1
|
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024; 25:9039. [PMID: 39201724 PMCID: PMC11354652 DOI: 10.3390/ijms25169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Brassicaceae genus consists of many economically important mustards of value for food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata), black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irregularis), white mustard (Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea. Other species are foraged from the wild where they grow on roadsides and as a weed of arable land, i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse range of bioactive natural products including sulfur-containing glucosinolates and other potentially valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the molecules that are produced throughout the plant have been used in traditional medicines and more recently in the mainstream pharmaceutical and food industries. This study relates the uses of mustards in traditional medicines with their bioactive molecules and possible mechanisms of action and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their phytochemicals, and their biological activities.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Amina Khatun
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Bronwyn J. Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
2
|
Ding Y, Li H, Liu X, Cheng X, Chen W, Wu M, Chen L, He J, Chao H, Jia H, Fu C, Li M. Multi-Omics Analysis Revealed the AGR-FC.C3 Locus of Brassica napus as a Novel Candidate for Controlling Petal Color. PLANTS (BASEL, SWITZERLAND) 2024; 13:507. [PMID: 38498487 PMCID: PMC10892695 DOI: 10.3390/plants13040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Variations in the petal color of Brassica napus are crucial for ornamental value, but the controlled loci for breeding remain to be unraveled. Here, we report a candidate locus, AGR-FC.C3, having conducted a bulked segregant analysis on a segregating population with different petal colors. Our results showed that the locus covers 9.46 Mb of the genome, harboring 951 genes. BnaC03.MYB4, BnaC03.MYB85, BnaC03.MYB73, BnaC03.MYB98, and BnaC03.MYB102 belonging to MYB TFs families that might regulate the petal color were observed. Next, a bulk RNA sequencing of white and orange-yellow petals on three development stages was performed to further identify the possible governed genes. The results revealed a total of 51 genes by overlapping the transcriptome data and the bulked segregant analysis data, and it was found that the expression of BnaC03.CCD4 was significantly up-regulated in the white petals at three development stages. Then, several novel candidate genes such as BnaC03.ENDO3, BnaC03.T22F8.180, BnaC03.F15C21.8, BnaC03.Q8GSI6, BnaC03.LSD1, BnaC03.MAP1Da, BnaC03.MAP1Db, and BnaC03G0739700ZS putative to controlling the petal color were identified through deeper analysis. Furthermo re, we have developed two molecular markers for the reported functional gene BnaC03.CCD4 to discriminate the white and orange-yellow petal colors. Our results provided a novel locus for breeding rapeseed with multi-color petals.
Collapse
Affiliation(s)
- Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Xinmin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Xin Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Mingli Wu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Liurong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Haibo Jia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
3
|
Hosseinpoor L, Navidshad B, Faseleh Jahromi M, Karimzadeh S, Kalantari Hesari A, Mirzaei Aghjehgheshlagh F, Lotfollahian H, Oskoueian E, Heydari A. The Antioxidant Properties of Bioactive Peptides Derived from Enzymatic Hydrolyzed or Fermented Canola Meal and Its Effects on Broiler Chickens. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Fu H, Chao H, Zhao X, Wang H, Li H, Zhao W, Sun T, Li M, Huang J. Anthocyanins identification and transcriptional regulation of anthocyanin biosynthesis in purple Brassica napus. PLANT MOLECULAR BIOLOGY 2022; 110:53-68. [PMID: 35723867 DOI: 10.1007/s11103-022-01285-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The main anthocyanin components were identified, and the transcriptional regulation pattern of anthocyanin related genes in leaves and stem bark was elucidated in a purple B. napus. Brassica napus is one of the most important oil crops planted worldwide, and developing varieties of dual-purpose for oil and vegetable is beneficial to improve economic benefits. Anthocyanins are a class of secondary metabolites that not only make plants present beautiful colors, but have a variety of important physiological functions and biological activities. Therefore, increasing the accumulation of anthocyanin in vegetative organs can improve vegetable value of rapeseed. However, anthocyanin enriched varieties in vegetative organs are rare, and there are few studies on category identification and accumulation mechanism of anthocyanin, which limits the utilization of anthocyanins in B. napus. In this study, 157 anthocyanin biosynthesis related genes (ABGs) were identified in B. napus genome by homology comparison and collinearity analysis of genes related to anthocyanin synthesis and regulation in Arabidopsis. Moreover, five anthocyanins were identified in the stem bark and leaves of the purple B. napus PR01 by high performance liquid chromatography-mass spectrometry (HPLC-MS), and the expression characteristics of ABGs in the leaves and stem bark of PR01 were analyzed and compared with the green cultivar ZS11 by RNA-Seq. Combining further weighted gene co-expression network analysis (WGCNA), the up-regulation of transcript factors BnaA07. PAP2 and BnaC06. PAP2 were identified as the key to the up-regulation of most of anthocyanin synthesis genes that promoted anthocyanin accumulation in PR01. This study is helpful to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provides the theoretical basis for breeding novel varieties of dual-purpose for oil and vegetable.
