapse
Affiliation(s)
- Jingqi Shi
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Long Chen
- Engineering Technology Research Institute of Southwest Oil & Gas Field Company, PetroChina, Chengdu, Sichuan 610017, China
| | - Ruihan Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiayin Zhang
- Engineering Technology Research Institute of Southwest Oil & Gas Field Company, PetroChina, Chengdu, Sichuan 610017, China
| | - Shuangcheng Pi
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaming Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunhai Zhao
- Engineering Technology Research Institute of Southwest Oil & Gas Field Company, PetroChina, Chengdu, Sichuan 610017, China
| | - Feng Xiong
- Engineering Technology Research Institute of Southwest Oil & Gas Field Company, PetroChina, Chengdu, Sichuan 610017, China
| | - Yongkui Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tonghui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
3
|
Thapliyal D, Verros GD, Arya RK. Nanoparticle-Doped Antibacterial and Antifungal Coatings. Polymers (Basel) 2025; 17:247. [PMID: 39861318 PMCID: PMC11768809 DOI: 10.3390/polym17020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings, they will release metal ions with the combined effect of having bacteriostatic/bactericidal properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO2 NPs) and zinc oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV irradiation, these NPs show photocatalytic properties that lead to the production of reactive oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon materials were successfully developed over the past decade, they and their derivatives from graphite/nanotubes, and composite sheets have been receiving more attention because they share an extremely large surface area, excellent mechanical strength, etc. These NPs not only show the ability to cause oxidative stress but also have the ability to release antimicrobial chemicals under control, resulting in long-lasting antibacterial action. The effectiveness and life spans of the antifouling performance of a variety of polymeric materials have been improved by adding nano-sized particles to those coatings.
Collapse
Affiliation(s)
- Devyani Thapliyal
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| | - George D. Verros
- Department of Chemistry, Aristotle University of Thessaloniki, Plagiari Thes., P.O. Box 454, 57500 Epanomi, Greece;
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| |
Collapse
|
4
|
Ahmed HB, Emam HE, Shaheen TI. Fluorescent antimicrobial hydrogel based on fluorophore N-doped carbon dots originated from cellulose nanocrystals. Sci Rep 2024; 14:29226. [PMID: 39587165 PMCID: PMC11589154 DOI: 10.1038/s41598-024-80222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
The current study represents a unique fabrication strategy for preparation of fluorescent hydrogels via incorporation of fluorescent quantum dots (QDs) as fluorophore entities into chitosan as a gelling matrix. QDs identified as carbon quantum dots (CQDs) & nitrogen containing carbon quantum dots (NCQDs) were preliminary synthesized from cellulose nanocrystals (CNCs) and cationic cellulose nanocrystals (CCNCs), respectively. Cationic CNCs was prepared via chemical grafting with poly-di-allyl dimethyl ammonium chloride (CNCs-g-poly-DADMAC) through free chain polymerization reaction. Additionally, both of the prepared CQDs & NCQDs were impregnated in 3D interpenetrating network of chitosan for preparation of microbicide/florescent hydrogels (CQDs@Chs hydrogel & NCQDs@Chs hydrogel). The represented data revealed that, exploitation of cationic CNCs resulted in preparation of NCQDs with more controllable size and superior photoluminescence. Moreover, the increment in concentration of CNCs reflected in nucleation of enlarged QDs, at variance of CCNCs, whereas, increment of concentration resulted in significantly smaller-sized QDs. Size distribution of CQDs ingrained from 2% CNCs was estimated to be 8.2 nm, while, NCQDs ingrained from 2% CCNCs exhibited with size distribution of 3.8 nm. The prepared florescent CQDs@Chs hydrogel & NCQDs@Chs hydrogel showed excellent antimicrobial performance and the diameter of inhibition zone was estimated to be 31 mm, 26 mm & 22 mm against E. Coli, S. Aureus & C. Albicans with CQDs@Chs, respectively. Whereas, treatment of the as-mentioned microbial strains with NCQDs@Chs resulted in detection of inhibition zone diameter to be significantly higher as 34 mm, 28 mm & 25 mm for E. Coli, S. Aureus & C. Albicans, respectively. In a conclusion, cationic CNCs showed seniority in nucleation of QDs with significantly higher photoluminescence and microbicide activities.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Tharwat I Shaheen
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
5
|
LakshmiBalasubramaniam S, Tajvidi M, Skonberg D. Hydrophobic corn zein-modified cellulose nanofibril (CNF) films with antioxidant properties. Food Chem 2024; 458:140220. [PMID: 38943949 DOI: 10.1016/j.foodchem.2024.140220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Cellulose nanofibrils (CNFs) can form strong biodegradable films; however, due to their hydrophilicity, moisture can degrade their mechanical and barrier properties. Corn zein (CZ) is a hydrophobic protein that when covalently linked with CNF films through peptide bonds, may improve their hydrophobicity. CZ was covalently linked to aminophenylacetic acid and aminobenzoic acid esterified CNF films which were then assessed for evidence of modification, hydrophobicity, mechanical properties, and antioxidant activity. Upon modification, an increase in hydrophobicity and an increase in antioxidant activity as evidenced by 57% higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 26% higher (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) ABTS scavenging activities when compared to control CNF films, and reduced thio barbituric acid reactive substances (TBARS) values in canola oil during 14 days of 50 °C storage were noted. Results demonstrate that modification of CNF films with a hydrophobic protein such as CZ can increase the hydrophobicity of these biodegradable films while providing active antioxidant functionality.
Collapse
Affiliation(s)
| | - Mehdi Tajvidi
- School of Forest Resources and Advanced Structures and Composites Center, University of Maine, Orono, ME, USA
| | - Denise Skonberg
- School of Food and Agriculture, University of Maine, Orono, ME, USA.
| |
Collapse
|
6
|
Martinez EA, Salvay AG, Sanchez-Díaz MR, Ludemann V, Peltzer MA. Functional characterization of biodegradable films obtained from whole Paecilomyces variotii biomass. Int Microbiol 2024; 27:1573-1585. [PMID: 38483746 DOI: 10.1007/s10123-024-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 10/05/2024]
Abstract
The indiscriminate use of petroleum-based polymers and plastics for single-use food packaging has led to serious environmental problems due the non-biodegradable characteristics. Thus, much attention has been focused on the research of new biobased and biodegradable materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with highly promising properties for the development of biodegradable materials. This study aimed to select a preparation method to develop new biodegradable films using the whole biomass of Paecilomyces variotii subjected to successive physical treatments including ultrasonic homogenization (US) and heat treatment. Sterilization process had an important impact on the final filmogenic dispersion and mechanical properties of the films. Longer US treatments produced a reduction in the particle size and the application of an intermediate UT treatment contributed favorably to the breaking of agglomerates allowing the second US treatment to be more effective, achieving an ordered network with a more uniform distribution. Samples that were not filtrated after the sterilization process presented mechanical properties similar to plasticized materials. On the other hand, the filtration process after sterilization eliminated soluble and hydratable compounds, which produced a reduction in the hydration of the films.