Collapse
Affiliation(s)
- Hong Fu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xuejie Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoyi Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Protease Inhibitors Purified from the Canola Meal Extracts of Two Genetically Diverse Genotypes Exhibit Antidiabetic and Antihypertension Properties. Molecules 2021; 26:molecules26072078. [PMID: 33916639 PMCID: PMC8038563 DOI: 10.3390/molecules26072078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022] Open
Abstract
Valorization of vegetable oil waste residues is gaining importance due to their high protein and polyphenol contents. Protease inhibitors (PIs), proteins from these abundantly available waste residues, have recently gained importance in treating chronic diseases. This research aimed to use canola meal of genetically diverse Brassica napus genotypes, BLN-3347 and Rivette, to identify PIs with diverse functionalities in therapeutic and pharmacological applications. The canola meal PI purification steps involved: native PAGE and trypsin inhibition activity, followed by ammonium sulfate fractionation, anion exchange, gel filtration, and reverse-phase chromatography. The purified PI preparations were characterized using SDS-PAGE, isoelectric focusing (IEF), and N terminal sequencing. SDS-PAGE analysis of PI preparations under native reducing and nonreducing conditions revealed three polymorphic PIs in each genotype. The corresponding IEF of the genotype BLN-3347, exhibited three acidic isoforms with isoelectric points (pI) of 4.6, 4.0, and 3.9, while Rivette possessed three isoforms, exhibiting two basic forms of pI 8.65 and 9.9, and one acidic of pI 6.55. Purified PI preparations from both the genotypes displayed dipeptidyl peptidase-IV (DPP-IV) and angiotensin-converting enzyme (ACE) inhibition activities; the BLN-3347 PI preparation exhibited a strong inhibitory effect with lower IC50 values (DPP-IV 37.42 µg/mL; ACE 129 µg/mL) than that from Rivette (DPP-IV 67.97 µg/mL; ACE 376.2 µg/mL). In addition to potential human therapy, these highly polymorphic PIs, which can inhibit damaging serine proteases secreted by canola plant pathogens, have the potential to be used by canola plant breeders to seek qualitative trait locus (QTLs) linked to genes conferring resistance to canola diseases.
Collapse
|
6
|
Chmielewska A, Kozłowska M, Rachwał D, Wnukowski P, Amarowicz R, Nebesny E, Rosicka-Kaczmarek J. Canola/rapeseed protein - nutritional value, functionality and food application: a review. Crit Rev Food Sci Nutr 2020; 61:3836-3856. [PMID: 32907356 DOI: 10.1080/10408398.2020.1809342] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant-based diet and plant proteins specifically are predestined to meet nutritional requirements of growing population of humans and simultaneously reduce negative effects of food production on the environment. While searching for new sources of proteins, special emphasis should be placed on oilseeds of Brassica family comprising varieties of rapeseed and canola as they contain nutritionally valuable proteins, which have potential to be used in food, but are now rarely or not used as food components. The purpose of the present work is to provide a comprehensive review of main canola/rapeseed proteins: cruciferin and napin, with the focus on their nutritional and functional features, putting special emphasis on their possible applications in food. Technological challenges to obtain rapeseed protein products that are free from anti-nutritional factors are also addressed. As molecular structure of cruciferin and napin differs, they exhibit distinct features, such as solubility, emulsifying, foaming or gelling properties. Potential allergenic effect of 2S napin has to be taken under consideration. Overall, rapeseed proteins demonstrate beneficial nutritional value and functional properties and are deemed to play important roles both in food, as well as, non-food and non-feed applications.