Collapse
Affiliation(s)
- Ezequiel A Martinez
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
- Laboratory of Food Mycology (LMA), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Andrés G Salvay
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Macarena R Sanchez-Díaz
- Laboratory of Food Mycology (LMA), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanesa Ludemann
- Laboratory of Food Mycology (LMA), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Mercedes A Peltzer
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, National University of Quilmes, Bernal, Argentina.
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Thomas H, Achenbach T, Hodgkinson IM, Spoerer Y, Kuehnert I, Dornack C, Schellhammer KS, Reineke S. Room Temperature Phosphorescence from Natural, Organic Emitters and Their Application in Industrially Compostable Programmable Luminescent Tags. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310674. [PMID: 38581239 DOI: 10.1002/adma.202310674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Organic semiconductors provide the potential of biodegradable technologies, but prototypes do only rarely exist. Transparent, ultrathin programmable luminescent tags (PLTs) are presented for minimalistic yet efficient information storage that are fully made from biodegradable or at least industrially compostable, ready-to-use materials (bioPLTs). As natural emitters, the quinoline alkaloids show sufficient room temperature phosphorescence when being embedded in polymer matrices with cinchonine exhibiting superior performance. Polylactic acid provides a solution for both the matrix material and the flexible substrate. Room temperature phosphorescence can be locally controlled by the oxygen concentration in the film by using Exceval as additional oxygen blocking layers. These bioPLTs exhibit all function-defining characteristics also found in their regular nonenvironmentally degradable analogs and, additionally, provide a simplified, high-contrast readout under continuous-wave illumination as a consequence of the unique luminescence properties of the natural emitter cinchonine. Limitations for flexible devices arise from limited thermal stability of the polylactic acid foil used as substrate allowing only for one writing cycle and preventing an annealing step during fabrication. Few-cycle reprogramming is possible when using the architecture of the bioPLTs on regular quartz substrates. This work realizes the versatile platform of PLTs with less harmful materials offering more sustainable use in future.
Collapse
Affiliation(s)
- Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Tim Achenbach
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Isla Marie Hodgkinson
- Chair of Waste Management and Circular Economy, Technische Universität Dresden, Pratzschwitzer Str. 15, 01796, Pirna, Germany
| | - Yvonne Spoerer
- Department Processing Technology, Institute of Polymer Materials, Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Ines Kuehnert
- Department Processing Technology, Institute of Polymer Materials, Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Christina Dornack
- Chair of Waste Management and Circular Economy, Technische Universität Dresden, Pratzschwitzer Str. 15, 01796, Pirna, Germany
| | - Karl Sebastian Schellhammer
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| |
Collapse
|
8
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
9
|
Geeta, Shivani, Devi N, Shayoraj, Bansal N, Sharma S, Dubey SK, Kumar S. Novel chitosan-based smart bio-nanocomposite films incorporating TiO 2 nanoparticles for white bread preservation. Int J Biol Macromol 2024; 267:131367. [PMID: 38583837 DOI: 10.1016/j.ijbiomac.2024.131367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Chitosan (CS)-based bio-nanocomposite food packaging films were prepared via solvent-casting method by incorporating a unique combination of additives and fillers, including polyvinyl alcohol (PVA), glycerol, Tween 80, castor oil (CO), and nano titanium dioxide (TiO2) in various proportions to enhance film properties. For a comprehensive analysis of the synthesized films, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), tensile testing, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and UV-vis spectrophotometry were employed. Furthermore, the antimicrobial efficacy of the films against S. aureus, E. coli, and A. niger was examined to assess their potential to preserve food from foodborne pathogens. The results claimed that the inclusion of castor oil and TiO2 nanoparticles considerably improved antimicrobial properties, UV-vis light barrier properties, thermal stability, optical transparency, and mechanical strength of the films, while reducing their water solubility, moisture content, water vapor and oxygen permeability. Based on the overall analysis, CS/PVA/CO/TiO2-0.3 film can be selected as the optimal one for practical applications. Furthermore, the practical application of the optimum film was evaluated using white bread as a model food product. The modified film successfully extended the shelf life of bread to 10 days, surpassing the performance of commercial LDPE packaging (6 days), and showed promising attributes for applications in the food packaging sector. These films exhibit superior antimicrobial properties, improved mechanical strength, and extended shelf life for food products, marking a sustainable and efficient alternative to conventional plastic packaging in both scientific research and industrial applications.
Collapse
Affiliation(s)
- Geeta
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Shivani
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Neeru Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Shayoraj
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Neha Bansal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Sanjay Sharma
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Santosh Kumar Dubey
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Satish Kumar
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
10
|
Rashed NM, Memon SA, Turki SMA, Shalaby TA, El-Mogy MM. An analysis of conventional and modern packaging approaches for cut flowers: a review article. FRONTIERS IN PLANT SCIENCE 2024; 15:1371100. [PMID: 38601313 PMCID: PMC11004386 DOI: 10.3389/fpls.2024.1371100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Fresh-cut flowers are considered to be one of the most delicate and challenging commercial crops. It is important to take into consideration how to minimize loss during storage and transportation when preserving cut flowers. Many impinging (bad effect) forces can interact to shorten the flowers' vase life. In the flower industry, effective methods need to be developed to extend freshly cut flowers' life. Fresh-cut flowers' vase life can be shortened by a variety of interlocking causes. The flower industry must develop new techniques to extend the flowers' vase lifespan. This review provides comprehensive, up-to-date information on classical, modified atmosphere packaging (MAP), and controlled atmosphere packaging (CAP) displays. According to this review, a promising packaging technique for fresh flowers can be achieved through smart packaging. A smart package is one that incorporates new technology to increase its functionality. This combines active packaging, nanotechnology, and intelligence. This technology makes it easier to keep an eye on the environmental variables that exist around the packaged flowers to enhance their quality. This article offers a comprehensive overview of creative flower-saving packaging ideas that reduce flower losses and assist growers in handling more effectively their flower inventory. To guarantee the quality of flowers throughout the marketing chain, innovative packaging techniques and advanced packaging technologies should be adopted to understand various package performances. This will provide the consumer with cut flowers of standard quality. Furthermore, sustainable packaging is achieved with circular packaging. We can significantly reduce packaging waste's environmental impact by designing reused or recyclable packaging.