Collapse
Affiliation(s)
- Anna Chmielewska
- NapiFeryn BioTech Ltd, Lodz, Poland.,Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | | | - Ryszard Amarowicz
- NapiFeryn BioTech Ltd, Lodz, Poland.,Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Ewa Nebesny
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
7
|
Poisson E, Trouverie J, Brunel-Muguet S, Akmouche Y, Pontet C, Pinochet X, Avice JC. Seed Yield Components and Seed Quality of Oilseed Rape Are Impacted by Sulfur Fertilization and Its Interactions With Nitrogen Fertilization. FRONTIERS IN PLANT SCIENCE 2019; 10:458. [PMID: 31057573 PMCID: PMC6477675 DOI: 10.3389/fpls.2019.00458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/26/2019] [Indexed: 05/21/2023]
Abstract
Although the impact of sulfur (S) availability on the seed yield and nutritional quality of seeds has been demonstrated, its impact coupled with nitrogen (N) availability remains poorly studied in oilseed rape. A deeper knowledge of S and N interactions on seed yield components and seed quality could improve S and N fertilization management in a sustainable manner. To address this question, our goals were to determine the effects of nine different S fertilization management strategies (i) in interaction with different levels of N fertilization and (ii) according to the timing of application (by delaying and fractionating the S inputs) on agronomic performances and components of seed yield. The impact of these various managements of S and N fertilizations was also investigated on the seed quality with a focus on the composition of SSPs (mainly represented by napins and cruciferins). Our results highlighted synergetic effects on S and N use efficiencies at optimum rates of S and N inputs and antagonistic effects at excessive rates of one of the two elements. The data indicated that adjustment of S and N fertilization may lead to high seed yield and seed protein quality in a sustainable manner, especially in the context of reductions in N inputs. Delaying S inputs improved the seed protein quality by significantly increasing the relative abundance of napin (a SSP rich in S-containing amino acids) and decreasing the level of a cruciferin at 30 kDa (a SSP with low content of S-amino acids). These observations suggest that fractionated or delayed S fertilizer inputs could provide additional insights into the development of N and S management strategies to maintain or improve seed yield and protein quality. Our results also demonstrated that the S% in seeds and the napin:30 kDa-cruciferin ratio are highly dependent on S/N fertilization in relation to S supply. In addition, we observed a strong relationship between S% in seeds and the abundance of napin as well as the napin:30 kDa-cruciferin ratio, suggesting that S% may be used as a relevant index for the determination of protein quality in seeds in terms of S-containing amino acids.
Collapse
Affiliation(s)
- Emilie Poisson
- UMR Ecophysiologie Végétale et Agronomie (EVA), Normandie Université, UNICAEN, INRA, SFR Normandie Végétal (FED4277), Caen, France
| | - Jacques Trouverie
- UMR Ecophysiologie Végétale et Agronomie (EVA), Normandie Université, UNICAEN, INRA, SFR Normandie Végétal (FED4277), Caen, France
| | - S. Brunel-Muguet
- UMR Ecophysiologie Végétale et Agronomie (EVA), Normandie Université, UNICAEN, INRA, SFR Normandie Végétal (FED4277), Caen, France
| | - Yacine Akmouche
- UMR Ecophysiologie Végétale et Agronomie (EVA), Normandie Université, UNICAEN, INRA, SFR Normandie Végétal (FED4277), Caen, France
| | - Célia Pontet
- Terres Inovia, Centre de Recherche INRA de Toulouse, Bâtiment AGIR, Castanet-Tolosan, France
| | - Xavier Pinochet
- Terres Inovia, Direction Etudes et Recherches, Campus INRA Agro ParisTech, Thiverval Grignon, France
| | - Jean-Christophe Avice
- UMR Ecophysiologie Végétale et Agronomie (EVA), Normandie Université, UNICAEN, INRA, SFR Normandie Végétal (FED4277), Caen, France
| |
Collapse
|
8
|
Mupondwa E, Li X, Wanasundara JPD. Technoeconomic Prospects for Commercialization ofBrassica(Cruciferous) Plant Proteins. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Edmund Mupondwa
- Bioproducts and Bioprocesses; Science and Technology Branch (STB), Agriculture and Agri-Food Canada (AAFC), Government of Canada, Saskatoon Research and Development Centre (SRDC); 107 Science Place, Saskatoon Saskatchewan S7N 0X2 Canada
- Department of Chemical and Biological Engineering; University of Saskatchewan; 57 Campus Drive, Saskatoon Saskatchewan S7N 5A9 Canada
| | - Xue Li