Collapse
Affiliation(s)
- Nahed M. Rashed
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Horticulture Department, Faculty of Agriculture. Damietta University, Damietta, Egypt
| | - Saba Ambreen Memon
- Horticulture Department, Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Saleh M. Al Turki
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohamed M. El-Mogy
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Yaman M, Yildiz S, Özdemir A, Yemiş GP. Multicomponent system for development of antimicrobial PLA-based films with enhanced physical characteristics. Int J Biol Macromol 2024; 262:129832. [PMID: 38331069 DOI: 10.1016/j.ijbiomac.2024.129832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
This study aims to develop polylactic acid (PLA)-based packaging films with imparted antimicrobial properties and enhanced physical characteristics by evaluating the likely interaction among multiple film components. For this purpose; epoxidized soybean oil (ES) (20 %) serves as a plasticizer, spruce resin (SR) (15 %) functions as both a plasticizer and antimicrobial agent, ZnO (0.1 %) acts as a nanofiller and antimicrobial, and finally thyme and clove essential oil mixture (5 % and 10 %) serves as an antimicrobial agent were incorporated to PLA film formulation. Composite materials were prepared by the solvent casting method using methylene chloride as the solvent. The developed films were characterized in terms of physical, mechanical, thermal, and antimicrobial properties. Tensile strength (59 MPa) and elastic modulus (2625 MPa) of the neat PLA film gradually decreased to 8.99 MPa and 725.4 MPa, respectively, with the sequential addition of all components, indicating enhanced flexibility. SR, ZnO, and EOs significantly imparted antimicrobial property to the PLA film as demonstrated by the inhibition zone of 13.83 mm and 15.67 mm observed for E. coli and S. aureus, respectively. The barrier properties of the films were enhanced by the addition of SR and ZnO; however, EOs increased the water vapor permeability from 0.080 to 0.090 g.mm/m2.day.kPa compared to the neat PLA film. Principal component and hierarchical cluster analysis enabled the successful discrimination of the films, demonstrating how the film properties are affected by the film components. Therefore, this study suggests that selection of a proper combination is essential to highly benefit from the multicomponent film systems for designing alternative food packaging materials with desired properties.
Collapse
Affiliation(s)
- Merve Yaman
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Sakarya, Turkey
| | - Semanur Yildiz
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya, Turkey
| | - Abdil Özdemir
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Sakarya, Turkey.
| | - Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya, Turkey
| |
Collapse
|
12
|
Hu D, Xu Y, Gao C, Meng L, Feng X, Wang Z, Shen X, Tang X. Preparation and characterization of starch/PBAT film containing hydroxypropyl-β-cyclodextrin/ethyl lauroyl arginate/cinnamon essential oil microcapsules and its application in the preservation of strawberry. Int J Biol Macromol 2024; 259:129204. [PMID: 38185302 DOI: 10.1016/j.ijbiomac.2024.129204] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Cinnamon essential oil (CEO) was emulsified by hydroxypropyl-β-cyclodextrin/ ethyl lauroyl arginate (HPCD/LAE) complex to make nanoemulsions, which were then incorporated into maltodextrin (MD) to prepare HPCD/LAE/CEO/MD microcapsules by spray drying. The starch/polybutylene adipate terephthalate (starch/PBAT, SP) based extrusion-blowing films containing above microcapsules were developed and used as packaging materials for strawberry preservation. The morphology, encapsulation efficiency, thermal and antibacterial properties of microcapsules with different formulations were investigated. The effects of microcapsules on the physicochemical and antimicrobial properties of SP films were evaluated. When the formula was 4 % HPCD/LAE-3% CEO-10% MD (HL-3C-MD), the microcapsule had the smallest particle size (3.3 μm), the highest encapsulation efficiency (84.51 %) of CEO and the best antibacterial effect. The mechanical and antimicrobial properties of the SP film were enhanced while the water vapor transmittance and oxygen permeability decreased with the incorporation of HL-3C-MD microcapsules. The films effectively reduced the weight loss rate (49.03 %), decay rate (40.59 %) and the total number of colonies (2.474 log CFU/g) and molds (2.936 log CFU/g), thus extending the shelf life of strawberries. This study revealed that the developed SP films containing HPCD/LAE/CEO microcapsules had potential applications in degradable bioactive food packaging materials.
Collapse
Affiliation(s)
- Dongxia Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaoyao Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
13
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
14
|
Gad HA, Diab AM, Elsaied BE, Tayel AA. Biopolymer-based formulations for curcumin delivery toward cancer management. CURCUMIN-BASED NANOMEDICINES AS CANCER THERAPEUTICS 2024:309-338. [DOI: 10.1016/b978-0-443-15412-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Yao J, Song S, Zhao H, Yuan Y. Platinum-based drugs and hydrogel: a promising anti-tumor combination. Drug Deliv 2023; 30:2287966. [PMID: 38083803 PMCID: PMC10987050 DOI: 10.1080/10717544.2023.2287966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
Platinum-based drugs are widely used as first-line anti-tumor chemotherapy agents. However, they also have nonnegligible side effects due to the free drugs in circulation. Therefore, it is necessary to develop efficient and safe delivery systems for better tumor cell targeting. Hydrogel is a promising anti-tumor drug carrier that can form a platinum/hydrogel combination system for drug release, which has shown better anti-tumor effects in some studies. However, there is a lack of systematic summary in this field. This review aims to provide a comprehensive overview of the platinum/hydrogel combination system with the following sections: firstly, an introduction of platinum-based drugs; secondly, an analysis of the platinum/hydrogel combination system; and thirdly, a discussion of the advantages of the hydrogel-based delivery system. We hope this review can offer some insights for the development of the platinum/hydrogel combination system for better cancer therapy.