- Bioproducts and Bioprocesses; Science and Technology Branch (STB), Agriculture and Agri-Food Canada (AAFC), Government of Canada, Saskatoon Research and Development Centre (SRDC); 107 Science Place, Saskatoon Saskatchewan S7N 0X2 Canada
| | - Janitha P. D. Wanasundara
- Bioproducts and Bioprocesses; Science and Technology Branch (STB), Agriculture and Agri-Food Canada (AAFC), Government of Canada, Saskatoon Research and Development Centre (SRDC); 107 Science Place, Saskatoon Saskatchewan S7N 0X2 Canada
- Department of Food and Bioproduct Sciences; University of Saskatchewan; 51 Campus Drive, Saskatoon Saskatchewan S7N 5A8 Canada
| |
Collapse
|
9
|
Gacek K, Bartkowiak-Broda I, Batley J. Genetic and Molecular Regulation of Seed Storage Proteins (SSPs) to Improve Protein Nutritional Value of Oilseed Rape ( Brassica napus L.) Seeds. FRONTIERS IN PLANT SCIENCE 2018; 9:890. [PMID: 30013586 PMCID: PMC6036235 DOI: 10.3389/fpls.2018.00890] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/07/2018] [Indexed: 05/20/2023]
Abstract
The world-wide demand for additional protein sources for human nutrition and animal feed keeps rising due to rapidly growing world population. Oilseed rape is a second important oil producing crop and the by-product of the oil production is a protein rich meal. The protein in rapeseed meal finds its application in animal feed and various industrial purposes, but its improvement is of great interest, especially for non-ruminants and poultry feed. To be able to manipulate the quality and quantity of seed protein in oilseed rape, understanding genetic architecture of seed storage protein (SSPs) synthesis and accumulation in this crop species is of great interest. For this, application of modern molecular breeding tools such as whole genome sequencing, genotyping, association mapping, and genome editing methods implemented in oilseed rape seed protein improvement would be of great interest. This review examines current knowledge and opportunities to manipulate of SSPs in oilseed rape to improve its quality, quantity and digestibility.
Collapse
Affiliation(s)
- Katarzyna Gacek
- Oilseed Crops Research Centre, Plant Breeding and Acclimatization Institute-National Research Institute, Poznań, Poland
| | - Iwona Bartkowiak-Broda
- Oilseed Crops Research Centre, Plant Breeding and Acclimatization Institute-National Research Institute, Poznań, Poland
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- *Correspondence: Jacqueline Batley,
| |
Collapse
|
10
|
Karimzadeh S, Rezaei M, Yansari AT. Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Influence of soybean bioactive peptides on growth performance, nutrient utilisation, digestive tract development and intestinal histology in broilers. JOURNAL OF APPLIED ANIMAL NUTRITION 2017. [DOI: 10.1017/jan.2017.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SummaryA biologically active peptide derived from soybeans by enzymatic hydrolysis was evaluated for its potential benefits on chicken growth performance, apparent ileal nutrient digestibility and intestinal histology in young broilers. Seven broiler starter diets, based on maize and soybean meal, were formulated to contain 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g/kg of a commercial soybean bioactive peptide (SBP) product (Fortide, Chengdu Mytech Biotech Co. Ltd., Chengdu, Sichuan, China). All diets were equivalent in respect of energy density, and digestible protein, amino acids, and other nutrients. A total of 336, one-day-old male broilers (Ross 308) were allocated to 42 cages (eight birds/cage), which were randomly assigned to the six dietary treatments. There was no significant effect of SBP on weight gain and feed intake of the birds. A significant (P < 0.01) effect of SBP was observed for FCR. Inclusion of 1.0, 2.0, 3.0 and 4.0 g SBP/kg of feed resulted in similar FCR values to the diet with no SBP, addition of SBP to the diets at 5.0 and 6.0 g/kg of feed resulted in lower (P < 0.05) FCR compared to the diet with no SBP. Inclusion of SBP had no effect (P > 0.05) on apparent ileal digestibility of nutrients and energy utilisation. Though not statistically significant, SBP inclusion, regardless of level, resulted in 5.7% and 6.3% increases in digestibility of dry matter and nitrogen, respectively. Birds receiving no SBP had the shortest villi and those fed SBP at 3.0 and 6.0 g/kg of feed tended (P = 0.075) to have the greatest villus height. The current findings suggested that including SBP in broiler diets may benefit production through improving feed efficiency, and, to some extent, nutrient digestion and intestinal histology parameters.
Collapse
|
12
|
Slizyte R, Rommi K, Mozuraityte R, Eck P, Five K, Rustad T. Bioactivities of fish protein hydrolysates from defatted salmon backbones. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2016; 11:99-109. [PMID: 28352546 PMCID: PMC5042338 DOI: 10.1016/j.btre.2016.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 11/07/2022]
Abstract
Bioactivities of bulk fish protein hydrolysates (FPH) from defatted salmon backbones obtained with eight different commercial enzymes and their combinations were tested. All FPH showed antioxidative activity in vitro. DPPH scavenging activity increased, while iron chelating ability decreased with increasing time of hydrolysis. All FPH showed ACE inhibiting effect which depended on type of enzyme and increased with time of hydrolysis. The highest effect was found for FPH produced with Trypsin. Bromelain + Papain hydrolysates reduced the uptake of radiolabelled glucose into CaCo-2 cells, a model of human enterocytes, indicating a potential antidiabetic effect of FPH. FPH obtained by Trypsin, Bromelain + Papain and Protamex showed the highest ACE inhibitory, cellular glucose transporter (GLUT/SGLT) inhibitory and in vitro antioxidative activities, respectively. Correlation was observed between the measured bioactivities, degree of hydrolysis and molecular weight profiles, supporting prolonged hydrolysis to obtain high bioactivities.
Collapse
Affiliation(s)
| | | | | | - Peter Eck
- Department of Human Nutritional Sciences, University of Manitoba, Canada
| | - Kathrine Five
- Norwegian University of Science and Technology, Norway
| | - Turid Rustad
- Norwegian University of Science and Technology, Norway
| |
Collapse
|
13
|
Effect of maleylation on physicochemical and functional properties of rapeseed protein isolate. Journal of Food Science and Technology 2016; 53:1784-97. [PMID: 27413206 DOI: 10.1007/s13197-016-2197-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/27/2016] [Accepted: 03/08/2016] [Indexed: 10/21/2022]
Abstract
Influence of maleylation on the physicochemical and functional properties of rapeseed protein isolate was studied. Acylation increased whiteness value and dissociation of proteins, but reduced free sulfhydryl and disulfide content (p < 0.05). Intrinsic fluorescence emission and FTIR spectra revealed distinct perturbations in maleylated proteins' tertiary and secondary conformations. Increase in surface hydrophobicity, foaming capacity, emulsion stability, protein surface load at oil-water interface and decrease in surface tension at air-water interface, occurred till moderate level of modification. While maleylation impaired foam stability, protein solubility and emulsion capacity were markedly ameliorated (p < 0.05), which are concomitant with decreased droplet size distribution (d 32). In-vitro digestibility and cytotoxicity tests suggested no severe ill-effects of modified proteins, especially up to low degrees of maleylation. The study shows good potential for maleylated rapeseed proteins as functional food ingredient.