Collapse
Affiliation(s)
- Jiamin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shaojuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Sasimowski E, Majewski Ł, Grochowicz M. Study on the Biodegradation of Poly(Butylene Succinate)/Wheat Bran Biocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6843. [PMID: 37959440 PMCID: PMC10647723 DOI: 10.3390/ma16216843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
This paper presents the results of a study investigating the biodegradation of poly(butylene succinate) (PBS)/wheat bran (WB) biocomposites. Injection mouldings were subjected to biodegradation in compost-filled bioreactors under controlled humidity and temperature conditions. The effects of composting time (14, 42 and 70 days) and WB mass content (10%, 30% and 50% wt.) on the structural and thermal properties of the samples were investigated. Measurements were made by infrared spectral analysis, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. Results demonstrated that both the thermal and structural properties of the samples depended greatly on the biodegradation time. Specifically, their crystallinity degree increased significantly while molecular mass sharply decreased with biodegradation time, whereas their thermal resistance only showed a slight increase. This resulted from enzymatic hydrolysis that led to the breakdown of ester bonds in polymer chains. It was also found that a higher WB content led to a higher mass loss in the biocomposite samples during biodegradation and affected their post-biodegradation properties. A higher bran content increased the degree of crystallinity of the biocomposite samples but reduced their thermal resistance and molecular mass.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Łukasz Majewski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Marta Grochowicz
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland;
| |
Collapse
|
17
|
Zhang J, Liu S, Xie C, Wang C, Zhong Y, Fan K. Recent advances in pH-sensitive indicator films based on natural colorants for smart monitoring of food freshness: a review. Crit Rev Food Sci Nutr 2023; 64:12800-12819. [PMID: 37702748 DOI: 10.1080/10408398.2023.2257327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
As a new type of packaging method, natural pigment-based pH-sensitive indicator film packaging can be used to intelligently monitor food freshness, provide consumers with intuitive food freshness information, and own the advantages of small size, low cost and intuitive accuracy. Based on the introduction of the principle of natural pigment in pH-sensitive indicator film intelligent packaging, this paper reviews the types of natural pigment indicators (such as anthocyanins, curcumin) and film-forming matrix materials, and systematically discusses the research progress of their application in freshness monitoring in various foods, and points out the limitations of this intelligent packaging in practical applications. In order to provide natural pigment in the application and promotion of pH-sensitive indicator film packaging for monitoring food freshness, further research and development works are required to overcome the current limitations. The needs for further research and developments are outlined.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shengmao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chenxue Xie
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chengyang Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhong
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
18
|
Said NS, Olawuyi IF, Lee WY. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023; 9:732. [PMID: 37754413 PMCID: PMC10530747 DOI: 10.3390/gels9090732] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Pectin hydrogels have garnered significant attention in the food industry due to their remarkable versatility and promising properties. As a naturally occurring polysaccharide, pectin forms three-dimensional (3D) hydrophilic polymer networks, endowing these hydrogels with softness, flexibility, and biocompatibility. Their exceptional attributes surpass those of other biopolymer gels, exhibiting rapid gelation, higher melting points, and efficient carrier capabilities for flavoring and fat barriers. This review provides an overview of the current state of pectin gelling mechanisms and the classification of hydrogels, as well as their crosslinking types, as investigated through diverse research endeavors worldwide. The preparation of pectin hydrogels is categorized into specific gel types, including hydrogels, cryogels, aerogels, xerogels, and oleogels. Each preparation process is thoroughly discussed, shedding light on how it impacts the properties of pectin gels. Furthermore, the review delves into the various crosslinking methods used to form hydrogels, with a focus on physical, chemical, and interpenetrating polymer network (IPN) approaches. Understanding these crosslinking mechanisms is crucial to harnessing the full potential of pectin hydrogels for food-related applications. The review aims to provide valuable insights into the diverse applications of pectin hydrogels in the food industry, motivating further exploration to cater to consumer demands and advance food technology. By exploiting the unique properties of pectin hydrogels, food formulations can be enhanced with encapsulated bioactive substances, improved stability, and controlled release. Additionally, the exploration of different crosslinking methods expands the horizons of potential applications.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
19
|
Kim I, Chhetri G, So Y, Park S, Jung Y, Woo H, Seo T. Characterization and Antioxidant Activity of Exopolysaccharides Produced by Lysobacter soyae sp. nov Isolated from the Root of Glycine max L. Microorganisms 2023; 11:1900. [PMID: 37630460 PMCID: PMC10456730 DOI: 10.3390/microorganisms11081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial exopolysaccharides (EPSs) have attracted attention from several fields due to their high industrial applicability. In the present study, rhizosphere strain CJ11T was isolated from the root of Glycine max L. in Goyang-si, Republic of Korea, and a novel exopolysaccharide was purified from the Lysobacter sp. CJ11T fermentation broth. The exopolysaccharide's average molecular weight was 0.93 × 105 Da. Its monosaccharide composition included 72.2% mannose, 17.2% glucose, 7.8% galactose, and 2.8% arabinose. Fourier-transform infrared spectroscopy identified the exopolysaccharide carbohydrate polymer functional groups, and the structural properties were investigated using nuclear magnetic resonance. In addition, a microstructure of lyophilized EPS was determined by scanning electron microscopy. Using thermogravimetric analysis, the degradation of the exopolysaccharide produced by strain CJ11T was determined to be 210 °C. The exopolysaccharide at a concentration of 4 mg/mL exhibited 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging activity of 73.47%. Phylogenetic analysis based on the 16S rRNA gene sequencing results revealed that strain CJ11T was a novel isolate for which the name Lysobacter soyae sp. nov is proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (I.K.); (G.C.); (Y.S.); (S.P.); (Y.J.); (H.W.)
| |
Collapse
|
20
|
Chincholikar P, Singh KR, Natarajan A, Kerry RG, Singh J, Malviya J, Singh RP. Green nanobiopolymers for ecological applications: a step towards a sustainable environment. RSC Adv 2023; 13:12411-12429. [PMID: 37091622 PMCID: PMC10116188 DOI: 10.1039/d2ra07707h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/15/2023] [Indexed: 04/25/2023] Open
Abstract
To minimize the usage of non-renewable resources and to maintain a sustainable environment, the exploitation of green nanobiopolymers should be enhanced. Biopolymers are generally developed from various microorganisms and plants in the specified condition. This review article discusses the current advances and trends of biopolymers, particularly in the arena of nanotechnology. In addition, discussion on various synthesis steps and structural characterization of green polymer materials like cellulose, chitin, and lignin is also encompassed. This article aims to coordinate the most recent outputs and possible future utilization of nanobiopolymers to the ecosystem with negligible effects by promoting the utilities of polymeric materials like polycaprolactones, starch, and nanocellulose. Additionally, strategic modification of cellulose into nanocellulose via rearrangement of the polymeric compound to serve various industrial and medical purposes has also been highlighted in the review. Specifically, the process of nanoencapsulation and its advancements in terms of nutritional aspects was also presented. The potential utility of green nanobiopolymers is one of the best cost-effective alternatives concerning circular economy and thereby helps to maintain sustainability.
Collapse
Affiliation(s)
- Preeti Chincholikar
- Department of Chemistry, IES College of Technology Bhopal Madhya Pradesh India
| | - Kshitij Rb Singh
- Department of Chemistry, Banaras Hindu University Varanasi Uttar Pradesh India
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| | - Rout George Kerry
- Department of Biotechnology, Utkal University Bhubaneswar Odisha India
| | - Jay Singh
- Department of Chemistry, Banaras Hindu University Varanasi Uttar Pradesh India
| | - Jitendra Malviya
- Department of Life Sciences & Biological Sciences, IES University Bhopal Madhya Pradesh India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh India
| |
Collapse
|
21
|
Cui C, Gao L, Dai L, Ji N, Qin Y, Shi R, Qiao Y, Xiong L, Sun Q. Hydrophobic Biopolymer-Based Films: Strategies, Properties, and Food Applications. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
22
|
Myalenko D, Fedotova O. Physical, Mechanical, and Structural Properties of the Polylactide and Polybutylene Adipate Terephthalate (PBAT)-Based Biodegradable Polymer during Compost Storage. Polymers (Basel) 2023; 15:polym15071619. [PMID: 37050232 PMCID: PMC10097148 DOI: 10.3390/polym15071619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Today, packaging is an integral part of any food product, preserving its quality and safety. The use of biodegradable packaging as an alternative to conventional polymers reduces the consumption of synthetic polymers and their negative impacts on the environment. The purpose of this study was to analyze the properties of a biodegradable compound based on polylactide (PLA) and polybutylene adipate terephthalate (PBAT). Test samples were made by blown extrusion. The structural, physical, and mechanical properties of the PLA/PBAT material were studied. The property variations during compost storage in the lab were monitored for 365 days. The physical and mechanical properties were measured in accordance with the GOST 14236-2017 (ISO 527-2:2012) standard. We measured the tensile strength and elongation at rupture. We used attenuated total reflectance Fourier transform infrared microscopy (ATR-FTIR) to analyze the changes in the material structure. This paper presents a comparative analysis of the strengths of a biodegradable material and grade H polyethylene film (manufactured to GOST 10354-82). PLA/PBAT's longitudinal and transverse tensile strengths are 14.08% and 32.59% lower than those of LDPE, respectively. Nevertheless, the results indicate that, given its physical and mechanical properties, the PLA/PBAT material can be an alternative to conventional PE film food packaging. The structural study results are in good agreement with the physical and mechanical tests. Micrographs clearly show the surface deformations of the biodegradable material. They increase with the compost storage duration. The scanning microscopy (SEM) surface analysis of the original PLA/PBAT films indicated that the PLA structure is similar to that of a multilayer shell or sponge, which is visible at medium and especially high magnification. We conclude that PLA/PBAT-based biodegradable materials are potential substitutes for conventional PE polymer films.
Collapse
Affiliation(s)
- Dmitry Myalenko
- All-Russian Dairy Research Institute, Lyusinovskaya Street, 35, 7, 115093 Moscow, Russia
| | - Olga Fedotova
- All-Russian Dairy Research Institute, Lyusinovskaya Street, 35, 7, 115093 Moscow, Russia
| |
Collapse
|
23
|
Lai J, Huang H, Lin M, Xu Y, Li X, Sun B. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Front Microbiol 2023; 13:1113705. [PMID: 36713200 PMCID: PMC9878459 DOI: 10.3389/fmicb.2022.1113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Petro-plastic wastes cause serious environmental contamination that require effective solutions. Developing alternatives to petro-plastics and exploring feasible degrading methods are two solving routes. Bio-plastics like polyhydroxyalkanoates (PHAs), polylactic acid (PLA), polycaprolactone (PCL), poly (butylene succinate) (PBS), poly (ethylene furanoate) s (PEFs) and poly (ethylene succinate) (PES) have emerged as promising alternatives. Meanwhile, biodegradation plays important roles in recycling plastics (e.g., bio-plastics PHAs, PLA, PCL, PBS, PEFs and PES) and petro-plastics poly (ethylene terephthalate) (PET) and plasticizers in plastics (e.g., phthalate esters, PAEs). All these bio- and petro-materials show structure similarity by connecting monomers through ester bond. Thus, this review focused on bio-plastics and summarized the sequences and structures of the microbial enzymes catalyzing ester-bond synthesis. Most of these synthetic enzymes belonged to α/β-hydrolases with conserved serine catalytic active site and catalyzed the polymerization of monomers by forming ester bond. For enzymatic plastic degradation, enzymes about PHAs, PBS, PCL, PEFs, PES and PET were discussed, and most of the enzymes also belonged to the α/β hydrolases with a catalytic active residue serine, and nucleophilically attacked the ester bond of substrate to generate the cleavage of plastic backbone. Enzymes hydrolysis of the representative plasticizer PAEs were divided into three types (I, II, and III). Type I enzymes hydrolyzed only one ester-bond of PAEs, type II enzymes catalyzed the ester-bond of mono-ester phthalates, and type III enzymes hydrolyzed di-ester bonds of PAEs. Divergences of catalytic mechanisms among these enzymes were still unclear. This review provided references for producing bio-plastics, and degrading or recycling of bio- and petro-plastics from an enzymatic point of view.
Collapse
Affiliation(s)
- Jinghui Lai
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Huiqin Huang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
24
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
25
|
Cellulose nanofibrils and silver nanoparticles enhances the mechanical and antimicrobial properties of polyvinyl alcohol nanocomposite film. Sci Rep 2022; 12:19005. [PMID: 36347953 PMCID: PMC9643461 DOI: 10.1038/s41598-022-23305-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Recent findings of microplastics in marine food such as fish, crabs and shrimps necessitate the need to develop biodegradable packaging materials. This study reports on the development of a biodegradable packing material from cellulose nanofibril-polyvinyl alcohol nanocomposite embedded with silver nanoparticles. Microcrystalline cellulose was isolated from sugarcane bagasse via the kraft process followed by conversion of cellulose I to cellulose II using NaOH/urea/water solution. The nanofibrils were then isolated using (2,2,6,6-Tetramethylpiperidin-1-yl) oxyl (TEMPO) and used as a reinforcing element in polyvinyl alcohol composite prepared through solvent casting. The tensile strength, water solubility, optical properties, water vapor permeability and wettability of the prepared films were then evaluated. The antimicrobial potency of the films was evaluated using the disc diffusion antimicrobial assay against selected microorganisms.
Collapse
|
26
|
Phan VH, Tai Y, Chiang T, Yu C. Synthesis of poly(lactide‐
co
‐glycolide) containing high glycolide contents by ring‐opening polymerization as well as their structural characterizations, thermal properties, morphologies, and hydrophilicity. J Appl Polym Sci 2022. [DOI: 10.1002/app.53328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Van Hoang‐Khang Phan
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Yi‐Hsin Tai
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Tai‐Chin Chiang
- Global Development Engineering Program National Taiwan University of Science and Technology Taipei Taiwan
| | - Chin‐Yang Yu
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| |
Collapse
|
27
|
Starch based bio-nanocomposite films reinforced with montmorillonite and lemongrass oil nanoemulsion: development, characterization and biodegradability. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
28
|
Rincón E, Bautista JM, Espinosa E, Serrano L. Biopolymer‐based sachets enriched with acorn shell extracts produced by ultrasound‐assisted extraction for active packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.53102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Esther Rincón
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Juana M. Bautista
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Eduardo Espinosa
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Luis Serrano
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| |
Collapse
|
29
|
Hanumaiah Anupama B, AL‐Gunaid MQA, Shivanna Shasikala B, Theranya Ereppa S, Kavya R, Hatna Siddaramaiah B, Sangameshwara Madhukar B. Poly (o‐anisidine) Encapsulated K
2
ZrO
3
Nano‐core based Gelatin Nano Composites: Investigations of Optical, Thermal, Microcrystalline and Morphological Characteristics. ChemistrySelect 2022. [DOI: 10.1002/slct.202201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bommalapura Hanumaiah Anupama
- Department of Chemistry, Sri Jayachamarajendra College of Engineering JSS Science and Technology University Mysuru 570006 India
| | | | - Badaga Shivanna Shasikala
- Department of Physics, Sri Jayachamarajendra College of Engineering JSS Science & Technology University Mysuru 570006 India
| | | | - Rajanna Kavya
- Department of Chemistry, Sri Jayachamarajendra College of Engineering JSS Science and Technology University Mysuru 570006 India
| | - Basavarajaiah Hatna Siddaramaiah
- Department of Polymer science and Technology, Sri Jayachamarajendra College of Engineering JSS Science & Technology University Mysuru 570006 India
| | | |
Collapse
|
30
|
Bionanocomposites from spent hen proteins reinforced with polyhedral oligomeric silsesquioxane (POSS)/cellulose nanocrystals (CNCs). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Bhagath YB, Lee SY, Kola M, Sharma TSK, Beulah AM, Reddy YVM, Park TJ, Park JP, Sahukari R, Madhavi G. Effect of Sulfamerazine on Structural Characteristics of Sodium Alginate Biopolymeric Films. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Zhen N, Wang X, Li X, Xue J, Zhao Y, Wu M, Zhou D, Liu J, Guo J, Zhang H. Protein-based natural antibacterial materials and their applications in food preservation. Microb Biotechnol 2022; 15:1324-1338. [PMID: 34592061 PMCID: PMC9049624 DOI: 10.1111/1751-7915.13918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022] Open
Abstract
Plastics materials used for food packaging are recalcitrant, leading to a growing global environmental problem, which arouses the attention of environmental protection departments in many countries. Therefore, to meet the increasing demand for sustainable and environment-friendly consumer products, it is necessary for the food industry to develop natural antibacterial materials for food preservation. This review summarizes the common biodegradable natural antimicrobial agents and their applications in food preservation; as well as an overview of five commonly used biodegradable protein-based polymers, such as zein, soy protein isolate, gelatin and whey protein, with special emphasis on the advantages of protein-based biopolymers and their applications in food packaging industry.