Collapse
|
14
|
Campbell L, Rempel CB, Wanasundara JPD. Canola/Rapeseed Protein: Future Opportunities and Directions-Workshop Proceedings of IRC 2015. PLANTS 2016; 5:plants5020017. [PMID: 27135237 PMCID: PMC4931397 DOI: 10.3390/plants5020017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/16/2022]
Abstract
At present, canola meal is primarily streamlined into the animal feed market where it is a competitive animal feed source owing to its high protein value. Beyond animal feed lies a potential game-changer with regards to the value of canola meal, and its opportunity as a high quality food protein source. An economic and sustainable source of protein with high bioavailability and digestibility is essential to human health and well-being. Population pressures, ecological considerations, and production efficiency underscore the importance of highly bioavailable plant proteins, both for the developed and developing world. Despite decades of research, several technologies being developed, and products being brought to large scale production, there are still no commercially available canola protein products. The workshop entitled "Canola/Rapeseed Protein-Future Opportunities and Directions" that was held on 8 July 2015 during the 14th International Rapeseed Congress (IRC 2015) addressed the current situation and issues surrounding canola meal protein from the technological, nutritional, regulatory and genomics/breeding perspective. Discussions with participants and experts in the field helped to identify economic barriers and research gaps that need to be addressed in both the short and long term for the benefit of canola industry.
Collapse
Affiliation(s)
- Lisa Campbell
- Canola Council of Canada, 400-167 Lombard Avenue, Winnipeg, MB R3B 0T6, Canada.
| | - Curtis B Rempel
- Canola Council of Canada, 400-167 Lombard Avenue, Winnipeg, MB R3B 0T6, Canada.
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Ellis Building, Winnipeg, MB R3T 2N2, Canada.
| | - Janitha P D Wanasundara
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| |
Collapse
|
15
|
Hernández-Ledesma B, Hsieh CC. Chemopreventive role of food-derived proteins and peptides: A review. Crit Rev Food Sci Nutr 2015; 57:2358-2376. [DOI: 10.1080/10408398.2015.1057632] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Chia-Chien Hsieh
- Department of Human Development and Family Studies (Nutritional Science and Education), National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
16
|
Hernández-Jabalera A, Cortés-Giraldo I, Dávila-Ortíz G, Vioque J, Alaiz M, Girón-Calle J, Megías C, Jiménez-Martínez C. Influence of peptides-phenolics interaction on the antioxidant profile of protein hydrolysates from Brassica napus. Food Chem 2014; 178:346-57. [PMID: 25704722 DOI: 10.1016/j.foodchem.2014.12.063] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 12/01/2014] [Accepted: 12/16/2014] [Indexed: 11/27/2022]
Abstract
The role of the peptides-phenolic compounds (PC) interaction on the antioxidant capacity profile (ACP) of protein hydrolysates from rapeseed (Brassica napus) was studied in 36 hydrolysates obtained from a PC-rich and PC-reduced protein substrate. The latent profile analysis (LPA), with data of seven in vitro methods and one assay for cellular antioxidant activity (CAA), allowed identifying five distinctive groups of hydrolysates, each one with distinctive ACP. The interaction of peptides with naturally present PC diminished in vitro antioxidant activity in comparison with their PC-reduced counterparts. However, CAA increased when peptides-PC interaction occurred. The profile with the highest average CAA (62.41 ± 1.48%), shown by hydrolysates obtained by using alcalase, shared typical values of Cu(2+)-catalysed β-carotene oxidation (62.41 ± 0.43%), β-carotene bleaching inhibition (91.75 ± 0.22%) and Cu(2+)-chelating activity (74.53 ± 0.58%). The possibilities for a sample to exhibit ACP with higher CAA increased with each unit of positively charged amino acids, according to multinomial logistic regression analysis.
Collapse
Affiliation(s)
- Anaid Hernández-Jabalera
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio, Esq. Plan de Ayala S/N, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340 México, D.F., Mexico
| | - Isabel Cortés-Giraldo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Gloria Dávila-Ortíz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio, Esq. Plan de Ayala S/N, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340 México, D.F., Mexico
| | - Javier Vioque
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Manuel Alaiz
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Julio Girón-Calle
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Cristina Megías
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio, Esq. Plan de Ayala S/N, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340 México, D.F., Mexico.
| |
Collapse
|