Collapse
Affiliation(s)
- Nuo Zhen
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
- Department of Histology and EmbryologyNMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Basic Medical SciencesGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xinya Wang
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Xiang Li
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Jin Xue
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Yitao Zhao
- Department of Histology and EmbryologyNMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Basic Medical SciencesGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
| | - Min Wu
- Department of Histology and EmbryologyNMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Basic Medical SciencesGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
| | - Dongfang Zhou
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jingsheng Liu
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| | - Jinshan Guo
- Department of Histology and EmbryologyNMPA Key Laboratory for Safety Evaluation of CosmeticsSchool of Basic Medical SciencesGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
| | - Hao Zhang
- College of Food Science and EngineeringNational Engineering Laboratory for Wheat and Corn Deep ProcessingJilin Agricultural UniversityChangchunChina
| |
Collapse
|
33
|
Luo X, Zaitoon A, Lim LT. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr Rev Food Sci Food Saf 2022; 21:2489-2519. [PMID: 35365965 DOI: 10.1111/1541-4337.12942] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Intelligent food packaging system exhibits enhanced communication function by providing dynamic product information to various stakeholders (e.g., consumers, retailers, distributors) in the supply chain. One example of intelligent packaging involves the use of colorimetric indicators, which when subjected to external stimuli (e.g., moisture, gas/vapor, electromagnetic radiation, temperature), display discernable color changes that can be correlated with real-time changes in product quality. This type of interactive packaging system allows continuous monitoring of product freshness during transportation, distribution, storage, and marketing phases. This review summarizes the colorimetric indicator technologies for intelligent packaging systems, emphasizing on the types of indicator dyes, preparation methods, applications in different food products, and future considerations. Both food and nonfood indicator materials integrated into various carriers (e.g., paper-based substrates, polymer films, electrospun fibers, and nanoparticles) with material properties optimized for specific applications are discussed, targeting perishable products, such as fresh meat and fishery products. Colorimetric indicators can supplement the traditional "Best Before" date label by providing real-time product quality information to the consumers and retailers, thereby not only ensuring product safety, but also promising in reducing food waste. Successful scale-up of these intelligent packaging technologies to the industrial level must consider issues related to regulatory approval, consumer acceptance, cost-effectiveness, and product compatibility.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Canada
| |
Collapse
|
34
|
Tamošaitis A, JaruševičienĖ A, StrykaitĖ M, Damašius J. Analysis of antimicrobial whey protein‐based biocomposites with lactic acid, tea tree (
Melaleuca alternifolia
) and garlic (
Allium sativum
) essential oils for Edam cheese coating. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Almantas Tamošaitis
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - AušrinĖ JaruševičienĖ
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - Monika StrykaitĖ
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - Jonas Damašius
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| |
Collapse
|
35
|
Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022; 11:760. [PMID: 35267394 PMCID: PMC8909076 DOI: 10.3390/foods11050760] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers' expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as "biodegradable packaging", "active packaging", and "bioactive packaging" currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| | - Adem Gharsallaoui
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Emilie Dumas
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Sami Ghnimi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| |
Collapse
|
36
|
Optimizing the mechanical and surface topography of hydroxyapatite/Gd2O3/Graphene oxide nanocomposites for medical applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, Rahbar Saadat Y, Sharifi S, Zununi Vahed S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36:1156-1181. [PMID: 35129230 DOI: 10.1002/ptr.7389] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Health innovation and acceleration center, Tabriz University of Medical Sciences, Tabriz, Iran.,Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
| | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
38
|
Carmo IAD, de Souza AKN, Fayer L, Munk M, de Mello Brandão H, de Oliveira LFC, Bandeira S, Cavallini GS, de Souza NLGD. Cytotoxicity and bactericidal activity of alginate/polyethylene glycol films with zinc oxide or silicon oxide nanoparticles for food packaging. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Leonara Fayer
- Department of Biology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Michele Munk
- Department of Biology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Humberto de Mello Brandão
- National Center for Research on Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Brazil
| | - Luiz Fernando Cappa de Oliveira
- NEEM, Núcleo de Espectroscopia e Estrutura Molecular (Nucleus of Spectroscopy and Molecular Structure), Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Grasiele Soares Cavallini
- Postgraduate Program in Chemistry, Federal University of Tocantins, Gurupi, Brazil
- Graduation in Environmental Chemistry, Federal University of Tocantins, Gurupi, Brazil
| | - Nelson Luis Gonçalves Dias de Souza
- Postgraduate Program in Chemistry, Federal University of Tocantins, Gurupi, Brazil
- Graduation in Environmental Chemistry, Federal University of Tocantins, Gurupi, Brazil
| |
Collapse
|
39
|
Effect of Gum Arabic and Starch-Based Coating and Different Polyliners on Postharvest Quality Attributes of Whole Pomegranate Fruit. Processes (Basel) 2022. [DOI: 10.3390/pr10010164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This study investigated the effect of gum Arabic and starch-based coating and two polyliners (Liner 1-micro-perforated Xtend® and Liner 2-macro-perforated high-density polyethylene) on whole ‘Wonderful’ pomegranate fruit during cold storage (5 ± 1 °C and 95 ± 2% RH). Uncoated (UC) and coated (GAMS) fruit were packaged into standard open top ventilated cartons (dimensions: 0.40 m long, 0.30 m wide and 0.12 m high) with (GAMS + Liner 1, GAMS + Liner 2, UC + Liner 1 and UC + Liner 2) or without (UC and GAMS) polyliners. After 42 d, treatment GAMS + Liner 1 recorded the least weight loss (4.82%), whilst GAMS recorded lower (8.77%) weight loss than UC + Liner 2 (10.07%). The highest (24.74 mLCO2 kg−1h−1) and lowest (13.14 mLCO2 kg−1h−1) respiration rates were detected in UC and GAMS + Liner 1, respectively. The highest and lowest total soluble solids were recorded for GAMS (16.87 °Brix), and GAMS + Liner 1 (15.60 °Brix) and UC + Liner 1 (15.60 °Brix), respectively. Overall, no decay was detected for coated fruit packaged with either Liner 1 or Liner 2. Therefore, the combination of GAMS with Xtend® polyliners proved to be an effective treatment to maintain the quality of ‘Wonderful’ pomegranates during storage.
Collapse
|
40
|
Biopolymers from Industrial Waste. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Biopolymers from Agriculture Waste and By-Products. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Velázquez-Contreras F, Zamora-Ledezma C, López-González I, Meseguer-Olmo L, Núñez-Delicado E, Gabaldón JA. Cyclodextrins in Polymer-Based Active Food Packaging: A Fresh Look at Nontoxic, Biodegradable, and Sustainable Technology Trends. Polymers (Basel) 2021; 14:polym14010104. [PMID: 35012127 PMCID: PMC8747138 DOI: 10.3390/polym14010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
Using cyclodextrins (CDs) in packaging technologies helps volatile or bioactive molecules improve their solubility, to guarantee the homogeneous distribution of the complexed molecules, protecting them from volatilization, oxidation, and temperature fluctuations when they are associated with polymeric matrices. This technology is also suitable for the controlled release of active substances and allows the exploration of their association with biodegradable polymer targeting to reduce the negative environmental impacts of food packaging. Here, we present a fresh look at the current status of and future prospects regarding the different strategies used to associate cyclodextrins and their derivatives with polymeric matrices to fabricate sustainable and biodegradable active food packaging (AFP). Particular attention is paid to the materials and the fabrication technologies available to date. In addition, the use of cutting-edge strategies, including the trend of nanotechnologies in active food packaging, is emphasized. Furthermore, a critical view on the risks to human health and the associated updated legislation is provided. Some of the more representative patents and commercial products that currently use AFP are also listed. Finally, the current and future research challenges which must be addressed are discussed.
Collapse
Affiliation(s)
- Friné Velázquez-Contreras
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Escuela de Administración de Instituciones (ESDAI), Universidad Panamericana, Álvaro del Portillo 49, Ciudad Granja, Zapopan 45010, Mexico
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Iván López-González
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Estrella Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Correspondence: ; Tel.: +34-968-278-622
| |
Collapse
|
43
|
Janik M, Jamróz E, Tkaczewska J, Juszczak L, Kulawik P, Szuwarzyński M, Khachatryan K, Kopel P. Utilisation of Carp Skin Post-Production Waste in Binary Films Based on Furcellaran and Chitosan to Obtain Packaging Materials for Storing Blueberries. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7848. [PMID: 34947442 PMCID: PMC8704361 DOI: 10.3390/ma14247848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The aim of the study was to develop and characterise an innovative three-component biopolymer film based on chitosan (CHIT), furcellaran (FUR) and a gelatin hydrolysate from carp skins (Cyprinus carpio) (HGEL). The structure and morphology were characterised using the Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy (AFM). The FT-IR test showed no changes in the matrix after the addition of HGEL, which indicates that the film components were compatible. Based on the obtained AFM results, it was found that the addition of HGEL caused the formation of grooves and cracks on the surface of the film (reduction by ~21%). The addition of HGEL improved the antioxidant activity of the film (improvement by up to 2.318% and 444% of DPPH and FRAP power, respectively). Due to their properties, the tested films were used as active materials in the preservation of American blueberries. In the active films, the blueberries lost mass quickly compared to the synthetic film and were characterised by higher phenol content. The results obtained in this study create the opportunity to use the designed CHIT-FUR films in developing biodegradable packaging materials for food protection, but it is necessary to test their effectiveness on other food products.
Collapse
Affiliation(s)
- Magdalena Janik
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland; (M.J.); (E.J.); (K.K.)
| | - Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland; (M.J.); (E.J.); (K.K.)
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland; (J.T.); (P.K.)
| | - Lesław Juszczak
- Department of Food Analysis and Evaluation of Food Quality, University of Agriculture, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Piotr Kulawik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland; (J.T.); (P.K.)
| | - Michał Szuwarzyński
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Karen Khachatryan
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland; (M.J.); (E.J.); (K.K.)
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
44
|
Sasimowski E, Majewski Ł, Grochowicz M. Artificial Ageing, Chemical Resistance, and Biodegradation of Biocomposites from Poly(Butylene Succinate) and Wheat Bran. MATERIALS 2021; 14:ma14247580. [PMID: 34947175 PMCID: PMC8705729 DOI: 10.3390/ma14247580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
The results of comprehensive studies on accelerated (artificial) ageing and biodegradation of polymer biocomposites on PBS matrix filled with raw wheat bran (WB) are presented in this paper. These polymer biocomposites are intended for the manufacture of goods, in particular disposable packaging and disposable utensils, which decompose naturally under the influence of biological agents. The effects of wheat bran content within the range of 10–50 wt.% and extruder screw speed of 50–200 min−1 during the production of biocomposite pellets on the resistance of the products to physical, chemical, and biological factors were evaluated. The research included the determination of the effect of artificial ageing on the changes of structural and thermal properties by infrared spectra (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). They showed structural changes—disruption of chains within the ester bond, which occurred in the composition with 50% bran content as early as after 250 h of accelerated ageing. An increase in the degree of crystallinity with ageing was also found to be as high as 48% in the composition with 10% bran content. The temperature taken at the beginning of weight loss of the compositions studied was also lowered, even by 30 °C at the highest bran content. The changes of mechanical properties of biocomposite samples were also investigated. These include: hardness, surface roughness, transverse shrinkage, weight loss, and optical properties: colour and gloss. The ageing hardness of the biocomposite increased by up to 12%, and the surface roughness (Ra) increased by as much as 2.4 µm at the highest bran content. It was also found that ageing causes significant colour changes of the biocomposition (ΔE = 7.8 already at 10% bran content), and that the ageing-induced weight loss of the biocomposition of 0.31–0.59% is lower than that of the samples produced from PBS alone (1.06%). On the other hand, the transverse shrinkage of moldings as a result of ageing turned out to be relatively small, at 0.05%–0.35%. The chemical resistance of biocomposites to NaOH and HCl as well as absorption of polar and non-polar liquids (oil and water) were also determined. Biodegradation studies were carried out under controlled conditions in compost and weight loss of the tested compositions was determined. The weight of samples made from PBS alone after 70 days of composting decreased only by 4.5%, while the biocomposition with 10% bran content decreased by 15.1%, and with 50% bran, by as much as 68.3%. The measurements carried out showed a significant influence of the content of the applied lignocellulosic fillers (LCF) in the form of raw wheat bran (WB) on the examined properties of the biocompositions and the course of their artificial ageing and biodegradation. Within the range under study, the screw speed of the extruder during the production of biocomposite pellets did not show any significant influence on most of the studied properties of the injection mouldings produced from it.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Łukasz Majewski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Correspondence:
| | - Marta Grochowicz
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska 3, 20-031 Lublin, Poland;
| |
Collapse
|
45
|
Mi T, Zhang X, Liu P, Gao W, Li J, Xu N, Yuan C, Cui B. Ultrasonication effects on physicochemical properties of biopolymer-based films: A comprehensive review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34872394 DOI: 10.1080/10408398.2021.2012420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Biopolymeric films manufactured from materials such as starch, cellulose, protein, chitosan, gelatin, and polyvinyl alcohol are widely applied due to their complete biodegradability. While biopolymer-based films exhibit good gas barriers and optical properties when used in packaging, poor moisture resistance and mechanical properties limit their further application. Ultrasonication is a promising, effective technology for resolving these shortcomings, with its high efficiency, environmentally friendly nature, and safety. This review briefly introduces basic ultrasonication principles and their main effects on mechanical properties, transparency, color, microstructure, water vapor permeability, and oxygen resistance. We also describe the thermal performance of biopolymeric films. While ultrasonication has many positive effects on the physicochemical properties of biopolymeric films, many factors influence their behavior during film preparation, including power density, amplitude, treatment time, frequency, and the inherent properties of the source materials. This review focuses on biopolymers as film-forming materials and comprehensively discusses the promotional effects of ultrasonication on their physicochemical properties.
Collapse
Affiliation(s)
- Tongtong Mi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,Faculty of Agricultural and Veterinary Sciences, Liaocheng Vocational and Technical College, Liaocheng, Shandong, China
| | - Xiaolei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Nuo Xu
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| |
Collapse
|
46
|
Chawla R, Sivakumar S, Kaur H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Obtaining Active Polylactide (PLA) and Polyhydroxybutyrate (PHB) Blends Based Bionanocomposites Modified with Graphene Oxide and Supercritical Carbon Dioxide (scCO 2)-Assisted Cinnamaldehyde: Effect on Thermal-Mechanical, Disintegration and Mass Transport Properties. Polymers (Basel) 2021; 13:polym13223968. [PMID: 34833267 PMCID: PMC8621613 DOI: 10.3390/polym13223968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Bionanocomposites based on Polylactide (PLA) and Polyhydroxybutyrate (PHB) blends were successfully obtained through a combined extrusion and impregnation process using supercritical CO2 (scCO2). Graphene oxide (GO) and cinnamaldehyde (Ci) were incorporated into the blends as nano-reinforcement and an active compound, respectively, separately, and simultaneously. From the results, cinnamaldehyde quantification values varied between 5.7% and 6.1% (w/w). When GO and Ci were incorporated, elongation percentage increased up to 16%, and, therefore, the mechanical properties were improved, with respect to neat PLA. The results indicated that the Ci diffusion through the blends and bionanocomposites was influenced by the nano-reinforcing incorporation. The disintegration capacity of the developed materials decreased with the incorporation of GO and PHB, up to 14 and 23 days of testing, respectively, without compromising the biodegradability characteristics of the final material.
Collapse
|
48
|
Birania S, Kumar S, Kumar N, Attkan AK, Panghal A, Rohilla P, Kumar R. Advances in development of biodegradable food packaging material from agricultural and
agro‐industry
waste. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Nitin Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Anil Panghal
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Priyanka Rohilla
- Centre of Food Science and Technology, College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Ravi Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
49
|
Preparation and Characterization of Polyethylene Biocomposites Reinforced by Rice Husk: Application as Potential Packaging Material. CHEMISTRY 2021. [DOI: 10.3390/chemistry3040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of biodegradable materials as food packaging material is important not only due to the reduction in environmental pollution but also because of an improvement in the functionality. Rice husk-reinforced biopolymers have offered a possible solution to waste-disposal problems associated with traditional petroleum-derived plastics. Rice husk-reinforced low density polyethylene (LDPE)-based biocomposites have been of great interest for their use as food packaging material. In this work, the LDPE/RH biocomposites with different rice husk (RH) content (10, 20, 30, 40 and 50 wt.%) were prepared by the melt mixing process in a laboratory Brabender mixer. The effect of RH content on the physical, thermal and mechanical properties of LDPE was investigated. More importantly, this work aimed to research the biodegradation of the LDPE/RH biocomposites as well as their effect on ‘Granny Smith’ apples’ respiration. The results showed that the incorporation of RH into the LDPE decreased the thermal stability of LDPE, increased water vapour permeability and water absorption, and increased the degree of crystallinity. The incorporation of RH increased the biodegradability of LDPE as well as the postharvest quality of ‘Granny Smith’ apples. The addition of RH in LDPE film significantly decreased fruit respiration and increased firmness as compared to LDPE film. The composting results showed that after the LDPE/RH biocomposite films were biodegraded for 21 days, the biocomposite films with the highest content of rice husks were the most degraded.
Collapse
|
50
|
Verma MK, Shakya S, Kumar P, Madhavi J, Murugaiyan J, Rao MVR. Trends in packaging material for food products: historical background, current scenario, and future prospects. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4069-4082. [PMID: 34538891 PMCID: PMC8405760 DOI: 10.1007/s13197-021-04964-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/26/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The commercial demand for food products and dietary supplements has increased drastically in the last few decades. The packed food products and nutritional supplements have made a profound impact on the modern human lifestyle. Since ancient times, storage and long-term use of food products remain a significant challenge for humans. There are different parameters for the evaluation of food products and dietary supplements broadly categorized as quality control and quality assurance. On an average million tons of food, materials get spoiled daily worldwide due to lack of storage and transportation point out packaging systems inequalities. To ensure the quality of packed food products and nutritional supplements among available measures, packaging remained an important event and had been refined from time to time to provide a standard. Over a period, the packaging industry has evolved using modern technology from the conventional methods of new generation packaging, including glass, wood, and paper to most new biodegradable materials. The ancient pattern of packaging; manual packaging has been taken over by an automated system of packing, resulting in enhanced output with minimal chance of damage to valuable products for humanity. The article will emphasize new insights into current packaging system not only provide the quality of these products but also in aiming new heights beyond conventional technologies and consumer opinions. In the present study, we have given more emphasis on novel methods of packaging, the packaging materials, quality of packed products, and their impacts of food products on the environment.
Collapse
Affiliation(s)
- M. K. Verma
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522019 India
| | - S. Shakya
- Indian Institute of Technology, Indore, Madhya Pradesh India
| | - P. Kumar
- Avalon School of Medicine, Avalon University, Willemstad, Curaçao
| | - J. Madhavi
- Department of Microbiology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522019 India
| | - J. Murugaiyan
- Department of Biology/Biotechnology, SRM University Amravati, Guntur, Andhra Pradesh 522502 India
| | - M. V. R. Rao
- Apollo Institute of Medical Sciences and Research, Hyderabad, Telangana India
| |
Collapse
|